1
|
Tang KN, Adkesson MJ, Cárdenas-Alayza S, Adamovicz L, Deming AC, Wellehan JFX, Childress A, Cortes-Hinojosa G, Colegrove K, Langan JN, Allender MC. Otariid gammaherpesvirus 1 in South American fur seals (Arctocephalus australis) and a novel related herpesvirus in free-ranging South American sea lions (Otaria byronia): Prevalence and effects of age, sex, and sample type. PLoS One 2024; 19:e0299404. [PMID: 38446776 PMCID: PMC10917305 DOI: 10.1371/journal.pone.0299404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Otariid gammaherpesvirus 1 (OtGHV1) is associated with high rates of urogenital carcinoma in free-ranging California sea lions (Zalophus californianus; CSL), and until recently was reported only in the Northern Hemisphere. The objective of this study was to survey free-ranging South American sea lions (Otaria byronia; SASL) and South American fur seals (Arctocephalus australis: SAFS) in Punta San Juan, Peru for OtGHV1 and to determine prevalence characteristics. Twenty-one percent (14/67) of urogenital swabs collected over three years (2011, 2014, 2015) from live pinnipeds of both species tested positive with a pan-herpesvirus conventional PCR. Sequencing of SAFS amplicons revealed 100% homology to OtGHV1 at the DNA polymerase, glycoprotein B, and viral bcl2-like genes. Sequencing of SASL amplicons revealed a novel related virus, herein called Otariid gammaherpesvirus 8 (OtGHV8). For comparison of sample sites, urogenital, conjunctival, and oropharyngeal swabs collected from 136 live pinnipeds of both species at Punta San Juan between 2011-2018 were then assayed using quantitative PCR for a segment of the OtGHV1/8 DNA polymerase gene using a qPCR assay now determined to cross-react between the two viruses. In total, across both species, 38.6% (51/132) of urogenital swabs, 5.6% (4/71) of conjunctival swabs, and 1.1% (1/90) of oropharyngeal swabs were positive for OtGHV1/8, with SASL only positive on urogenital swabs. Results from SASL were complicated by the finding of OtGHV8, necessitating further study to determine prevalence of OtGHV1 versus OtGHV8 using an alternate assay. Results from SAFS suggest a potential relationship between OtGHV1 in SAFS and CSL. Though necropsy surveillance in SAFS is very limited, geographic patterns of OtGHV1-associated urogenital carcinoma in CSL and the tendency of herpesviruses to cause more detrimental disease in aberrant hosts suggests that it is possible that SAFS may be the definitive host of OtGHV1, which gives further insight into the diversity and phyogeography of this clade of related gammaherpesviruses.
Collapse
Affiliation(s)
- Karisa N. Tang
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Illinois Zoological and Aquatic Animal Residency, Urbana, IL, United States of America
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, IL, United States of America
| | - Michael J. Adkesson
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
| | - Susana Cárdenas-Alayza
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Laura Adamovicz
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, IL, United States of America
| | - Alissa C. Deming
- Pacific Marine Mammal Center, Laguna Beach, CA, United States of America
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - James F. X. Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - April Childress
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - Galaxia Cortes-Hinojosa
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kathleen Colegrove
- Zoological Pathology Program, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Brookfield, IL, United States of America
| | - Jennifer N. Langan
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States of America
| | - Matthew C. Allender
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, IL, United States of America
| |
Collapse
|
2
|
