1
|
Borrajo A. Breaking Barriers to an HIV-1 Cure: Innovations in Gene Editing, Immune Modulation, and Reservoir Eradication. Life (Basel) 2025; 15:276. [PMID: 40003685 PMCID: PMC11856976 DOI: 10.3390/life15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Recent advances in virology, particularly in the study of HIV-1, have significantly progressed the pursuit of a definitive cure for the disease. Emerging therapeutic strategies encompass innovative gene-editing technologies, immune-modulatory interventions, and next-generation antiretroviral agents. Efforts to eliminate or control viral reservoirs have also gained momentum, with the aim of achieving durable viral remission without the continuous requirement for antiretroviral therapy. Despite these promising developments, critical challenges persist in bridging the gap between laboratory findings and clinical implementation. This review provides a comprehensive analysis of recent breakthroughs, ongoing clinical trials, and the barriers that must be addressed to translate these advancements into effective treatments, emphasizing the multifaceted approaches being pursued to achieve a curative solution for HIV-1 infection.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Cronin S, de Vries-Egan A, Vahlas Z, Czernikier A, Melucci C, Pereyra Gerber P, O’Neil T, Gloss B, Sharabas M, Turk G, Verollet C, Balboa L, Palmer S, Duette G. The immunosuppressive tuberculosis-associated microenvironment inhibits viral replication and promotes HIV-1 latency in CD4 + T cells. iScience 2024; 27:110324. [PMID: 39055929 PMCID: PMC11269811 DOI: 10.1016/j.isci.2024.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is the most common coinfection among people living with HIV-1. This coinfection is associated with accelerated HIV-1 disease progression and reduced survival. However, the impact of the HIV-1/TB coinfection on HIV-1 replication and latency in CD4+ T cells remains poorly studied. Using the acellular fraction of tuberculous pleural effusion (TB-PE), we investigated whether viral replication and HIV-1 latency in CD4+ T cells are affected by a TB-associated microenvironment. Our results revealed that TB-PE impaired T cell receptor-dependent cell activation and decreased HIV-1 replication in CD4+ T cells. Moreover, this immunosuppressive TB microenvironment promoted viral latency and inhibited HIV-1 reactivation. This study indicates that the TB-induced immune response may contribute to the persistence of the viral reservoir by silencing HIV-1 expression, allowing the virus to persist undetected by the immune system, and increasing the size of the latent HIV-1 reservoir.
Collapse
Affiliation(s)
- Samantha Cronin
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2050, Australia
| | - Anneke de Vries-Egan
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de La Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), 31077 Toulouse, France
- International Research Project CNRS “MAC-TB/HIV”, Toulouse, France and Buenos Aires, Argentina
| | - Alejandro Czernikier
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Claudia Melucci
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Pehuén Pereyra Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Thomas O’Neil
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2050, Australia
| | - Brian Gloss
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
| | - Mayssa Sharabas
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
| | - Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de La Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), 31077 Toulouse, France
- International Research Project CNRS “MAC-TB/HIV”, Toulouse, France and Buenos Aires, Argentina
| | - Luciana Balboa
- International Research Project CNRS “MAC-TB/HIV”, Toulouse, France and Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
- Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires C1425ASU, Argentina
| | - Sarah Palmer
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2050, Australia
| | - Gabriel Duette
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2050, Australia
| |
Collapse
|
3
|
Ahmad MF, A. Alsayegh A, Ahmad FA, Akhtar MS, Alavudeen SS, Bantun F, Wahab S, Ahmed A, Ali M, Elbendary EY, Raposo A, Kambal N, H. Abdelrahman M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024; 10:e25607. [PMID: 38356540 PMCID: PMC10865332 DOI: 10.1016/j.heliyon.2024.e25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gru Gram, 122103, Haryana, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Sirajudeen S. Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Awais Ahmed
- Department of Management, Shri JJT University, Rajasthan, Post code; 333010, India
| | - M. Ali
- Department of Pharmacognosy, CBS College of Pharmacy & Technology (Pt. B. D. Sharma University of Health Sciences), Chandpur, Faridabad, Haryana, 121101, India
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
4
|
Fayed ND, Arafa MF, Essa EA, El Maghraby GM. Lopinavir-menthol co-crystals for enhanced dissolution rate and intestinal absorption. J Drug Deliv Sci Technol 2022; 74:103587. [PMID: 35845293 PMCID: PMC9272570 DOI: 10.1016/j.jddst.2022.103587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022]
Abstract
Lopinavir is an antiretroviral, antiparasitic agent and recently utilized in treatment of COVID-19. Unfortunately, lopinavir exhibited poor oral bioavailability due to poor dissolution, extensive pre-systemic metabolism, and significant P-glycoprotein intestinal efflux. Accordingly, the aim was to enhance dissolution rate and intestinal absorption of lopinavir. This employed co-processing with menthol which is believed to modify crystalline structures and inhibit intestinal efflux. Lopinavir was mixed with menthol at different molar ratios before ethanol assisted kneading. Formulations were evaluated using FTIR spectroscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and dissolution studies. Optimum ratio was utilized to assess lopinavir intestinal permeability. This employed in situ rabbit intestinal perfusion technique. FTIR, DSC and XRD indicated formation of lopinavir-menthol co-crystals at optimum molar ratio of 1:2. Additional menthol underwent phase separation due to possible self-association. Co-crystallization significantly enhanced lopinavir dissolution rate compared with pure drug to increase the dissolution efficiency from 24.96% in case of unprocessed lopinavir to 91.43% in optimum formulation. Lopinavir showed incomplete absorption from duodenum and jejuno-iliac segments with lower absorptive clearance from jejuno-ileum reflecting P-gp efflux. Co-perfusion with menthol increased lopinavir intestinal permeability. The study introduced menthol as co-crystal co-former for enhanced dissolution and augmented intestinal absorption of lopinavir.
