1
|
Duff P, Everest D, Martindale L, Barlow A, Rocchi M, Lavazza A. European brown hare syndrome virus and other lagoviruses of interest. Vet Rec 2024; 195:369-370. [PMID: 39484945 DOI: 10.1002/vetr.4874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This focus article was prepared by Paul Duff of the APHA Wildlife Expert Group, with support from David Everest (APHA Pathology Department), Lucy Martindale (APHA Surveillance Intelligence Unit), Alex Barlow (Wildlife Network for Disease Surveillance), Mara Rocchi (Moredun Research Institute) and Antonio Lavazza (Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Italy).
Collapse
|
2
|
Gong HY, Chen RX, Tan SM, Wang X, Chen JM, Zhang YL, Liao M. Viruses Identified in Shrews ( Soricidae) and Their Biomedical Significance. Viruses 2024; 16:1441. [PMID: 39339918 PMCID: PMC11437491 DOI: 10.3390/v16091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Shrews (Soricidae) are common small wild mammals. Some species of shrews, such as Asian house shrews (Suncus murinus), have a significant overlap in their habitats with humans and domestic animals. Currently, over 190 species of viruses in 32 families, including Adenoviridae, Arenaviridae, Arteriviridae, Astroviridae, Anelloviridae, Bornaviridae, Caliciviridae, Chuviridae, Coronaviridae, Filoviridae, Flaviviridae, Hantaviridae, Hepadnaviridae, Hepeviridae, Nairoviridae, Nodaviridae, Orthoherpesviridae, Orthomyxoviridae, Paramyxoviridae, Parvoviridae, Phenuiviridae, Picobirnaviridae, Picornaviridae, Polyomaviridae, Poxviridae, Rhabdoviridae, Sedoreoviridae, Spinareoviridae, and three unclassified families, have been identified in shrews. Diverse shrew viruses, such as Borna disease virus 1, Langya virus, and severe fever with thrombocytopenia syndrome virus, cause diseases in humans and/or domestic animals, posing significant threats to public health and animal health. This review compiled fundamental information about shrews and provided a comprehensive summary of the viruses that have been detected in shrews, with the aim of facilitating a deep understanding of shrews and the diversity, epidemiology, and risks of their viruses.
Collapse
Affiliation(s)
- Huan-Yu Gong
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Rui-Xu Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Su-Mei Tan
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xiu Wang
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Ji-Ming Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Yuan-Long Zhang
- Guangdong Center for Animal Disease Prevention and Control, Guangzhou 510230, China
| | - Ming Liao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| |
Collapse
|
3
|
Asin J, Calvete C, Uzal FA, Crossley BM, Duarte MD, Henderson EE, Abade dos Santos F. Rabbit hemorrhagic disease virus 2, 2010-2023: a review of global detections and affected species. J Vet Diagn Invest 2024; 36:617-637. [PMID: 39344909 PMCID: PMC11457751 DOI: 10.1177/10406387241260281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Rabbit hemorrhagic disease virus 2/genotype GI.2 (RHDV2/GI.2; Caliciviridae, Lagovirus) causes a highly contagious disease with hepatic necrosis and disseminated intravascular coagulation in several Leporidae species. RHDV2 was first detected in European rabbits (Oryctolagus cuniculus) in France in 2010 and has since spread widely. We gather here data on viral detections reported in various countries and affected species, and discuss pathology, genetic differences, and novel diagnostic aspects. RHDV2 has been detected almost globally, with cases reported in Europe, Africa, Oceania, Asia, and North America as of 2023. Since 2020, large scale outbreaks have occurred in the United States and Mexico and, at the same time, cases have been reported for the first time in previously unaffected countries, such as China, Japan, Singapore, and South Africa, among others. Detections have been notified in domestic and wild European rabbits, hares and jackrabbits (Lepus spp.), several species of cottontail and brush rabbits (Sylvilagus spp.), pygmy rabbits (Brachylagus idahoensis), and red rock rabbits (Pronolagus spp.). RHDV2 has also been detected in a few non-lagomorph species. Detection of RHDV2 causing RHD in Sylvilagus spp. and Leporidae species other than those in the genera Oryctolagus and Lepus is very novel. The global spread of this fast-evolving RNA virus into previously unexploited geographic areas increases the likelihood of host range expansion as new species are exposed; animals may also be infected by nonpathogenic caliciviruses that are disseminated by almost all species, and with which genetic recombination may occur.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Carlos Calvete