Rothenberg SE, Beechler BR, Burco JD, Rae S, Steingass SM, Barton D, Johns JL, Russell DS, Deignan K, Blackledge MM, Nation A. Associations between urogenital carcinoma and DECA-BDE (BDE-209) among wild California Sea lions (Zalophus californianus) and Steller Sea lions (Eumetopias jubatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166412. [PMID: 37611708 DOI: 10.1016/j.scitotenv.2023.166412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Urogenital carcinoma (UGC) is prevalent among California sea lions (Zalophus californianus), while less is known concerning UGC among Steller sea lions (Eumetopias jubatus). Our objective was to investigate associations between UGC and polybrominated diphenyl ethers (PBDEs) among both sea lion species. Twenty-nine California sea lions and 20 Steller sea lions were lethally removed from the Columbia River Basin, Oregon, USA between 2020 and 2021, under Section 120 of the Marine Mammal Protection Act. UGC was diagnosed through gross necropsy and histopathology. Forty PBDE congeners were analyzed in blubber, including BDE-209, a potential carcinogen. Twenty (69 %) California sea lions and one (5 %) Steller sea lion were diagnosed with UGC. All cases were identified as early stage UGC, aside from one California sea lion with more advanced stage UGC. Among California sea lions, associations between PBDEs and UGC were analyzed using logistic regression. In the adjusted model, BDE-209 (log2-transformed) was associated with increased odds of UGC [Odds Ratio (OR): 4.68, 95 % confidence interval: 1.04, 21.0, OR p-value = 0.044). This is the first study to report BDE-209 concentrations in sea lion blubber. The percentages of California and Steller sea lions diagnosed with UGC were higher than expected for wild (non-stranded) sea lions. Our results suggested blubber BDE-209 was potentially associated with UGC in California sea lions in the Columbia River Basin.
Collapse
Affiliation(s)
- Sarah E Rothenberg
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR 97331, United States.
| | - Brianna R Beechler
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Julia D Burco
- Oregon Department of Fish and Wildlife, Corvallis, OR 97330, United States.
| | - Samantha Rae
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Sheanna M Steingass
- Oregon State University, College of Agricultural Sciences, Corvallis, OR 97331, United States.
| | - Dianne Barton
- Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, United States.
| | - Jennifer L Johns
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Duncan S Russell
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Kristen Deignan
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| | - Megan M Blackledge
- Oregon State University, College of Science, Corvallis, OR 97331, United States.
| | - Autumn Nation
- Oregon State University, Carlson College of Veterinary Medicine, Corvallis, OR 97331, United States.
| |
Collapse
|
3
|
Takami Y, Tanaka M, Morita M, Maruno T, Anai N, Sudo T, Kezuka C, Izawa T, Yamate J, Kuwamura M. Pleural mesothelioma in a California sea lion (Zalophus californianus). J Vet Med Sci 2023; 85:1030-1033. [PMID: 37532588 PMCID: PMC10539812 DOI: 10.1292/jvms.22-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
A 25-year-old female California sea lion (Zalophus californianus) reared in an aquarium died following a history of anorexia, lethargy, abnormal protrusion of the skin, and oral respiration. At necropsy, multiple yellowish-white nodules with diameters of 0.1-0.5 cm were disseminated in the thoracic cavity and lungs. Histopathologically, the nodules were continuous with normal mesothelium and were characterized by the proliferation of spindle-shaped to polygonal neoplastic cells with prominent atypia. The neoplastic cells exhibited diffuse, strong staining for vimentin and partial, weak to moderate staining for cytokeratin AE1/AE3. Based on these findings, the lesions were diagnosed as pleural mesothelioma. This study reports the first case of pleural mesothelioma in California sea lion.