Collapse
|
5
|
Dhanjal JK, Vora D, Radhakrishnan N, Sundar D. Computational Approaches for Designing Highly Specific and Efficient sgRNAs. Methods Mol Biol 2022; 2349:147-166. [PMID: 34718995 DOI: 10.1007/978-1-0716-1585-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The easily programmable CRISPR/Cas9 system has found applications in biomedical research as well as microbial and crop applications, due to its ability to create site-specific edits. This powerful and flexible system has also been modified to enable inducible gene regulation, epigenome modifications and high-throughput screens. Designing efficient and specific guides for the nuclease is a key step and also a major challenge in effective application. This chapter describes rules for sgRNA design and important features to consider while touching upon bioinformatics advances in predicting efficient guides. Computational tools that suggest improved guides, depending on application, or predict off-targets have also been mentioned and compared.
Collapse
Affiliation(s)
- Jaspreet Kaur Dhanjal
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Dhvani Vora
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Navaneethan Radhakrishnan
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
6
|
Feng Z, Yang Z, Gao X, Xue Y, Wang X. Resveratrol Promotes HIV-1 Tat Accumulation via AKT/FOXO1 Signaling Axis and Potentiates Vorinostat to Antagonize HIV-1 Latency. Curr HIV Res 2021; 19:238-247. [PMID: 33461468 DOI: 10.2174/1570162x19666210118151249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The latent reservoir of HIV-1 is a major barrier to achieving the eradication of HIV-1/AIDS. One strategy is termed "shock and kill", which aims to awaken the latent HIV-1 using latency reversing agents (LRAs) to replicate and produce HIV-1 particles. Subsequently, the host cells containing HIV-1 can be recognized and eliminated by the immune response and anti-retroviral therapy. Although many LRAs have been found and tested, their clinical trials were dissatisfactory. OBJECTIVE To aim of the study was to investigate how resveratrol reactivates silent HIV-1 transcription and assess if resveratrol could be a candidate drug for the "shock" phase in "shock and kill" strategy. METHODS We used established HIV-1 transcription cell models (HeLa-based NH1 and NH2 cells) and HIV-1 latent cell models (J-Lat A72 and Jurkat 2D10 cells). We performed resveratrol treatment on these cell lines and studied the mechanism of how resveratrol stimulates HIV-1 gene transcription. We also tested resveratrol's bioactivity on primary cells isolated from HIV-1 latent infected patients. RESULTS Resveratrol promoted HIV-1 Tat protein levels, and resveratrol-induced Tat promotion was found to be dependent on the AKT/FOXO1 signaling axis. Resveratrol could partially dissociate P-TEFb (Positive Transcription Elongation Factor b) from 7SK snRNP (7SK small nuclear Ribonucleoprotein) and promote Tat-SEC (Super Elongation Complex) interaction. Preclinical studies showed that resveratrol potentiated Vorinostat to awaken HIV-1 latency in HIV-1 latent infected cells isolated from patients. CONCLUSION We found a new mechanism of resveratrol stimulating the production of HIV-1. Resveratrol could be a promising candidate drug to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Zeming Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
7
|
Nsoh M, Tshimwanga KE, Ngum BA, Mgasa A, Otieno MO, Moali B, Sirili N, Atanga NS, Halle-Ekane GE. Predictors of antiretroviral therapy interruptions and factors influencing return to care at the Nkolndongo Health District, Cameroon. Afr Health Sci 2021; 21:29-38. [PMID: 34447421 PMCID: PMC8367305 DOI: 10.4314/ahs.v21i1.6s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Antiretroviral therapy is a lifelong commitment that requires consistent intake of tablets to optimize health outcomes, attain and maintain viral suppression. OBJECTIVE We aimed to elicit predictors of treatment interruption amongst PLHIV and identify motivating factors influencing return to care. METHOD We conducted a cross-sectional study using a mixed-method approach in four hospitals in Yaoundé. Sociodemographic and clinical data were collected from ART registers. Using purposeful sampling, thirteen participants were enrolled for interviews. Quantitative data were analyzed using Epi-Info and Atlas-TI for qualitative analysis. Ethical clearance approved by CBCHS-IRB. RESULTS A total of 271 participants records were assessed. The mean age was 33 years (SD±11years). Private facilities CASS and CMNB registered respectively 53 (19.6%) and 14 (5.2%) participants while CMA Nkomo and IPC had 114 (42.1%) and 90 (33.2%) participants. Most participants (75.3%) were females [OR 1.14; CI 0.78-1.66] compare with males. 78% had no viral load test results. Transport cost and stigmatization constituted the most prominent predictors of treatment interruption (47.5%) and (10.5%) respectively. Belief in the discovery of an eminent HIV cure and the desire to raise offspring motivated 30% and 61%, respectively to resume treatment. CONCLUSION Structural barriers like exposed health facility, and dispensing ARVs in open spaces stigmatizes clients and increases odds of attrition. Attrition of patients on ART will be minimized through implementation of client centered approaches like multiplying proxy ART pick points, devolving stable clients to community ARV model.