- Animal Science Department, Agri-Food Research and Technology Centre of Aragon (CITA), Agri-Food Institute of Aragón (IA2), Zaragoza, Spain
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | | | | | - Eileen E. Henderson
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Fábio Abade dos Santos
- National Institute for Agrarian and Veterinary Research (INIAV), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisboa, Portugal
| |
Collapse
|
4
|
Ringenberg JM, Weir K, Linder T, Lenoch J. Detections of Rabbit Hemorrhagic Disease Virus 2 (RHDV2) Following the 2020 Outbreak in Wild Lagomorphs across the Western United States. Viruses 2024; 16:1106. [PMID: 39066268 PMCID: PMC11281353 DOI: 10.3390/v16071106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Rabbit hemorrhagic disease virus 2 (RHDV2) is a highly infectious, often fatal viral disease that affects both domestic and wild lagomorph species. In the United States (U.S.), the virus first was detected in wild lagomorph populations in the southwest in March 2020 and has continued to be detected in native North American lagomorph species over several years. The susceptibility of host species and exact mechanisms of environmental transmission across the U.S. landscape remain poorly understood. Our study aims to increase the understanding of RHDV2 in wild lagomorph populations by providing a history of detection. We present and summarize results from all RHDV2-suspect wild lagomorph morbidity and mortality samples submitted for diagnostic testing in the U.S. from March 2020 to March 2024. Samples were submitted from 916 wild lagomorphs across eight native North American species in 14 western states, of which 313 (34.2%) tested positive by RHDV2 RT-qPCR. Detections of RHDV2 in pygmy rabbits (Brachylagus idahoensis) and riparian brush rabbits (Sylvilagus bachmani riparius) suggest that the risk to threatened and endangered species warrants more attention. Continuing to investigate wild lagomorph morbidity and mortality events and tracking RHDV2 detections over time can help inform on disease epidemiology and wild lagomorph population trends.
Collapse
Affiliation(s)
- Jourdan M. Ringenberg
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Fort Collins, CO 80521, USA; (K.W.); (T.L.); (J.L.)
| | | | | | | |
Collapse
|
5
|
Tokarz-Deptuła B, Kulus J, Baraniecki Ł, Stosik M, Deptuła W. Characterisation of Lagovirus europaeus GI-RHDVs (Rabbit Haemorrhagic Disease Viruses) in Terms of Their Pathogenicity and Immunogenicity. Int J Mol Sci 2024; 25:5342. [PMID: 38791380 PMCID: PMC11120834 DOI: 10.3390/ijms25105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.
Collapse
Affiliation(s)
| | - Jakub Kulus
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| |
Collapse
|
6
|
Krejmer-Rąbalska M, Peplińska M, Szewczyk B, Fitzner A. Serological characterisation of Lagovirus virus-like particles originating from native and mutated VP60 of rabbit haemorrhagic disease virus 2 and European brown hare syndrome virus. J Vet Res 2024; 68:9-17. [PMID: 38525228 PMCID: PMC10960260 DOI: 10.2478/jvetres-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Since lagoviruses cannot be cultivated in vitro, using expression systems is an alternative and promising way of producing diagnostic viral antigens. It opens up their use as active immunogens for vaccine production. Material and Methods Virus-like particles (VLPs) were produced in a baculovirus expression system in Spodoptera frugiperda 9 (Sf9) insect cells based on wild-type and mutated variants of the virus capsid VP60 protein from a Polish strain of European brown hare syndrome virus (EBHSV) and wild-type and mutated versions of this protein from a Polish strain of rabbit haemorrhagic disease virus 2 (RHDV2). The mutations were the substitution of an arginylglycylaspartic acid (Arg-Gly-Asp/RGD) motif in the P2 subdomain and, in the S or P2 domain, the substitution of three lysines. The VLPs were purified with sucrose gradient ultracentrifugation. Results Protein production was confirmed by Western blot analysis using rabbit or hare sera and ELISA tests with different types of monoclonal antibody. The haemagglutination properties of some VLPs were also evaluated. Electron microscopy of wild-type EBHSV, wild-type RHDV2 and the four VP60 variants produced in this experiment revealed the formation of characteristic VLP structures. Conclusion For the first time, mutated VLPs of RHDV2 with an RGD motif in the VP60 sequence were obtained, which could potentially be used to deliver cargo to eukaryotic cells. Virus-like particles based on the VP60 proteins of EBHSV and RHDV with a three-lysine substitution in the S or P2 domains were also obtained. Potential exists for VLPs of EBHSV and RHDV2 as vaccine candidates.