Collapse
Affiliation(s)
- Yuki Takami
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | | | - Takaya Maruno
- Katsurahama Aquarium, Inside Katsurahama Park, Kochi, Japan
| | - Naohiro Anai
- Katsurahama Aquarium, Inside Katsurahama Park, Kochi, Japan
| | | | | | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
4
|
Pereida-Aguilar JC, Barragán-Vargas C, Domínguez-Sánchez C, Álvarez-Martínez RC, Acevedo-Whitehouse K. Bacterial dysbiosis and epithelial status of the California sea lion (Zalophus californianus) in the Gulf of California. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105474. [PMID: 37356747 DOI: 10.1016/j.meegid.2023.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Despite the high incidence of urogenital carcinoma (UGC) in California sea lions stranded along California, no UGC has been reported in other areas of their distribution; however, cell morphologies typical of premalignant states have been found. Risk factors for UGC include high of organochlorines and infection with a gammaherpesvirus, OtHV-1, but the importance of the bacteriome for epithelial status remains unknown. We characterized the genital bacteriome of adult female California sea lions along their distribution in the Gulf of California and examined whether the diversity and abundance of the bacteriome varied spatially, whether there were detectable differences in the bacteriome between healthy and altered epithelia, and whether the bacteriome was different in California sea lions infected with OtHV-1 or papillomavirus. We detected 2270 ASVs in the genital samples, of which 35 met the criteria for inclusion in the core bacteriome. Fusobacteriia and Clostridia were present in all samples, at high abundances, and Actinobacteria, Alphaproteobacteria, and Campylobacteria were also well-represented. Alpha diversity and abundance of the California sea lion genital bacteriome varied geographically. The abundance of bacterial ASVs varied depending on the genital epithelial status and inflammation, with differences driven by classes Fusobacteriia, Clostridia, Campylobacteria and Alphaproteobacteria. Alpha diversity and abundance were lowest in samples in which OtHV-1 was detected, and highest those with papillomavirus. Our study is the first investigation of how the bacteriome is related to epithelial status in a wild marine species prone to developing cancer.
Collapse
Affiliation(s)
- Juan Carlos Pereida-Aguilar
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Cecilia Barragán-Vargas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Carlos Domínguez-Sánchez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Roberto Carlos Álvarez-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico.
| |
Collapse
|
5
|
Duignan P. Aquatic Mammals. PATHOLOGY AND EPIDEMIOLOGY OF AQUATIC ANIMAL DISEASES FOR PRACTITIONERS 2023:214-350. [DOI: 10.1002/9781119839729.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Horgan M, Martinez ME, Archer LL, Duignan PJ, Wellehan JFX. DEVELOPMENT AND VALIDATION OF A NOVEL DUPLEX PROBE-HYBRIDIZATION QUANTITATIVE PCR FOR LYMPHOMA-ASSOCIATED MIROUNGINE GAMMAHERPESVIRUS 3 IN NORTHERN ELEPHANT SEALS (MIROUNGA ANGUSTIROSTRIS). J Wildl Dis 2023; 59:121-127. [PMID: 36584338 DOI: 10.7589/jwd-d-22-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/01/2022] [Indexed: 01/01/2023]
Abstract
Recently, a novel gammaherpesvirus, miroungine gammaherpesvirus 3 (MirGHV3), was described in two juvenile elephant seals (Mirounga angustirostris) with diffuse large B-cell lymphoma. We developed and validated a quantitative (q)PCR for rapid detection of MirGHV3 and investigated its potential association with lymphoma. We developed a duplex probe-hybridization qPCR with MirGHV3 DNA polymerase (pol) as the target gene. Each primer-probe combination was cross-validated against the others. Interference was not seen when they were run in the same well as a duplex assay. Twenty-three samples from seven northern elephant seals were tested using the duplex assay. Viral DNA was detected by the assay in 9 of 9 (100%) tissues affected by lymphoma and in 6 of 14 (43%) samples from tissues unaffected by lymphoma. There was a strong correlation between viral copies detected with each of the assays (P=0.0002). Viral load was significantly higher in tissues affected by lymphoma than in those unaffected (P<0.0001). Excluding the virus-negative samples, viral load was still significantly higher in tissues affected by lymphoma than in those unaffected (P=0.0004). This is consistent with a potential role of MirGHV3 in oncogenesis in northern elephant seals, although more studies are needed to determine this definitively. The qPCR developed has utility for further investigations of MirGHV3.