Collapse
Affiliation(s)
- Marius Nsoh
- Department of Public Health, School of Health Sciences, Catholic University of Central Africa; Cameroon
- HIV Free Project, Cameroon Baptist Convention Health Services, Center region; Cameroon
| | - Katayi E Tshimwanga
- HIV Free Project, Cameroon Baptist Convention Health Services, Center region; Cameroon
| | - Busi A Ngum
- Women Health Program, Mbingo Baptist Hospital, Cameroon Baptist Convention Health Services; Cameroon
| | - Avelina Mgasa
- Ministry of Health Community Development, Gender, Elderly and Children; National Blood Transfusion Service; Tanzania
| | - Moses O Otieno
- National AIDS and Sexually Transmitted Infections Control Program (NASCOP); Kenya
| | - Bokwena Moali
- Ministry of Health and Wellness, Okavango District, Botswana
| | - Nathanael Sirili
- Department of Development Studies, Muhimbili University of Health and Allied Sciences; Tanzania
| | - Ndeso S Atanga
- Department of Public Health, Obstetrics and Gynecology, Faculty of Health Sciences, University of Buea; Cameroon
| | - Gregory E Halle-Ekane
- Department of Public Health, Obstetrics and Gynecology, Faculty of Health Sciences, University of Buea; Cameroon
| |
Collapse
|
8
|
Chiu ML, Liang WM, Li JP, Cheng CF, Chiou JS, Ho MW, Wu YC, Lin TH, Liao CC, Huang SM, Tsai FJ, Lin YJ. Timing, Dosage, and Adherence of Antiretroviral Therapy and Risk of Osteoporosis in Patients With Human Immunodeficiency Virus Infection in Taiwan: A Nested Case-Control Study. Front Pharmacol 2021; 12:631480. [PMID: 33995032 PMCID: PMC8121495 DOI: 10.3389/fphar.2021.631480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/21/2021] [Indexed: 11/27/2022] Open
Abstract
The progression of acquired immunodeficiency syndrome is delayed in patients with human immunodeficiency virus (HIV) infection receiving antiretroviral therapy (ART). However, long-term ART is associated with adverse effects. Osteoporosis is one of the adverse effects and is a multifactorial systemic skeletal disease associated with bone fragility and an increased risk of fracture. We performed a longitudinal, comprehensive, nested case-control study to explore the effect of ART on the risk of osteoporosis in 104 osteoporotic and 416 non-osteoporotic patients with HIV infection at their average age about 29 years old in Taiwan. Patients with history of ART, current exposure to ART, higher cumulative defined daily doses (DDDs), or higher ART adherence were at a higher risk of osteoporosis (p < 0.05). Patients receiving nucleoside/nucleotide reverse transcriptase inhibitor (NRTI)-containing regimen (zidovudine-lamivudine combination, lamivudine-abacavir combination, and abacavir alone) and protease inhibitor (PI)-containing regimen (lopinavir-ritonavir combination, ritonavir, and atazanavir) had a higher risk of osteoporosis (p < 0.05). Especially, patients receiving high doses of the PIs lopinavir-ritonavir combination had an increased risk of osteoporosis (p < 0.05). In conclusion, history of ART, current exposure to ART, higher cumulative DDDs, and higher ART adherence were associated with an increased risk of osteoporosis. Furthermore, NRTI- and PI-containing regimens and high doses of PIs lopinavir-ritonavir combination may be associated with an increased risk of osteoporosis in patients with HIV infection in Taiwan.
Collapse
Affiliation(s)
- Mu-Lin Chiu
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ju-Pi Li
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Fung Cheng
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine and Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Ho MW, Li TM, Li JP, Chiou JS, Chiu ML, Chen CJ, Cheng CF, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Lin YN, Chou CH, Liang WM, Lin YJ. Chinese Herbal Medicine Usage Reduces Overall Mortality in HIV-Infected Patients With Osteoporosis or Fractures. Front Pharmacol 2021; 12:593434. [PMID: 33935696 PMCID: PMC8085888 DOI: 10.3389/fphar.2021.593434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023] Open
Abstract
The survival of patients with HIV has greatly improved, due to Anti-Retroviral Therapy (ART). However, long-term HIV survivors often develop serious bone abnormalities, possibly due to the interplay of osteoblasts, osteoclasts, HIV ad ART. We evaluated in a nation-wide study in Taiwan the effect of Chinese herbal medicine (CHM) on overall mortality in HIV patients with osteoporosis or fractures. Enrollment period was between 1998 and 2011. Patients with osteoporosis or fractures before the HIV infection, and those with less than 14 days CHM use, were excluded. This left 498 patients, 160 CHM users, 338 without CHM. Univariate Kaplan-Meier and multivariate Cox regression analysis were used to compare the overall mortality in these 2 groups. Due to the nature of Chinese medicine, CHMs inevitably varied. We therefore also used rule mining and network analysis to determine which major CHM clusters were prescribed to the patients. CHM users had a much Lower mortality (hazard ratio (HR) = 0.43, 95% confidence interval (CI): 0.24–0.77, p < 0.005) and higher survival (p = 0.004, log-rank test). Although the CHMs greatly varied, network analysis identified one main cluster of strongly related CHM combinations (Chuan-Xiong-Cha-Tiao-San (CXCTS), Gan-Cao (GC; Glycyrrhiza uralensis Fisch.), Liu-He-Tang (LHT), Huang-Qin-Tang (HQT), Jia-Wei-Ping-Wei-San (JWPWS), and Dang-Gui-Long-Hui-Wan (DGLHuiW)). CHM as an additional treatment strongly improves overall survival in HIV-infected patients with osteoporosis and fractures.
Collapse
Affiliation(s)
- Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Internal Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ju-Pi Li
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Mu-Lin Chiu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Fung Cheng
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Hsing Chou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
HIV-1 Envelope Glycosylation and the Signal Peptide. Vaccines (Basel) 2021; 9:vaccines9020176. [PMID: 33669676 PMCID: PMC7922494 DOI: 10.3390/vaccines9020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The RV144 trial represents the only vaccine trial to demonstrate any protective effect against HIV-1 infection. While the reason(s) for this protection are still being evaluated, it serves as justification for widespread efforts aimed at developing new, more effective HIV-1 vaccines. Advances in our knowledge of HIV-1 immunogens and host antibody responses to these immunogens are crucial to informing vaccine design. While the envelope (Env) protein is the only viral protein present on the surface of virions, it exists in a complex trimeric conformation and is decorated with an array of variable N-linked glycans, making it an important but difficult target for vaccine design. Thus far, efforts to elicit a protective humoral immune response using structural mimics of native Env trimers have been unsuccessful. Notably, the aforementioned N-linked glycans serve as a component of many of the epitopes crucial for the induction of potentially protective broadly neutralizing antibodies (bnAbs). Thus, a greater understanding of Env structural determinants, most critically Env glycosylation, will no doubt be of importance in generating effective immunogens. Recent studies have identified the HIV-1 Env signal peptide (SP) as an important contributor to Env glycosylation. Further investigation into the mechanisms by which the SP directs glycosylation will be important, both in the context of understanding HIV-1 biology and in order to inform HIV-1 vaccine design.