Collapse
Affiliation(s)
- Martyna Krejmer-Rąbalska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Marta Peplińska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Bogusław Szewczyk
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Andrzej Fitzner
- Department of Foot and Mouth Disease, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
7
|
Sahraoui L, Lahouassa H, Maziz-Bettahar S, Lopes AM, Almeida T, Ainbaziz H, Abrantes J. First detection and molecular characterization of rabbit hemorrhagic disease virus (RHDV) in Algeria. Front Vet Sci 2023; 10:1235123. [PMID: 37745217 PMCID: PMC10513046 DOI: 10.3389/fvets.2023.1235123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Since the first detection of rabbit hemorrhagic disease (RHD), the rabbit hemorrhagic disease virus (RHDV) has been responsible for high morbidity and mortality worldwide, both in domestic and in wild rabbits. Despite the apparent control of RHD in rabbitries through vaccination, several studies highlighted the rapid evolution of RHDV by recombination, which may facilitate the emergence of new pathogenic strains. The aim of this study was to confirm the presence and characterize RHDV in Algeria. For this, rabbit samples were collected in the north of Algeria, between 2018 and 2021, from small farms where the virus was suspected after the sudden death of a high number of rabbits, and from healthy hunted wild rabbits. The domestic rabbits revealed clinical signs and lesions that were suggestive of RHD. RT-PCR showed that 79.31% of the domestic rabbit samples were positive for RHDV, while in 20.69%, including the hunted rabbits, the virus was not detected. Phylogenetic analysis of the Algerian strains allowed the confirmation and identification as GI.2 (RHDV2), and showed a close relation to GI.3P-GI.2 recombinant strains, suggesting a potential introduction from other countries, with an older strain potentially originated from neighboring Tunisia, while more recent isolates grouped with strains from North America. Our study reports for the first time the presence of GI.2 (RHDV2) in Algeria with multiple routes of introduction. Consequently, we propose that RHDV control in Algeria should be based on epidemiological surveys in association with an adequate prophylactic program.
Collapse
Affiliation(s)
- Lynda Sahraoui
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Hichem Lahouassa
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Samia Maziz-Bettahar
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
- Institute of Veterinary Sciences, Saad Dahlab University of Blida1, Blida, Algeria
| | - Ana M. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Tereza Almeida
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Hacina Ainbaziz
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Kardia E, Fakhri O, Pavy M, Mason H, Huang N, Smertina E, Jenckel M, Peng NYG, Estes MK, Strive T, Frese M, Smith I, Hall RN. Hepatobiliary organoids derived from leporids support the replication of hepatotropic lagoviruses. J Gen Virol 2023; 104. [PMID: 37584657 DOI: 10.1099/jgv.0.001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The genus Lagovirus of the family Caliciviridae contains some of the most virulent vertebrate viruses known. Lagoviruses infect leporids, such as rabbits, hares and cottontails. Highly pathogenic viruses such as Rabbit haemorrhagic disease virus 1 (RHDV1) cause a fulminant hepatitis that typically leads to disseminated intravascular coagulation within 24-72 h of infection, killing over 95 % of susceptible animals. Research into the pathophysiological mechanisms that are responsible for this extreme phenotype has been hampered by the lack of a reliable culture system. Here, we report on a new ex vivo model for the cultivation of lagoviruses in cells derived from the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus). We show that three different lagoviruses, RHDV1, RHDV2 and RHDVa-K5, replicate in monolayer cultures derived from rabbit hepatobiliary organoids, but not in monolayer cultures derived from cat (Felis catus) or mouse (Mus musculus) organoids. Virus multiplication was demonstrated by (i) an increase in viral RNA levels, (ii) the accumulation of dsRNA viral replication intermediates and (iii) the expression of viral structural and non-structural proteins. The establishment of an organoid culture system for lagoviruses will facilitate studies with considerable implications for the conservation of endangered leporid species in Europe and North America, and the biocontrol of overabundant rabbit populations in Australia and New Zealand.
