1
|
Wei J, Fei Z, Pan G, Weiss LM, Zhou Z. Current Therapy and Therapeutic Targets for Microsporidiosis. Front Microbiol 2022; 13:835390. [PMID: 35356517 PMCID: PMC8959712 DOI: 10.3389/fmicb.2022.835390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia are obligate intracellular, spore-forming parasitic fungi which are grouped with the Cryptomycota. They are both opportunistic pathogens in humans and emerging veterinary pathogens. In humans, they cause chronic diarrhea in immune-compromised patients and infection is associated with increased mortality. Besides their role in pébrine in sericulture, which was described in 1865, the prevalence and severity of microsporidiosis in beekeeping and aquaculture has increased markedly in recent decades. Therapy for these pathogens in medicine, veterinary, and agriculture has become a recent focus of attention. Currently, there are only a few commercially available antimicrosporidial drugs. New therapeutic agents are needed for these infections and this is an active area of investigation. In this article we provide a comprehensive summary of the current as well as several promising new agents for the treatment of microsporidiosis including: albendazole, fumagillin, nikkomycin, orlistat, synthetic polyamines, and quinolones. Therapeutic targets which could be utilized for the design of new drugs are also discussed including: tubulin, type 2 methionine aminopeptidase, polyamines, chitin synthases, topoisomerase IV, triosephosphate isomerase, and lipase. We also summarize reports on the utility of complementary and alternative medicine strategies including herbal extracts, propolis, and probiotics. This review should help facilitate drug development for combating microsporidiosis.
Collapse
Affiliation(s)
- Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zhihui Fei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
2
|
Abstract
Around 57.1% of microsporidia occupy aquatic environments, excluding a further 25.7% that utilise both terrestrial and aquatic systems. The aquatic microsporidia therefore compose the most diverse elements of the Microsporidia phylum, boasting unique structural features, variable transmission pathways, and significant ecological influence. From deep oceans to tropical rivers, these parasites are present in most aquatic environments and have been shown to infect hosts from across the Protozoa and Animalia. The consequences of infection range from mortality to intricate behavioural change, and their presence in aquatic communities often alters the overall functioning of the ecosystem.In this chapter, we explore aquatic microsporidian diversity from the perspective of aquatic animal health. Examples of microsporidian parasitism of importance to an aquacultural ('One Health') context and ecosystem context are focussed upon. These include infection of commercially important penaeid shrimp by Enterocytozoon hepatopenaei and interesting hyperparasitic microsporidians of wild host groups.Out of ~1500 suggested microsporidian species, 202 have been adequately taxonomically described using a combination of ultrastructural and genetic techniques from aquatic and semi-aquatic hosts. These species are our primary focus, and we suggest that the remaining diversity have additional genetic or morphological data collected to formalise their underlying systematics.
Collapse
Affiliation(s)
- Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
- National Horizons Centre, Teesside University, Darlington, UK.
| | - Grant D Stentiford
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
3
|
Brdíčková K, Sak B, Holubová N, Květoňová D, Hlásková L, Kicia M, Kopacz Ż, Kváč M. Encephalitozoon cuniculi Genotype II Concentrates in Inflammation Foci. J Inflamm Res 2020; 13:583-593. [PMID: 33061524 PMCID: PMC7524191 DOI: 10.2147/jir.s271628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Microsporidia of the genus Encephalitozoon are generally connected with severe infections with lethal outcome in immunodeficient hosts. In immunocompetent hosts, microsporidiosis typically establishes a balanced host–parasite relationship that produces minimal clinically overt disease. Although the alimentary tract represents one of the main primary target tissues, the mechanisms of reaching other tissues during systemic microsporidian infections remain unclear. Methods In the present study, we tested the relation between inflammation induction in immunocompetent and immunodeficient mice and the presence of spores of E. cuniculi genotype II in selected organs and in fecal specimens by using molecular and histology methods. Results We reported the positive connection between inflammation induction and the significant increase of E. cuniculi genotype II occurrence in inflammation foci in both immunocompetent BALB/c and immunodeficient severe combined immunodeficient (SCID) mice in the acute phase of infection and the re-activation of latent microsporidial infection following inflammation induction in immunocompetent mice. Conclusion The results imply possible involvement of immune cells serving as vehicles transporting E. cuniculi genotype II purposefully across the whole host body towards inflammation. With increasing number of records of infections, it is necessary to reconsider microsporidia as agents responsible for various pathologies. The elucidation of possible connection with pro-inflammatory immune responses represents an important challenge with consequences for human health and development of therapeutic strategies.
Collapse
Affiliation(s)
- Klára Brdíčková
- Department of Clinical Microbiology, Bulovka Hospital, Prague, Czech Republic.,Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Nikola Holubová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Marta Kicia
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Żaneta Kopacz
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Martin Kváč
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Betts EL, Gentekaki E, Tsaousis AD. Exploring Micro-Eukaryotic Diversity in the Gut: Co-occurrence of Blastocystis Subtypes and Other Protists in Zoo Animals. Front Microbiol 2020; 11:288. [PMID: 32161577 PMCID: PMC7052370 DOI: 10.3389/fmicb.2020.00288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Blastocystis is a genetically diverse microbial eukaryote thriving in the gut of humans and other animals. While Blastocystis has been linked with gastrointestinal disorders, its pathogenicity remains controversial. Previous reports have suggested that one out of six humans could be carrying Blastocystis in their gut, while the numbers could be even higher in animals. Most studies on Blastocystis are either exclusively targeting the organism itself and/or the associated prokaryotic microbiome, while co-occurrence of other microbial eukaryotes has been mainly ignored. Herein, we aimed to explore presence and genetic diversity of Blastocystis along with the commonly occurring eukaryotes Cryptosporidium, Eimeria, Entamoeba and Giardia in the gut of asymptomatic animals from two conservation parks in the United Kingdom. Building upon a previous study, a total of 231 fecal samples were collected from 38 vertebrates, which included 12 carnivorous and 26 non-carnivorous species. None of the animals examined herein showed gastrointestinal symptoms. The barcoding region of the small subunit ribosomal RNA was used for subtyping of Blastocystis. Overall, 47% of animal species were positive for Blastocystis. Twenty six percent of samples carried more than one subtypes, including the newly identified hosts Scottish wildcat, bongo and lynx. Fifty three percent of samples carried at least another microbial eukaryote. Herewith, we discuss potential implications of these findings and the increasingly blurred definition of microbial parasites.
Collapse
Affiliation(s)
- Emma L Betts
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand.,Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai, Thailand
| | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|