1
|
Prommachote W, Deeudom M, Koonyosying P, Srichomphoo P, Somnabut R, Khamnoi P, Cilibrizzi A, Ravikumar Y, Srichairatanakool S. Drug Susceptibility, Siderophore Production, and Genome Analysis of Staphylococcus aureus Clinical Isolates from a University Hospital in Chiang Mai, Thailand. Antibiotics (Basel) 2025; 14:521. [PMID: 40426587 PMCID: PMC12108237 DOI: 10.3390/antibiotics14050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objective:Staphylococcus aureus produces staphyloferrin A (Sfna) siderophores to sequester host iron during infection and rapid cell proliferation We examined drug susceptibility, siderophore production, and genome sequencing of clinical isolates of S. aureus. Methods: A total of 100 specimens, including pus, sputum, hemoculture, urine, tissue, fluid, and skin scrap specimens, were grown in iron-deprived Luria broth agar. The isolates were investigated for spectral signature using MALDI-TOF/MS, while antibiotic susceptibility and siderophore content were assessed using the chrome azurol S method. Whole genome and partial 16S rRNA DNA sequences were employed, and VITEK/MS revealed specific spectra. Results: Clindamycin, erythromycin, gentamicin, linezolid, moxifloxacin, oxacillin, trimethoprim/sulfamethoxazole, and vancomycin (100%) were the most common antibiotics to which the S. aureus isolates were susceptible. Sfna was not detectable in fluid and skin scrap isolates, which were encoded by sfnaB, sfnaD, and sfnaB/sfnaD genes. However, they were detectable in pus (73.8%), sputum (85.3%), hemoculture (50.0%), and urine (85.7%) isolates. The aureus subspecies, JKD6159, SA268, and MN8, were found to be 72.73% according to genome sequencing. Conclusion: most staphylococci in the isolates, including S. aureus JKD6159, SA268, and MN8, were sensitive to antibiotics and were detected by MALDI-TOF/MS, resulting in the production of Sfna encoded by sfna genes.
Collapse
Affiliation(s)
- Warinda Prommachote
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.); (P.K.); (P.S.)
- Faculty of Associated Medical Sciences, Walailak University, Nakhonsrithammarat 80160, Thailand
| | - Manu Deeudom
- Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.); (P.K.); (P.S.)
| | - Phronpawee Srichomphoo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.); (P.K.); (P.S.)
| | - Ratchanee Somnabut
- Clinical Microbiology Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.S.); (P.K.)
| | - Phadungkiat Khamnoi
- Clinical Microbiology Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.S.); (P.K.)
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK;
| | - Yuvaraj Ravikumar
- Department of Biotechnology, Acharya Institute of Technology, Soladevanahalli, Karnataka 560170, India;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.P.); (P.K.); (P.S.)
| |
Collapse
|
2
|
Gu S, Shao Z, Qu Z, Zhu S, Shao Y, Zhang D, Allen R, He R, Shao J, Xiong G, Jousset A, Friman VP, Wei Z, Kümmerli R, Li Z. Siderophore synthetase-receptor gene coevolution reveals habitat- and pathogen-specific bacterial iron interaction networks. SCIENCE ADVANCES 2025; 11:eadq5038. [PMID: 39813347 PMCID: PMC11734721 DOI: 10.1126/sciadv.adq5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members. Siderophores are chemically diverse and can be stimulatory or inhibitory depending on whether bacteria have or lack corresponding uptake receptors. We focused on 1928 representative Pseudomonas genomes and developed an experimentally validated coevolution algorithm to match encoded siderophore synthetases to corresponding receptor groups. We derived community-level iron interaction networks to show that siderophore-mediated interactions differ across habitats and lifestyles. Specifically, dense networks of siderophore sharing and competition were observed among environmental and nonpathogenic species, while small, fragmented networks occurred among human-associated and pathogenic species. Together, our sequence-to-ecology approach empowers the analyses of social interactions among thousands of bacterial strains and offers opportunities for targeted intervention to microbial communities.
Collapse
Affiliation(s)
- Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zhengying Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zeyang Qu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shenyue Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Richard Allen
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guanyue Xiong
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ville-Petri Friman
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, P. R. China
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|