Collapse
Affiliation(s)
- Egi Kardia
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Omid Fakhri
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Megan Pavy
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Hugh Mason
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Nina Huang
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Elena Smertina
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
| | - Maria Jenckel
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Nias Y G Peng
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tanja Strive
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
| | - Michael Frese
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia
| | - Ina Smith
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Robyn N Hall
- Health and Biosecurity Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
- Present address: Ausvet, Bruce, ACT 2617, Australia
| |
Collapse
|
9
|
European Brown Hare Syndrome in Poland: Current Epidemiological Situation. Viruses 2022; 14:v14112423. [PMID: 36366520 PMCID: PMC9698305 DOI: 10.3390/v14112423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
European brown hare syndrome (EBHS) is one of the main causes of mortality in brown hares (Lepus europaeus) and mountain hares (Lepus timidus) in Europe. Since the mid-1990s, this highly lethal and contagious plague has been widespread in many European countries, contributing to a drastic decline in the number of free-living and farmed hares. A second lagovirus, able to infect some species of hares is rabbit haemorrhagic disease virus 2 (RHDV2; GI.2) recognised in 2010, a new viral emergence of RHDV (GI.1) which is known to be responsible for haemorrhagic disease in rabbits-RHD. The aim of this study was to evaluate the current EBHS epidemiological situation on the basis of the presence of antibodies to European brown hare syndrome virus (EBHSV) and anti-RHDV2 antibodies in sera collected from free-ranging hares in Central and Southeastern Poland in 2020-2021. Additionally, studies on the presence of EBHSV and RHDV2 antigens or their genetic material in the blood and internal organs taken from brown hares between 2014 - 2021 have been carried out. The results of the serological examination showed nearly 88% of tested blood samples were positive for EBHSV antibodies. No EBHSV was identified in the examined hares using virological and molecular tests. The positive results of EBHS serological studies confirmed the circulation and maintenance of EBHSV in free-living brown hares in Poland. However, no serological, virological or molecular evidence was obtained indicating that the brown hares tested had been in contact with RHDV2.
Collapse
|
10
|
Development and Evaluation of a Duplex Lateral Flow Assay for the Detection and Differentiation between Rabbit Haemorrhagic Disease Virus Lagovirus europaeus/GI.1 and /GI.2. BIOLOGY 2022; 11:biology11030401. [PMID: 35336775 PMCID: PMC8945490 DOI: 10.3390/biology11030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Rabbit Haemorrhagic Disease is caused by a virus that affects the liver, the spleen and the lungs of rabbits, causing hepatitis, splenomegaly and haemorrhages. A new genotype of the virus was first reported in France in 2010 and has spread globally since then, replacing most of the circulating former viruses in many countries. The detection of the virus and the differentiation of both genotypes is of crucial importance for disease surveillance. In this article, a rapid test for antigen detection is described and evaluated, providing the first description of a quick and easy-to-use test that allows for the simultaneous detection and differentiation of the genotypes. A total of 136 samples, rabbit liver samples and liver exudates (liquid collected after freeze–thawing) classified as infected and non-infected, were analysed, with good results. These data confirm that the developed rapid test can be used as a reliable diagnostic test for disease surveillance, especially in farms and the field. Abstract Rabbit Haemorrhagic Disease Virus 2 (RHDV2, recently named Lagovirus europaeus/GI.2) was first reported in France in 2010 and has spread globally since then, replacing most of the circulating former RHDV (genotype GI.1) in many countries. The detection and differentiation of both genotypes is of crucial importance for the surveillance of the disease. In this article, a duplex lateral flow assay (LFA) for antigen detection is described and evaluated, providing the first description of a quick and easy-to-use test that allows for the simultaneous detection and differentiation of RHDV genotypes GI.1 and GI.2. A panel of GI.1- or GI.2-infected and non-infected rabbit liver samples and liver exudates (136 samples) was analysed, obtaining a total sensitivity of 94.4% and specificity of 100%. These data confirm that the developed duplex LFA can be used as a reliable diagnostic test for RHD surveillance, especially in farms and the field.