Collapse
Affiliation(s)
- Molly Horgan
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Margaret E Martinez
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, California 94965, USA
| | - Linda L Archer
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Pádraig J Duignan
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, California 94965, USA
| | - James F X Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Pesapane R, Chaves A, Foley J, Javeed N, Barnum S, Greenwald K, Dodd E, Fontaine C, Duignan P, Murray M, Miller M. Nasopulmonary mites (Acari: Halarachnidae) as potential vectors of bacterial pathogens, including Streptococcus phocae, in marine mammals. PLoS One 2022; 17:e0270009. [PMID: 35709209 PMCID: PMC9202935 DOI: 10.1371/journal.pone.0270009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/01/2022] [Indexed: 01/16/2023] Open
Abstract
Nasopulmonary mites (NPMs) of the family Halarachnidae are obligate endoparasites that colonize the respiratory tracts of mammals. NPMs damage surface epithelium resulting in mucosal irritation, respiratory illness, and secondary infection, yet the role of NPMs in facilitating pathogen invasion or dissemination between hosts remains unclear. Using 16S rRNA massively parallel amplicon sequencing of six hypervariable regions (or "16S profiling"), we characterized the bacterial community of NPMs from 4 southern sea otters (Enhydra lutris nereis). This data was paired with detection of a priority pathogen, Streptococcus phocae, from NPMs infesting 16 southern sea otters and 9 California sea lions (Zalophus californianus) using nested conventional polymerase chain reaction (nPCR). The bacteriome of assessed NPMs was dominated by Mycoplasmataceae and Vibrionaceae, but at least 16 organisms with pathogenic potential were detected as well. Importantly, S. phocae was detected in 37% of NPM by nPCR and was also detected by 16S profiling. Detection of multiple organisms with pathogenic potential in or on NPMs suggests they may act as mechanical vectors of bacterial infection for marine mammals.
Collapse
Affiliation(s)
- Risa Pesapane
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrea Chaves
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Nadia Javeed
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Katherine Greenwald
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| | - Erin Dodd
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| | - Christine Fontaine
- The Marine Mammal Center, Sausalito, California, United States of America
| | - Padraig Duignan
- The Marine Mammal Center, Sausalito, California, United States of America
| | - Michael Murray
- Monterey Bay Aquarium, Monterey, California, United States of America
| | - Melissa Miller
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| |
Collapse
|
8
|
Marquardt S, Pavlopoulou A, Takan I, Dhar P, Pützer BM, Logotheti S. A Systems-Based Key Innovation-Driven Approach Infers Co-option of Jaw Developmental Programs During Cancer Progression. Front Cell Dev Biol 2021; 9:682619. [PMID: 34150777 PMCID: PMC8207138 DOI: 10.3389/fcell.2021.682619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer acquires metastatic potential and evolves via co-opting gene regulatory networks (GRN) of embryonic development and tissue homeostasis. Such GRNs are encoded in the genome and frequently conserved among species. Considering that all metazoa have evolved from a common ancestor via major macroevolutionary events which shaped those GRNs and increased morphogenetic complexity, we sought to examine whether there are any key innovations that may be consistently and deterministically linked with metastatic potential across the metazoa clades. To address tumor evolution relative to organismal evolution, we revisited and retrospectively juxtaposed seminal laboratory and field cancer studies across taxa that lie on the evolutionary lineage from cnidaria to humans. We subsequently applied bioinformatics to integrate species-specific cancer phenotypes, multiomics data from up to 42 human cancer types, developmental phenotypes of knockout mice, and molecular phylogenetics. We found that the phenotypic manifestations of metastasis appear to coincide with agnatha-to-gnathostome transition. Genes indispensable for jaw development, a key innovation of gnathostomes, undergo mutations or methylation alterations, are aberrantly transcribed during tumor progression and are causatively associated with invasion and metastasis. There is a preference for deregulation of gnathostome-specific versus pre-gnathostome genes occupying hubs of the jaw development network. According to these data, we propose our systems-based model as an in silico tool the prediction of likely tumor evolutionary trajectories and therapeutic targets for metastasis prevention, on the rationale that the same genes which are essential for key innovations that catalyzed vertebrate evolution, such as jaws, are also important for tumor evolution.