Collapse
|
11
|
Maina EK, Adan AA, Mureithi H, Muriuki J, Lwembe RM. A Review of Current Strategies Towards the Elimination of Latent HIV-1 and Subsequent HIV-1 Cure. Curr HIV Res 2021; 19:14-26. [PMID: 32819259 PMCID: PMC8573729 DOI: 10.2174/1570162x18999200819172009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Background During the past 35 years, highly effective ART has saved the lives of millions of people worldwide by suppressing viruses to undetectable levels. However, this does not translate to the absence of viruses in the body as HIV persists in latent reservoirs. Indeed, rebounded HIV has been recently observed in the Mississippi and California infants previously thought to have been cured. Hence, much remains to be learned about HIV latency, and the search for the best strategy to eliminate the reservoir is the direction current research is taking. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and is applicable in human therapy is prudent for HIV eradication to be more feasible. Objectives The main barriers preventing the cure of HIV with antiretroviral therapy have been identified, progress has been made in the understanding of the therapeutic targets to which potentially eradicating drugs could be directed, integrative strategies have been proposed, and clinical trials with various alternatives are underway. The aim of this review is to provide an update on the main advances in HIV eradication, with particular emphasis on the obstacles and the different strategies proposed. The core challenges of each strategy are highlighted and the most promising strategy and new research avenues in HIV eradication strategies are proposed. Methods A systematic literature search of all English-language articles published between 2015 and 2019, was conducted using MEDLINE (PubMed) and Google scholar. Where available, medical subject headings (MeSH) were used as search terms and included: HIV, HIV latency, HIV reservoir, latency reactivation, and HIV cure. Additional search terms consisted of suppression, persistence, establishment, generation, and formation. A total of 250 articles were found using the above search terms. Out of these, 89 relevant articles related to HIV-1 latency establishment and eradication strategies were collected and reviewed, with no limitation of study design. Additional studies (commonly referenced and/or older and more recent articles of significance) were selected from bibliographies and references listed in the primary resources. Results In general, when exploring the literature, there are four main strategies heavily researched that provide promising strategies to the elimination of latent HIV: Haematopoietic Stem-Cell Transplantation, Shock and Kill Strategy, Gene-specific transcriptional activation using RNA-guided CRISPR-Cas9 system, and Block and Lock strategy. Most of the studies of these strategies are applicable in vitro, leaving many questions about the extent to which, or if any, these strategies are applicable to complex picture In vivo. However, the success of these strategies at least shows, in part, that HIV-1 can be cured, though some strategies are too invasive and expensive to become a standard of care for all HIV-infected patients. Conclusion Recent advances hold promise for the ultimate cure of HIV infection. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and applicable in human therapy is prudent for HIV eradication to be more feasible. Future studies aimed at achieving a prolonged HIV remission state are more likely to be successful if they focus on a combination strategy, including the block and kill, and stem cell approaches. These strategies propose a functional cure with minimal toxicity for patients. It is believed that the cure of HIV infection will be attained in the short term if a strategy based on purging the reservoirs is complemented with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Edward K Maina
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Asma A Adan
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Haddison Mureithi
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Joseph Muriuki
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Raphael M Lwembe
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
12
|
Identification of an Antiretroviral Small Molecule That Appears To Be a Host-Targeting Inhibitor of HIV-1 Assembly. J Virol 2021; 95:JVI.00883-20. [PMID: 33148797 PMCID: PMC7925099 DOI: 10.1128/jvi.00883-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
Given the projected increase in multidrug-resistant HIV-1, there is an urgent need for development of antiretrovirals that act on virus life cycle stages not targeted by drugs currently in use. Host-targeting compounds are of particular interest because they can offer a high barrier to resistance. Here, we report identification of two related small molecules that inhibit HIV-1 late events, a part of the HIV-1 life cycle for which potent and specific inhibitors are lacking. This chemotype was discovered using cell-free protein synthesis and assembly systems that recapitulate intracellular host-catalyzed viral capsid assembly pathways. These compounds inhibit replication of HIV-1 in human T cell lines and peripheral blood mononuclear cells, and are effective against a primary isolate. They reduce virus production, likely by inhibiting a posttranslational step in HIV-1 Gag assembly. Notably, the compound colocalizes with HIV-1 Gag in situ; however, unexpectedly, selection experiments failed to identify compound-specific resistance mutations in gag or pol, even though known resistance mutations developed upon parallel nelfinavir selection. Thus, we hypothesized that instead of binding to Gag directly, these compounds localize to assembly intermediates, the intracellular multiprotein complexes containing Gag and host factors that form during immature HIV-1 capsid assembly. Indeed, imaging of infected cells shows compound colocalized with two host enzymes found in assembly intermediates, ABCE1 and DDX6, but not two host proteins found in other complexes. While the exact target and mechanism of action of this chemotype remain to be determined, our findings suggest that these compounds represent first-in-class, host-targeting inhibitors of intracellular events in HIV-1 assembly.IMPORTANCE The success of antiretroviral treatment for HIV-1 is at risk of being undermined by the growing problem of drug resistance. Thus, there is a need to identify antiretrovirals that act on viral life cycle stages not targeted by drugs in use, such as the events of HIV-1 Gag assembly. To address this gap, we developed a compound screen that recapitulates the intracellular events of HIV-1 assembly, including virus-host interactions that promote assembly. This effort led to the identification of a new chemotype that inhibits HIV-1 replication at nanomolar concentrations, likely by acting on assembly. This compound colocalized with Gag and two host enzymes that facilitate capsid assembly. However, resistance selection did not result in compound-specific mutations in gag, suggesting that the chemotype does not directly target Gag. We hypothesize that this chemotype represents a first-in-class inhibitor of virus production that acts by targeting a virus-host complex important for HIV-1 Gag assembly.
