1
|
Moyano PM, Kubina T, Paruch ŠO, Jarošková A, Novotný J, Skočková V, Ovesná P, Suchánková T, Prokofeva P, Kuster B, Šmída M, Chaikuad A, Krämer A, Knapp S, Souček K, Paruch K. Thieno[3,2-b]pyridine: Attractive scaffold for highly selective inhibitors of underexplored protein kinases with variable binding mode. Angew Chem Int Ed Engl 2025; 64:e202412786. [PMID: 39503260 DOI: 10.1002/anie.202412786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 11/22/2024]
Abstract
Protein kinases are key regulators of numerous biological processes and aberrant kinase activity can cause various diseases, particularly cancer. Herein, we report the identification of new series of highly selective kinase inhibitors based on the thieno[3,2-b]pyridine scaffold. The weak interaction of the thieno[3,2-b]pyridine core with the kinase hinge region allows for profoundly different binding modes all of which maintain high kinome-wide selectivity, as illustrated by the isomers MU1464 and MU1668. Thus, this core structure provides a template of ATP-competitive but not ATP-mimetic inhibitors that are anchored at the kinase back pocket. Mapping the chemical space around the central thieno[3,2-b]pyridine pharmacophore afforded highly selective inhibitors of the kinase Haspin, exemplified by the compound MU1920 that fulfils criteria for a quality chemical probe and is suitable for use in in vivo applications. However, despite the role of Haspin in mitosis, the inhibition of Haspin alone was not sufficient to elicit cytotoxic effect in cancer cells. The thieno[3,2-b]pyridine scaffold can be used in a broader context, as a basis of inhibitors targeting other underexplored protein kinases, such as CDKLs.
Collapse
Affiliation(s)
- Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Tadeáš Kubina
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Štěpán Owen Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Aneta Jarošková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Novotný
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Skočková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tereza Suchánková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
| | - Polina Prokofeva
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Michal Šmída
- CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Andreas Krämer
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Karel Souček
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| |
Collapse
|
2
|
Silvaroli JA, Martinez GV, Vanichapol T, Davidson AJ, Zepeda-Orozco D, Pabla NS, Kim JY. Role of the CDKL1-SOX11 signaling axis in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F426-F434. [PMID: 38991010 PMCID: PMC11460330 DOI: 10.1152/ajprenal.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Gabriela V Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
3
|
Bashore F, Min SM, Chen X, Howell S, Rinderle CH, Morel G, Silvaroli JA, Wells CI, Bunnell BA, Drewry DH, Pabla NS, Ultanir SK, Bullock AN, Axtman AD. Discovery and Characterization of a Chemical Probe for Cyclin-Dependent Kinase-Like 2. ACS Med Chem Lett 2024; 15:1325-1333. [PMID: 39140040 PMCID: PMC11318004 DOI: 10.1021/acsmedchemlett.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Acylaminoindazole-based inhibitors of CDKL2 were identified via analyses of cell-free binding and selectivity data. Compound 9 was selected as a CDKL2 chemical probe based on its potent inhibition of CDKL2 enzymatic activity, engagement of CDKL2 in cells, and excellent kinome-wide selectivity, especially when used in cells. Compound 16 was designed as a negative control to be used alongside compound 9 in experiments to interrogate CDKL2-mediated biology. A solved cocrystal structure of compound 9 bound to CDKL2 highlighted key interactions it makes within its ATP-binding site. Inhibition of downstream phosphorylation of EB2, a CDKL2 substrate, in rat primary neurons provided evidence that engagement of CDKL2 by compound 9 in cells resulted in inhibition of its activity. When used at relevant concentrations, compound 9 does not impact the viability of rat primary neurons or certain breast cancer cells nor elicit consistent changes in the expression of proteins involved in epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Frances
M. Bashore
- Structural
Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sophia M. Min
- Structural
Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiangrong Chen
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Stefanie Howell
- Structural
Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caroline H. Rinderle
- Department
of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Gabriel Morel
- Kinases
and Brain Development Laboratory, The Francis
Crick Institute, London NW1 1AT, U.K.
| | - Josie A. Silvaroli
- Division
of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carrow I. Wells
- Structural
Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bruce A. Bunnell
- Department
of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - David H. Drewry
- Structural
Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger
Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Navjot S. Pabla
- Division
of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sila K. Ultanir
- Kinases
and Brain Development Laboratory, The Francis
Crick Institute, London NW1 1AT, U.K.
| | - Alex N. Bullock
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Alison D. Axtman
- Structural
Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Simões de Oliveira L, O'Leary HE, Nawaz S, Loureiro R, Davenport EC, Baxter P, Louros SR, Dando O, Perkins E, Peltier J, Trost M, Osterweil EK, Hardingham GE, Cousin MA, Chattarji S, Booker SA, Benke TA, Wyllie DJA, Kind PC. Enhanced hippocampal LTP but normal NMDA receptor and AMPA receptor function in a rat model of CDKL5 deficiency disorder. Mol Autism 2024; 15:28. [PMID: 38877552 PMCID: PMC11177379 DOI: 10.1186/s13229-024-00601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.