Collapse
Affiliation(s)
- Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Athanasia Pavlopoulou
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Işıl Takan
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Prabir Dhar
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte M. Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
9
|
CLASSIFICATION AND REGRESSION TREE ANALYSIS FOR PREDICTING PROGNOSIS IN WILDLIFE REHABILITATION: A CASE STUDY OF LEPTOSPIROSIS IN CALIFORNIA SEA LIONS ( ZALOPHUS CALIFORNIANUS). J Zoo Wildl Med 2021; 52:38-48. [PMID: 33827159 DOI: 10.1638/2020-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 11/21/2022] Open
Abstract
The spirochete bacterium Leptospira interrogans serovar Pomona is enzootic to California sea lions (CSL; Zalophus californianus) and causes periodic epizootics. Leptospirosis in CSL is associated with a high fatality rate in rehabilitation. Evidence-based tools for estimating prognosis and guiding early euthanasia of animals with a low probability of survival are critical to reducing the severity and duration of animal suffering. Classification and regression tree (CART) analysis of clinical data was used to predict survival outcomes of CSL with leptospirosis in rehabilitation. Classification tree outputs are binary decision trees that can be readily interpreted and applied by a clinician. Models were trained using data from cases treated from 2017 to 2018 at The Marine Mammal Center in Sausalito, CA, and tested against data from cases treated from 2010 to 2012. Two separate classification tree analyses were performed, one including and one excluding data from euthanized animals. When data from natural deaths and euthanasias were included in model-building, the best classification tree predicted outcomes correctly for 84.7% of cases based on four variables: appetite over the first 3 days in care, and blood urea nitrogen (BUN), creatinine, and sodium at admission. When only natural deaths were included, the best model predicted outcomes correctly for 87.6% of cases based on BUN and creatinine at admission. This study illustrates that CART analysis can be successfully applied to wildlife in rehabilitation to establish evidence-based euthanasia criteria with the goal of minimizing animal suffering. In the context of a large epizootic that challenges the limits of a facility's capacity for care, the models can assist in maximizing allocation of resources to those animals with the highest predicted probability of survival. This technique may be a useful tool for other diseases seen in wildlife rehabilitation.
Collapse
|
10
|
Deming AC, Wellehan JFX, Colegrove KM, Hall A, Luff J, Lowenstine L, Duignan P, Cortés-Hinojosa G, Gulland FMD. Unlocking the Role of a Genital Herpesvirus, Otarine Herpesvirus 1, in California Sea Lion Cervical Cancer. Animals (Basel) 2021; 11:491. [PMID: 33668446 PMCID: PMC7918579 DOI: 10.3390/ani11020491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Urogenital carcinoma in California sea lions (Zalophus californianus) is the most common cancer of marine mammals. Primary tumors occur in the cervix, vagina, penis, or prepuce and aggressively metastasize resulting in death. This cancer has been strongly associated with a sexually transmitted herpesvirus, otarine herpesvirus 1 (OtHV1), but the virus has been detected in genital tracts of sea lions without cancer and a causative link has not been established. To determine if OtHV1 has a role in causing urogenital carcinoma we sequenced the viral genome, quantified viral load from cervical tissue from sea lions with (n = 95) and without (n = 163) urogenital carcinoma, and measured viral mRNA expression using in situ mRNA hybridization (Basescope®) to quantify and identify the location of OtHV1 mRNA expression. Of the 95 sea lions diagnosed with urogenital carcinoma, 100% were qPCR positive for OtHV1, and 36% of the sea lions with a normal cervix were positive for the virus. The non-cancer OtHV1 positive cases had significantly lower viral loads in their cervix compared to the cervices from sea lions with urogenital carcinoma. The OtHV1 genome had several genes similar to the known oncogenes, and RNA in situ hybridization demonstrated high OtHV1 mRNA expression within the carcinoma lesions but not in normal cervical epithelium. The high viral loads, high mRNA expression of OtHV1 in the cervical tumors, and the presence of suspected OtHV1 oncogenes support the hypothesis that OtHV1 plays a significant role in the development of sea lion urogenital carcinoma.