Collapse
|
13
|
Dubé K, Willenberg L, Dee L, Sylla L, Taylor J, Roebuck C, Palm D, Campbell D, Newton L, Patel H, Perry KE, Kanazawa J, Gerrard J, Brown B, Saberi P, Sauceda JA, Peluso MJ. Re-examining the HIV 'functional cure' oxymoron: Time for precise terminology? J Virus Erad 2020; 6:100017. [PMID: 33251025 PMCID: PMC7646673 DOI: 10.1016/j.jve.2020.100017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
For over a decade, the binary concepts of 'sterilizing' versus 'functional' cure have provided an organizing framework for the field of HIV cure-related research. In this article, we examine how the expression 'functional cure' is employed within the field, published literature, and community understanding of HIV cure research. In our synthesis of the different meanings attributed to 'functional cure' within contemporary biomedical discourse, we argue that employing the 'functional cure' terminology poses a series of problems. The expression itself is contradictory and inconsistently used across a wide array of HIV cure research initiatives. Further, the meaning and acceptability of 'functional cure' within communities of people living with and affected by HIV is highly variable. After drawing lessons from other fields, such as cancer and infectious hepatitis cure research, we summarize our considerations and propose alternative language that may more aptly describe the scientific objectives in question. We call for closer attention to language used to describe HIV cure-related research, and for continued, significant, and strategic engagement to ensure acceptable and more precise terminology.
Collapse
Affiliation(s)
- Karine Dubé
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | | | - Lynda Dee
- AIDS Action Baltimore, Baltimore, MD, USA
- amfAR Institute for HIV Cure Research Community Advisory Board (CAB), Palm Springs, CA, USA
- Delaney AIDS Research Enterprise (DARE) CAB, Baltimore,MD and Los, Angeles, CA, USA
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
| | - Laurie Sylla
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- DefeatHIV CAB, Seattle, WA, USA
| | - Jeff Taylor
- amfAR Institute for HIV Cure Research Community Advisory Board (CAB), Palm Springs, CA, USA
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- HIV + Aging Research Project – Palm Springs (HARP-PS), Palm Springs, CA, USA
- University of California AntiViral Research Center CAB, San Diego, CA, USA
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Chapel Hill, USA
| | - Christopher Roebuck
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- BEAT-HIV CAB, Philadelphia, PA, USA
- Department of Science and Technology Studies, Cornell University, Ithaca, NY, USA
| | - David Palm
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Chapel Hill, USA
- Institute of Global Health and Infectious Diseases (IGHID), University of North Carolina at Chapel Hill, NC, USA
| | - Danielle Campbell
- Delaney AIDS Research Enterprise (DARE) CAB, Baltimore,MD and Los, Angeles, CA, USA
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA, UCLA, Los Angeles, CA, USA
| | - Luke Newton
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Hursch Patel
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Kelly E. Perry
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - John Kanazawa
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Jo Gerrard
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Brandon Brown
- Center for Healthy Communities, Department of Social Medicine and Population Health, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Parya Saberi
- Division of Prevention Science, Center for AIDS Prevention Studies, University of California, San Francisco, CA, USA
| | - John A. Sauceda
- Division of Prevention Science, Center for AIDS Prevention Studies, University of California, San Francisco, CA, USA
| | - Michael J. Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Saleemi MA, Ahmad B, Benchoula K, Vohra MS, Mea HJ, Chong PP, Palanisamy NK, Wong EH. Emergence and molecular mechanisms of SARS-CoV-2 and HIV to target host cells and potential therapeutics. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104583. [PMID: 33035643 PMCID: PMC7536551 DOI: 10.1016/j.meegid.2020.104583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The emergence of a new coronavirus, in around late December 2019 which had first been reported in Wuhan, China has now developed into a massive threat to global public health. The World Health Organization (WHO) has named the disease caused by the virus as COVID-19 and the virus which is the culprit was renamed from the initial novel respiratory 2019 coronavirus to SARS-CoV-2. The person-to-person transmission of this virus is ongoing despite drastic public health mitigation measures such as social distancing and movement restrictions implemented in most countries. Understanding the source of such an infectious pathogen is crucial to develop a means of avoiding transmission and further to develop therapeutic drugs and vaccines. To identify the etiological source of a novel human pathogen is a dynamic process that needs comprehensive and extensive scientific validations, such as observed in the Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and human immunodeficiency virus (HIV) cases. In this context, this review is devoted to understanding the taxonomic characteristics of SARS-CoV-2 and HIV. Herein, we discuss the emergence and molecular mechanisms of both viral infections. Nevertheless, no vaccine or therapeutic drug is yet to be approved for the treatment of SARS-CoV-2, although it is highly likely that new effective medications that target the virus specifically will take years to establish. Therefore, this review reflects the latest repurpose of existing antiviral therapeutic drug choices available to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Hing Jian Mea
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Navindra Kumari Palanisamy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
15
|