Collapse
MESH Headings
- Animals
- Male
- Rats
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- Disease Models, Animal
- Epileptic Syndromes/genetics
- Epileptic Syndromes/metabolism
- Excitatory Postsynaptic Potentials
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/physiopathology
- Hippocampus/metabolism
- Long-Term Potentiation
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Pyramidal Cells/metabolism
- Pyramidal Cells/pathology
- Receptors, AMPA/metabolism
- Receptors, AMPA/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Spasms, Infantile/genetics
- Spasms, Infantile/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Laura Simões de Oliveira
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Heather E O'Leary
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Pharmacology, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - Sarfaraz Nawaz
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, 560065, India
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Rita Loureiro
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | | | - Paul Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emma Perkins
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Julien Peltier
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthias Trost
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Sumantra Chattarji
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, 560065, India
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Tim A Benke
- School of Medicine, University of Colorado, Denver, CO, USA.
- Department of Pharmacology, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO, 80045, USA.
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, Instem, Bangalore, India.
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, Instem, Bangalore, India.
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
5
|
Bashore FM, Min SM, Chen X, Howell S, Rinderle CH, Morel G, Silvaroli JA, Wells CI, Bunnell BA, Drewry DH, Pabla NS, Ultanir SK, Bullock AN, Axtman AD. Discovery and Characterization of a Chemical Probe for Cyclin-Dependent Kinase-Like 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593776. [PMID: 38798634 PMCID: PMC11118373 DOI: 10.1101/2024.05.12.593776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acylaminoindazole-based inhibitors of CDKL2 were identified via analyses of cell-free binding and selectivity data. Compound 9 was selected as a CDKL2 chemical probe based on its potent inhibition of CDKL2 enzymatic activity, engagement of CDKL2 in cells, and excellent kinome-wide selectivity, especially when used in cells. Compound 16 was designed as a negative control to be used alongside compound 9 in experiments to interrogate CDKL2-mediated biology. A solved co-crystal structure of compound 9 bound to CDKL2 highlighted key interactions it makes within its ATP-binding site. Inhibition of downstream phosphorylation of EB2, a CDKL2 substrate, in rat primary neurons provided evidence that engagement of CDKL2 by compound 9 in cells resulted in inhibition of its activity. When used at relevant concentrations, compound 9 does not impact the viability of rat primary neurons or certain breast cancer cells nor elicit consistent changes in the expression of proteins involved in epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Frances M. Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sophia M. Min
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Stefanie Howell
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caroline H. Rinderle
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Gabriel Morel
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Josie A. Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Sila K. Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Alex N. Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Flax RG, Rosston P, Rocha C, Anderson B, Capener JL, Durcan TM, Drewry DH, Prinos P, Axtman AD. Illumination of understudied ciliary kinases. Front Mol Biosci 2024; 11:1352781. [PMID: 38523660 PMCID: PMC10958382 DOI: 10.3389/fmolb.2024.1352781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cilia are cellular signaling hubs. Given that human kinases are central regulators of signaling, it is not surprising that kinases are key players in cilia biology. In fact, many kinases modulate ciliogenesis, which is the generation of cilia, and distinct ciliary pathways. Several of these kinases are understudied with few publications dedicated to the interrogation of their function. Recent efforts to develop chemical probes for members of the cyclin-dependent kinase like (CDKL), never in mitosis gene A (NIMA) related kinase (NEK), and tau tubulin kinase (TTBK) families either have delivered or are working toward delivery of high-quality chemical tools to characterize the roles that specific kinases play in ciliary processes. A better understanding of ciliary kinases may shed light on whether modulation of these targets will slow or halt disease onset or progression. For example, both understudied human kinases and some that are more well-studied play important ciliary roles in neurons and have been implicated in neurodevelopmental, neurodegenerative, and other neurological diseases. Similarly, subsets of human ciliary kinases are associated with cancer and oncological pathways. Finally, a group of genetic disorders characterized by defects in cilia called ciliopathies have associated gene mutations that impact kinase activity and function. This review highlights both progress related to the understanding of ciliary kinases as well as in chemical inhibitor development for a subset of these kinases. We emphasize known roles of ciliary kinases in diseases of the brain and malignancies and focus on a subset of poorly characterized kinases that regulate ciliary biology.