Collapse
Affiliation(s)
- Alissa C. Deming
- The Pacific Mammal Center, Laguna Beach, CA 92651, USA
- Aquatic Animal Health and Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (J.F.X.W.); (G.C.-H.)
- Veterinary Sciences, The Marine Mammal Center, Sausalito, CA 94965, USA; (P.D.); (F.M.D.G.)
| | - James F. X. Wellehan
- Aquatic Animal Health and Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (J.F.X.W.); (G.C.-H.)
| | - Kathleen M. Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Brookfield, IL 60513, USA;
| | - Ailsa Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews KY16 9AJ, UK;
| | - Jennifer Luff
- Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
| | - Linda Lowenstine
- Pathology, Microbiology and Immunology and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Pádraig Duignan
- Veterinary Sciences, The Marine Mammal Center, Sausalito, CA 94965, USA; (P.D.); (F.M.D.G.)
| | - Galaxia Cortés-Hinojosa
- Aquatic Animal Health and Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (J.F.X.W.); (G.C.-H.)
- Current address: School of Veterinary Medicine, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Frances M. D. Gulland
- Veterinary Sciences, The Marine Mammal Center, Sausalito, CA 94965, USA; (P.D.); (F.M.D.G.)
- Pathology, Microbiology and Immunology and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| |
Collapse
|
11
|
Duckworth EEM, Romoser KR, Ott JA, Deiss TC, Gulland FMD, Criscitiello MF. Using PacBio SMRT data for identification of class I MHC alleles in a wildlife species, Zalophus californianus (California sea lion). INFECTION GENETICS AND EVOLUTION 2020; 88:104700. [PMID: 33387691 DOI: 10.1016/j.meegid.2020.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
High allelic polymorphism and association with disease susceptibility has made the genes encoding major histocompatibility complex (MHC) antigen presentation molecules in humans, domesticated animals, and wildlife species of wide interest to ecologists, evolutionary biologists, and health specialists. The often multifaceted polygenism and extreme polymorphism of this immunogenetic system have made it especially difficult to characterize in non-model species. Here we compare and contrast the workflows of traditional Sanger sequencing of plasmid-cloned amplicons to Pacific Biosciences SMRT circular consensus sequencing (CCS) in their ability to capture alleles of MHC class I in a wildlife species where characterization of these genes was absent. We assessed two California sea lions (Zalophus californianus), a species suffering from a high prevalence of an aggressive cancer associated with a sexually transmitted gamma herpesvirus. In this pilot study, SMRT CCS proved superior in identifying more alleles from each animal than the more laborious plasmid cloning/Sanger workflow (12:7, 10:7), and no alleles were identified with the cloning/Sanger approach that were not identified by SMRT CCS. We discuss the advantages and disadvantages of each approach including cost, allele rarefaction, and sequence fidelity.