Amanya SB, Nyiro B, Waswa F, Obura B, Nakaziba R, Nabulime E, Katabazi AF, Nabatanzi R, Bayiyana A, Mboowa G, Kayongo A, Wayengera M, Sande OJ. Variations in Trim5α and Cyclophilin A genes among HIV-1 elite controllers and non controllers in Uganda: a laboratory-based cross-sectional study. Retrovirology 2020; 17:19. [PMID: 32631377 PMCID: PMC7339491 DOI: 10.1186/s12977-020-00527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tripartite Motif Containing 5 alpha (TRIM5α), a restriction factor produced ubiquitously in cells and tissues of the body plays an important role in the immune response against HIV. TRIM5α targets the HIV capsid for proteosomal destruction. Cyclophilin A, an intracellular protein has also been reported to influence HIV infectivity in a cell-specific manner. Accordingly, variations in TRIM5α and Cyclophilin A genes have been documented to influence HIV-1 disease progression. However, these variations have not been documented among Elite controllers in Uganda and whether they play a role in viral suppression remains largely undocumented. Our study focused on identifying the variations in TRIM5α and Cyclophilin A genes among HIV-1 Elite controllers and non-controllers in Uganda. RESULTS From the sequence analysis, the rs10838525 G > A mutation in exon 2 of TRIM5α was only found among elite controllers (30%) while the rs3824949 in the 5'UTR was seen among 25% of the non-controllers. In the Cyclophilin A promoter, rs6850 was seen among 62.5% of the non-controllers and only among 10% elite controllers. Furthermore, rs17860048 in the Cyclophillin A promoter was predominantly seen among elite controllers (30%) and 12.5% non-controllers. From gene expression analysis, we noted that the respective genes were generally elevated among elite controllers, however, this difference was not statistically significant (TRIM5α p = 0.6095; Cyclophilin A p = 0.6389). CONCLUSION Variations in TRIM5α and Cyclophillin A promoter may influence HIV viral suppression. The rs10838525 SNP in TRIM5α may contribute to viral suppression among HIV-1 elite controllers. The rs6850 in the cyclophillin A gene may be responsible for HIV-1 rapid progression among HIV-1 non-controllers. These SNPs should be investigated mechanistically to determine their precise role in HIV-1 viral suppression.
Collapse
Affiliation(s)
- Sharon Bright Amanya
- Faculty of Health Sciences, Lira University, Lira, Uganda ,grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Brian Nyiro
- grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Francis Waswa
- grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | | | | | - Eva Nabulime
- grid.436163.50000 0004 0648 1108Center for AIDS Research (CFAR) Lab, Joint Clinical Research Center, Kampala, Uganda
| | - Ashaba Fred Katabazi
- grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rose Nabatanzi
- grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Alice Bayiyana
- grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Gerald Mboowa
- grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda ,grid.11194.3c0000 0004 0620 0548The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, McKinnell Knowledge Centre, Makerere University, Kampala, Uganda
| | - Alex Kayongo
- grid.11194.3c0000 0004 0620 0548Makerere University Lung Institute, Kampala, Uganda
| | - Misaki Wayengera
- grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- grid.11194.3c0000 0004 0620 0548Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
16
|
Hashemi P, Sadowski I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med Res Rev 2020; 40:881-908. [PMID: 31608481 PMCID: PMC7216841 DOI: 10.1002/med.21638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The latency phenomenon produced by human immunodeficiency virus (HIV-1) prevents viral clearance by current therapies, and consequently development of a cure for HIV-1 disease represents a formidable challenge. Research over the past decade has resulted in identification of small molecules that are capable of exposing HIV-1 latent reservoirs, by reactivation of viral transcription, which is intended to render these infected cells sensitive to elimination by immune defense recognition or apoptosis. Molecules with this capability, known as latency-reversing agents (LRAs) could lead to realization of proposed HIV-1 cure strategies collectively termed "shock and kill," which are intended to eliminate the latently infected population by forced reactivation of virus replication in combination with additional interventions that enhance killing by the immune system or virus-mediated apoptosis. Here, we review efforts to discover novel LRAs via low- and high-throughput small molecule screens, and summarize characteristics and biochemical properties of chemical structures with this activity. We expect this analysis will provide insight toward further research into optimized designs for new classes of more potent LRAs.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
17
|
Tajbakhsh A, Fazeli M, Rezaee M, Ghasemi F, Heravi MM, Gholoobi A, Meshkat Z. Prevalence of CCR5delta32 in Northeastern Iran. BMC MEDICAL GENETICS 2019; 20:184. [PMID: 31730458 PMCID: PMC6858674 DOI: 10.1186/s12881-019-0913-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022]
Abstract
Background A 32-base pair deletion (∆32) in the open reading frame (ORF) of C-C motif chemokine receptor 5 (CCR5) seems to be a protective variant against immune system diseases, especially human immunodeficiency virus type 1 (HIV-1). We aimed to assess the frequency of CCR5∆32 in the healthy Iranian population. Methods In this study, 400 normal samples from Khorasan, northeastern Iran, were randomly selected. The frequency of CCR5∆32 carriers was investigated using PCR analysis. Allele prevalence and the fit to the Hardy-Weinberg equilibrium were analyzed. Results The prevalence of CCR5∆32 in the northeastern population of Iran was 0.016. Four hundred samples were studied, among which one with CCR5∆32/∆32 and 11 with CCR5Wild/∆32 genotype were detected. Conclusion This study was the first investigation for an assessment of the prevalence of CCR5∆32 in northeastern Iran. The low prevalence of CCR5∆32 allele in the Iranian population may result in the increased susceptibility to HIV-1. In addition, this prevalence is the same as that of reported in East Asia, while is lower than that in the Europeans.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences & Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Fazeli
- Department of Modern Sciences & Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mastoureh Momen Heravi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, P.O Box: 9196773117, Mashhad, IR, Iran
| | - Aida Gholoobi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, P.O Box: 9196773117, Mashhad, IR, Iran.