Collapse
Affiliation(s)
- Raymond G. Flax
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cecilia Rocha
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacob L. Capener
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Yin Y, Zhao SL, Rane D, Lin Z, Wu M, Peterson BR. Quantification of Binding of Small Molecules to Native Proteins Overexpressed in Living Cells. J Am Chem Soc 2024; 146:187-200. [PMID: 38118119 PMCID: PMC10910633 DOI: 10.1021/jacs.3c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The affinity and selectivity of small molecules for proteins drive drug discovery and development. We report a fluorescent probe cellular binding assay (FPCBA) for determination of these values for native (untagged) proteins overexpressed in living cells. This method uses fluorophores such as Pacific Blue (PB) linked to cell-permeable protein ligands to generate probes that rapidly and reversibly equilibrate with intracellular targets, as established by kinetic assays of cellular uptake and efflux. To analyze binding to untagged proteins, an internal ribosomal entry site (IRES) vector was employed that allows a single mRNA to encode both the protein target and a separate orthogonal fluorescent protein (mVenus). This enabled cellular uptake of the probe to be correlated with protein expression by flow cytometry, allowing measurement of cellular dissociation constants (Kd) of the probe. This approach was validated by studies of the binding of allosteric activators to eight different Protein Kinase C (PKC) isozymes. Full-length PKCs expressed in transiently transfected HEK293T cells were used to measure cellular Kd values of a probe comprising PB linked to the natural product phorbol via a carbamate. These values were further used to determine competitive binding constants (cellular Ki values) of the nonfluorescent phorbol ester PDBu and the anticancer agent bryostatin 1 for each isozyme. For some PKC-small molecule pairs, these cellular Ki values matched known biochemical Ki values, but for others, altered selectivity was observed in cells. This approach can facilitate quantification of interactions of small molecules with physiologically relevant native proteins.
Collapse
Affiliation(s)
- Yuwen Yin
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Serena Li Zhao
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Digamber Rane
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Zhihong Lin
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Meng Wu
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| |
Collapse
|
8
|
Abdelsamad A, Kachhadia MP, Hassan T, Kumar L, Khan F, Kar I, Panta U, Zafar W, Sapna F, Varrassi G, Khatri M, Kumar S. Charting the Progress of Epilepsy Classification: Navigating a Shifting Landscape. Cureus 2023; 15:e46470. [PMID: 37927689 PMCID: PMC10624359 DOI: 10.7759/cureus.46470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Epilepsy, a neurological disorder characterized by recurrent seizures, has witnessed a remarkable transformation in its classification paradigm, driven by advances in clinical understanding, neuroimaging, and molecular genetics. This narrative review navigates the dynamic landscape of epilepsy classification, offering insights into recent developments, challenges, and the promising horizon. Historically, epilepsy classification relied heavily on clinical observations, categorizing seizures based on their phenomenology and presumed etiology. However, the field has profoundly shifted from a symptom-based approach to a more refined, multidimensional system. One pivotal aspect of this evolution is the integration of neuroimaging techniques, particularly magnetic resonance imaging (MRI) and functional imaging modalities. These tools have unveiled the intricate neural networks implicated in epilepsy, facilitating the identification of distinct brain abnormalities and the categorization of epilepsy subtypes based on structural and functional findings. Furthermore, the role of genetics has become increasingly prominent in epilepsy classification. Genetic discoveries have not only unraveled the molecular underpinnings of various epileptic syndromes but have also provided valuable diagnostic and prognostic insights. This narrative review delves into the expanding realm of genetic testing and its impact on tailoring treatment strategies to individual patients. As the classification landscape evolves, there are accompanying challenges. The narrative review underscores the transformative potential of artificial intelligence and machine learning in epilepsy classification. These technologies hold promise in automating the analysis of complex neuroimaging and genetic data, offering enhanced accuracy and efficiency in epilepsy diagnosis and classification. In conclusion, navigating the shifting landscape of epilepsy classification is a journey marked by progress, complexity, and the prospect of improved patient care. We are charting a course toward more precise diagnoses and tailored treatments by embracing advanced neuroimaging, genetics, and innovative technologies. As the field continues to evolve, collaborative efforts and a holistic understanding of epilepsy's diverse manifestations will be instrumental in harnessing the full potential of this dynamic landscape.
Collapse
Affiliation(s)
- Alaa Abdelsamad
- Research and Development, Michigan State University, East Lansing, USA
| | | | - Talha Hassan
- Internal Medicine, KEMU (King Edward Medical University) Mayo Hospital, Lahore, PAK
| | - Lakshya Kumar
- General Medicine, PDU (Pandit Dindayal Upadhyay) Medical College, Rajkot, IND
| | - Faisal Khan
- Medicine, Dow University of Health Sciences (DUHS), Karachi, PAK
| | - Indrani Kar
- Medicine, Lady Hardinge Medical College, New Delhi, IND
| | - Uttam Panta
- Medicine, Chitwan Medical College, Bharatpur, NPL
| | - Wirda Zafar
- Medicine, University of Medicine and Health Sciences, Toronto, CAN
| | - Fnu Sapna
- Pathology, Albert Einstein College of Medicine, New York, USA
| | | | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences (DUHS), Karachi, PAK
| | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| |
Collapse
|
9
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|