Collapse
Affiliation(s)
- Ellen E M Duckworth
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Kaitlyn R Romoser
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Molecular Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
12
|
Hamede R, Owen R, Siddle H, Peck S, Jones M, Dujon AM, Giraudeau M, Roche B, Ujvari B, Thomas F. The ecology and evolution of wildlife cancers: Applications for management and conservation. Evol Appl 2020; 13:1719-1732. [PMID: 32821279 PMCID: PMC7428810 DOI: 10.1111/eva.12948] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ecological and evolutionary concepts have been widely adopted to understand host-pathogen dynamics, and more recently, integrated into wildlife disease management. Cancer is a ubiquitous disease that affects most metazoan species; however, the role of oncogenic phenomena in eco-evolutionary processes and its implications for wildlife management and conservation remains undeveloped. Despite the pervasive nature of cancer across taxa, our ability to detect its occurrence, progression and prevalence in wildlife populations is constrained due to logistic and diagnostic limitations, which suggests that most cancers in the wild are unreported and understudied. Nevertheless, an increasing number of virus-associated and directly transmissible cancers in terrestrial and aquatic environments have been detected. Furthermore, anthropogenic activities and sudden environmental changes are increasingly associated with cancer incidence in wildlife. This highlights the need to upscale surveillance efforts, collection of critical data and developing novel approaches for studying the emergence and evolution of cancers in the wild. Here, we discuss the relevance of malignant cells as important agents of selection and offer a holistic framework to understand the interplay of ecological, epidemiological and evolutionary dynamics of cancer in wildlife. We use a directly transmissible cancer (devil facial tumour disease) as a model system to reveal the potential evolutionary dynamics and broader ecological effects of cancer epidemics in wildlife. We provide further examples of tumour-host interactions and trade-offs that may lead to changes in life histories, and epidemiological and population dynamics. Within this framework, we explore immunological strategies at the individual level as well as transgenerational adaptations at the population level. Then, we highlight the need to integrate multiple disciplines to undertake comparative cancer research at the human-domestic-wildlife interface and their environments. Finally, we suggest strategies for screening cancer incidence in wildlife and discuss how to integrate ecological and evolutionary concepts in the management of current and future cancer epizootics.
Collapse
Affiliation(s)
- Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Rachel Owen
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Hannah Siddle
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Sarah Peck
- Wildlife Veterinarian, Veterinary Register of TasmaniaSouth HobartTas.Australia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
13
|
Peñín I, Figueroa-Cabañas ME, Guerrero-de la Rosa F, Soto-García LA, Álvarez-Martínez R, Flores-Morán A, Acevedo-Whitehouse K. Transcriptional Profiles of California Sea Lion Peripheral NK and CD +8 T Cells Reflect Ecological Regionalization and Infection by Oncogenic Viruses. Front Immunol 2019; 10:413. [PMID: 30915075 PMCID: PMC6422979 DOI: 10.3389/fimmu.2019.00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
The California sea lion is one of the few wild mammals prone to develop cancer, particularly urogenital carcinoma (UGC), whose prevalence is currently estimated at 25% of dead adult sea lions stranded along the California coastline. Genetic factors, viruses and organochlorines have been identified as factors that increase the risk of occurrence of this pathology. Given that no cases of UGC have as yet been reported for the species along its distribution in Mexican waters, the potential relevance of contaminants for the development of urogenital carcinoma is highlighted even more as blubber levels of organochlorines are more than two orders of magnitude lower in the Gulf of California and Mexican Pacific than in California. In vitro studies have shown that organochlorines can modulate anti-viral and tumor-surveillance activities of NK and cytotoxic T-cells of marine mammals, but little is known about the activity of these effectors in live, free-living sea lions. Here, we examine leukocyte transcriptional profiles of free-ranging adult California sea lions for eight genes (Eomes, Granzyme B, Perforin, Ly49, STAT1, Tbx21, GATA3, and FoxP3) selected for their key role in anti-viral and tumor-surveillance, and investigate patterns of transcription that could be indicative of differences in ecological variables and exposure to two oncogenic viruses: sea lion type one gammaherpesvirus (OtHV-1) and sea lion papillomavirus type 1 (ZcPV-1) and systemic inflammation. We observed regional differences in the expression of genes related to Th1 responses and immune modulation, and detected clear patterns of differential regulation of gene expression in sea lions infected by genital papillomavirus compared to those infected by genital gammaherpesvirus or for simultaneous infections, similar to what is known about herpesvirus and papillomavirus infections in humans. Our study is a first approach to profile the transcriptional patterns of key immune effectors of free-ranging California sea lions and their association with ecological regions and oncogenic viruses. The observed results add insight to our understanding of immune competence of marine mammals, and may help elucidate the marked difference in the number of cases of urogenital carcinoma in sea lions from US waters and other areas of their distribution.