| |
Collapse
|
18
|
Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahboudi F, Rahimi-Jamnani F. Single-Chain Variable Fragment-Based Bispecific Antibodies: Hitting Two Targets with One Sophisticated Arrow. Mol Ther Oncolytics 2019; 14:38-56. [PMID: 31011631 PMCID: PMC6463744 DOI: 10.1016/j.omto.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the success of monoclonal antibodies (mAbs) to treat some disorders, the monospecific molecular entity of mAbs as well as the presence of multiple factors and pathways involved in the pathogenesis of disorders, such as various malignancies, infectious diseases, and autoimmune disorders, and resistance to therapy have restricted the therapeutic efficacy of mAbs in clinical use. Bispecific antibodies (bsAbs), by concurrently recognizing two targets, can partly circumvent these problems. Serial killing of tumor cells by bsAb-redirected T cells, simultaneous blocking of two antigens involved in the HIV-1 infection, and concurrent targeting of the activating and inhibitory receptors on B cells to modulate autoimmunity are part of the capabilities of bsAbs. After designing and developing a large number of bsAbs for years, catumaxomab, a full-length bsAb targeting EpCAM and CD3, was approved in 2009 to treat EpCAM-positive carcinomas besides blinatumomab, a bispecific T cell engager antibody targeting CD19 and CD3, which was approved in 2014 to treat relapsed or refractory acute lymphoblastic leukemia. Furthermore, approximately 60 bsAbs are under investigation in clinical trials. The current review aims at portraying different formats of the single-chain variable fragment (scFv)-based bsAbs and shedding light on the scFv-based bsAbs in preclinical development, different phases of clinical trials, and the market.
Collapse
Affiliation(s)
- Raoufeh Ahamadi-Fesharaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Seabright GE, Doores KJ, Burton DR, Crispin M. Protein and Glycan Mimicry in HIV Vaccine Design. J Mol Biol 2019; 431:2223-2247. [PMID: 31028779 PMCID: PMC6556556 DOI: 10.1016/j.jmb.2019.04.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023]
Abstract
Antigenic mimicry is a fundamental tenet of structure-based vaccinology. Vaccine strategies for the human immunodeficiency virus type 1 (HIV-1) focus on the mimicry of its envelope spike (Env) due to its exposed location on the viral membrane and role in mediating infection. However, the virus has evolved to minimize the immunogenicity of conserved epitopes on the envelope spike. This principle is starkly illustrated by the presence of an extensive array of host-derived glycans, which act to shield the underlying protein from antibody recognition. Despite these hurdles, a subset of HIV-infected individuals eventually develop broadly neutralizing antibodies that recognize these virally presented glycans. Effective HIV-1 immunogens are therefore likely to involve some degree of mimicry of both the protein and glycan components of Env. As such, considerable efforts have been made to characterize the structure of the envelope spike and its glycan shield. This review summarizes the recent progress made in this field, with an emphasis on our growing understanding of the factors shaping the glycan shield of Env derived from both virus and soluble immunogens. We argue that recombinant mimics of the envelope spike are currently capable of capturing many features of the native viral glycan shield. Finally, we explore strategies through which the immunogenicity of Env glycans may be enhanced in the development of future immunogens.
Collapse
Affiliation(s)
- Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK; Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P, Nobles C, Gijsbers R, Christ F, Debyser Z. Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology 2019; 16:8. [PMID: 30940165 PMCID: PMC6444612 DOI: 10.1186/s12977-019-0472-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Persistence of latent, replication-competent provirus is the main impediment towards the cure of HIV infection. One of the critical questions concerning HIV latency is the role of integration site selection in HIV expression. Inhibition of the interaction between HIV integrase and its chromatin tethering cofactor LEDGF/p75 is known to reduce integration and to retarget residual provirus to regions resistant to reactivation. LEDGINs, small molecule inhibitors of the interaction between HIV integrase and LEDGF/p75, provide an interesting tool to study the underlying mechanisms. During early infection, LEDGINs block the interaction with LEDGF/p75 and allosterically inhibit the catalytic activity of IN (i.e. the early effect). When present during virus production, LEDGINs interfere with proper maturation due to enhanced IN oligomerization in the progeny virions (i.e. the late effect). Results We studied the effect of LEDGINs present during virus production on the transcriptional state of the residual virus. Infection of cells with viruses produced in the presence of LEDGINs resulted in a residual reservoir that was refractory to activation. Integration of residual provirus was less favored near epigenetic markers associated with active transcription. However, integration near H3K36me3 and active genes, both targeted by LEDGF/p75, was not affected. Also in primary cells, LEDGIN treatment induced a reservoir resistant to activation due to a combined early and late effect. Conclusion LEDGINs present a research tool to study the link between integration and transcription, an essential question in retrovirology. LEDGIN treatment during virus production altered integration of residual provirus in a LEDGF/p75-independent manner, resulting in a reservoir that is refractory to activation. Electronic supplementary material The online version of this article (10.1186/s12977-019-0472-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Paulien Van de Velde
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Christopher Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium.
| |
Collapse
|
21
|
Newton L, Necochea R, Palm D, Taylor J, Barr L, Patel H, Nathan A, Gerrard J, Sylla L, Brown B, Dubé K. Revisiting the ‘sterilising cure’ terminology: a call for more patient-centred perspectives on HIV cure-related research. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30054-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
Newton L, Necochea R, Palm D, Taylor J, Barr L, Patel H, Nathan A, Gerrard J, Sylla L, Brown B, Dubé K. Revisiting the 'sterilising cure' terminology: a call for more patient-centred perspectives on HIV cure-related research. J Virus Erad 2019; 5:122-124. [PMID: 31191916 PMCID: PMC6543486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The literature on HIV therapeutics research is rife with terminology associating 'sterilisation' with HIV cure. We find connotations of the word 'sterilising' problematic for the HIV cure research field. In this viewpoint, we review associations of sterilising with concepts of disinfection or cleansing, as well as coerced sterilisation. We discuss emerging findings from socio-behavioural research that show aversion from people living with HIV towards the 'sterilising cure' nomenclature. We call for more collaborations with people with HIV as partners to help define what would be a more acceptable terminology for describing an HIV cure.