Collapse
Affiliation(s)
- Ignacio Peñín
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Mónica E Figueroa-Cabañas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Fabiola Guerrero-de la Rosa
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Luis A Soto-García
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Roberto Álvarez-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Adriana Flores-Morán
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro, Mexico.,The Marine Mammal Center, Sausalito, CA, United States
| |
Collapse
|
14
|
Rotstein DS, Stimmelmayr R, Adams B, Pederson M. Metastatic testicular Sertoli cell tumor in a free-ranging cryptorchid adult spotted seal Phoca largha in North Slope, Alaska, USA. DISEASES OF AQUATIC ORGANISMS 2019; 133:1-5. [PMID: 30997879 DOI: 10.3354/dao03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This case describes a metastatic Sertoli cell tumor (SCT) with lymphatic spread to the abdominal and thoracic lymph nodes, pancreas, and adrenal gland in an adult spotted seal Phoca largha. The neoplasm was composed of tubules lined by palisading neoplastic cells separated by a variably dense fibrous stroma. This pinniped was 1 of 2 cryptorchid seals and the sole case of genital neoplasia among 70 ice seals necropsied by the North Slope Borough from 2012 to 2017. Overall, SCTs are rarely reported in marine mammals.
Collapse
|
15
|
Peñín I, Levin M, Acevedo-Whitehouse K, Jasperse L, Gebhard E, Gulland FMD, De Guise S. Effects of polychlorinated biphenyls (PCB) on California sea lion (Zalophus californianus) lymphocyte functions upon in vitro exposure. ENVIRONMENTAL RESEARCH 2018; 167:708-717. [PMID: 30236520 DOI: 10.1016/j.envres.2018.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Polychorinated biphenyl (PCB) congeners are a cause for concern due to their persistence in the environment, their lipophilic properties that cause them to bio-accumulate in top predators, and their adverse effects on mammalian health. For example, the common urogenital carcinoma reported in California sea lions (Zalophus californianus) (CSL) is associated with high tissue levels of PCBs, but the mechanisms responsible for this association are unknown. This study investigated the effect of exposure to six PCB congeners and a congener mix at low and environmentally relevant concentrations on NK cell-like and T cell activity using in vitro assays on cryopreserved lymph node mononuclear cells isolated from dead CSL. Non dioxin-like congeners 153 and 180 increased lymphocyte proliferation at 5 and 10 ppm, while congener 138 decreased proliferation by up to 43% at 15 ppm. Dioxin-like PCBs 118 and 169 did not affect lymphocyte proliferation, while the effects of congener 105 depended on the mitogen concentration; these did not correlate with their predicted toxic equivalent factors. NK cell-like activity was affected only by the highest concentration of PCBs tested; it was increased by non-dioxin-like congeners 138 and 153, and decreased by dioxin-like congener 169. The PCB congener mix suggested that the effects of PCB congeners were not simply additive. Our results concur with effects of PCBs reported for other pinniped's lymphocytes and add further experimental support to the observation that dioxin-like PCBs are not the most toxic congeners for marine mammals, contrary to effects in other species. This is the first evidence of in vitro suppression of NK cell-like cytotoxicity by a dioxin-like congener in a pinniped. More importantly, the observed results suggest that PCBs can modulate the CSL immune system, increasing exposed individuals' susceptibility to viral and oncogenic challenges.
Collapse
Affiliation(s)
- I Peñín
- Laboratory of Immune Plasticity and Molecular Ecoepidemiology, Unit for Basic and Applied Microbiology, Autonomous University of Queretaro, 76230, Mexico
| | - M Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - K Acevedo-Whitehouse
- Laboratory of Immune Plasticity and Molecular Ecoepidemiology, Unit for Basic and Applied Microbiology, Autonomous University of Queretaro, 76230, Mexico; The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - L Jasperse
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - E Gebhard
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - F M D Gulland
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - S De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|