Collapse
Affiliation(s)
- Luke Newton
- UNC Gillings School of Global Public Health,
Chapel Hill,
NC,
USA
| | - Raúl Necochea
- Department of Social Medicine,
UNC School of Medicine,
Chapel Hill,
NC,
USA
| | - David Palm
- Global HIV Prevention and Treatment Unit Clinical Trials Community Advisory Board,
University of North Carolina at Chapel Hill,
NC,
USA
- Collaboratory of AIDS Researchers for Eradication (CARE) Community Advisory Board,
University of North Carolina at Chapel Hill,
Chapel Hill,
NC,
USA
| | - Jeff Taylor
- Collaboratory of AIDS Researchers for Eradication (CARE) Community Advisory Board,
University of North Carolina at Chapel Hill,
Chapel Hill,
NC,
USA
- HIV + Aging Research Project – Palm Springs (HARP-PS),
Palm Springs,
CA,
USA
| | - Liz Barr
- AIDS Clinical Trials Group (ACTG) Scientific Sub-Committee Representative,
John Hopkins University,
Baltimore,
MD,
USA
| | - Hursch Patel
- UNC Gillings School of Global Public Health,
Chapel Hill,
NC,
USA
| | - Anshula Nathan
- UNC Gillings School of Global Public Health,
Chapel Hill,
NC,
USA
| | - Jo Gerrard
- University of California Riverside School of Medicine,
Riverside,
CA,
USA
| | - Laurie Sylla
- defeatHIV Community Advisory Board,
Seattle,
WA,
USA
| | - Brandon Brown
- Center for Healthy Communities,
Department of Social Medicine, Population and Public Health,
University of California Riverside School of Medicine,
Riverside,
CA,
USA
| | - Karine Dubé
- UNC Gillings School of Global Public Health,
Chapel Hill,
NC,
USA
| |
Collapse
|
23
|
Giacomelli A, de Rose S, Rusconi S. Clinical pharmacology in HIV cure research - what impact have we seen? Expert Rev Clin Pharmacol 2019; 12:17-29. [PMID: 30570410 DOI: 10.1080/17512433.2019.1561272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Combined antiretroviral therapy (cART) has transformed an inexorably fatal disease into a chronic pathology, shifting the focus of research from the control of viral replication to the possibility of HIV cure. Areas covered: The present review assesses the principal pharmacological strategies that have been tested for an HIV cure starting from the in vitro proof of concept and the potential rationale of their in vivo applicability. We evaluated the possible pharmacological procedures employed during the early-stage HIV infection and the possibility of cART-free remission. We then analyzed the shock and kill approach from the single compounds in vitro mechanism of action, to the in vivo application of single or combined actions. Finally, we briefly considered the novel immunological branch through the discovery and development of broadly neutralizing antibodies in regard to the current and future in vivo therapeutic strategies aiming to verify the clinical applicability of these compounds. Expert opinion: Despite an incredible effort in HIV research cure, the likelihood of completely eradicating HIV is unreachable within our current knowledge. A better understanding of the mechanism of viral latency and the full characterization of HIV reservoir are crucial for the discovery of new therapeutic targets and novel pharmacological entities.
Collapse
Affiliation(s)
- Andrea Giacomelli
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| | - Sonia de Rose
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| | - Stefano Rusconi
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| |
Collapse
|
24
|
Peterson TA, MacLean AG. Current and Future Therapeutic Strategies for Lentiviral Eradication from Macrophage Reservoirs. J Neuroimmune Pharmacol 2018; 14:68-93. [PMID: 30317409 DOI: 10.1007/s11481-018-9814-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Macrophages, one of the most abundant populations of leukocytes in the body, function as the first line of defense against pathogen invaders. Human Immunodeficiency virus 1 (HIV-1) remains to date one of the most extensively studied viral infections. Naturally occurring lentiviruses in domestic and primate species serve as valuable models to investigate lentiviral pathogenesis and novel therapeutics. Better understanding of the role macrophages play in HIV pathogenesis will aid in the advancement towards a cure. Even with current efficacy of first- and second-line Antiretroviral Therapy (ART) guidelines and future efficacy of Long Acting Slow Effective Release-ART (LASER-ART); ART alone does not lead to a cure. The major challenge of HIV eradication is viral latency. Latency Reversal Agents (LRAs) show promise as a possible means to eradicate HIV-1 from the body. It has become evident that complete eradication will need to include combinations of various effective therapeutic strategies such as LASER-ART, LRAs, and gene editing. Review of the current literature indicates the most promising HIV eradication strategy appears to be LASER-ART in conjunction with viral and receptor gene modifications via the CRISPR/Cas9 system. Graphical abstract A multimodal approach to HIV treatment including gene editing, LASER-ART, and latency reversal agents may provide a means to achieve HIV eradication.
Collapse
Affiliation(s)
- Tiffany A Peterson
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Andrew G MacLean
- Department of Microbiology & Immunology, Division of Comparative Pathology, Tulane National Primate Research Center, Tulane Center for Aging, Tulane Brain Institute, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
25
|
de Buhr H, Lebbink RJ. Harnessing CRISPR to combat human viral infections. Curr Opin Immunol 2018; 54:123-129. [DOI: 10.1016/j.coi.2018.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/03/2018] [Indexed: 12/17/2022]
|