Collapse
|
11
|
Byrne AW, Marnell F, Barrett D, Reid N, Hanna REB, McElroy MC, Casey M. Rabbit Haemorrhagic Disease Virus 2 (RHDV2; GI.2) in Ireland Focusing on Wild Irish Hares (Lepus timidus hibernicus): An Overview of the First Outbreaks and Contextual Review. Pathogens 2022; 11:pathogens11030288. [PMID: 35335613 PMCID: PMC8953227 DOI: 10.3390/pathogens11030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
Rabbit haemorrhagic disease virus 2 (RHDV2; GI.2) is a pathogenic lagovirus that emerged in 2010, and which now has a global distribution. Outbreaks have been associated with local population declines in several lagomorph species, due to rabbit haemorrhagic disease (RHD)-associated mortality raising concerns for its potential negative impact on threatened or vulnerable wild populations. The Irish hare (Lepus timidus hibernicus) is endemic to Ireland, and is of conservation interest. The first cases of RHDV2 in Ireland were reported in domestic rabbits (Oryctolagus cuniculus) in 2016, soon followed by the first known case in a wild rabbit also in 2016, from a population reported to be experiencing high fatalities. During summer 2019, outbreaks in wild rabbits were confirmed in several locations throughout Ireland. Six cases of RHDV2 in wild hares were confirmed between July and November 2019, at four locations. Overall, 27 cases in wildlife were confirmed in 2019 on the island of Ireland, with a predominantly southern distribution. Passive surveillance suggests that the Irish hare is susceptible to lethal RHDV2 infection, and that spillover infection to hares is geographically widespread in eastern areas of Ireland at least, but there is a paucity of data on epidemiology and population impacts. A literature review on RHD impact in closely related Lepus species suggests that intraspecific transmission, spillover transmission, and variable mortality occur in hares, but there is variability in reported resistance to severe disease and mortality amongst species. Several key questions on the impact of the pathogen in Irish hares remain. Surveillance activities throughout the island of Ireland will be important in understanding the spread of infection in this novel host.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One-Health Scientific Support Unit, Department of Agriculture, Food and the Marine, Agriculture House, D02 WK12 Dublin, Ireland;
- Correspondence: or
| | - Ferdia Marnell
- Department of Housing, Local Government and Heritage, National Parks and Wildlife Service (NPWS), D07 N7CV Dublin, Ireland;
| | - Damien Barrett
- One-Health Scientific Support Unit, Department of Agriculture, Food and the Marine, Agriculture House, D02 WK12 Dublin, Ireland;
| | - Neil Reid
- Institute of Global Food Security (IGFS), School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Robert E. B. Hanna
- Veterinary Science Division (VSD), Agri-Food and Biosciences Institute, Stormont, Belfast BT4 3SD, UK;
| | - Máire C. McElroy
- Bacteriology and Parasitology Division, Department of Agriculture, Food and the Marine, Agriculture House, Backweston, W23 VW2C Dublin, Ireland;
| | - Mícheál Casey
- Regional Veterinary Laboratories (RVL) Division, Department of Agriculture, Food and the Marine, Agriculture House, Backweston, W23 VW2C Dublin, Ireland;
| |
Collapse
|
12
|
Kennedy A, Britton L, Byrne AW, Byrne C, Casey M, Flynn O, Lozano JM, Marnell F, McElroy M, Reid N, Wilson M, FitzGerald W. First detected case of rabbit Haemorrhagic disease virus 2 (RHDV2) in the Irish hare (Lepus timidus hibernicus). Ir Vet J 2021; 74:25. [PMID: 34537065 PMCID: PMC8449885 DOI: 10.1186/s13620-021-00205-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rabbit haemorrhagic disease virus (RHDV) is a Lagovirus, a subgroup of the family Caliciviridae. RHDV2 is a variant first described in France in 2010, and has since spread globally. It has been reported in several Lagomorph species (rabbits, hares, and their relatives) as well as other mammals including voles and shrews. The disease has raised international concerns for its potential impact on population abundance trajectories, particularly as 25% of Lagomorphs are currently Red-Listed by the International Union for the Conservation of Nature (IUCN). The Irish hare (Lepus timidus hibernicus) is a subspecies of the mountain hare, L. timidus, and is endemic to Ireland, making it an Evolutionarily Significant Unit of intrinsic value. CASE PRESENTATION The first case of RHDV2 was detected in a wild Irish hare in July 2019. The individual exhibited atypical neurological behaviour (running in circles) prior to death. On necropsy, pink tinged foam was seen in the trachea and congestion was noted in the lungs, but there was no evidence of haemorrhages in any other organ. Both the liver and spleen were tested by reverse transcription real time qPCR confirming high levels of RHDV2 RNA. Histopathology confirmed multifocal necrotising hepatitis. CONCLUSION The Irish hare is susceptible to RHDV2 infection. Further investigation is warranted to explore the clinical, epidemiological, and population biology implications.
Collapse
Affiliation(s)
- Aideen Kennedy
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland
| | - Louise Britton
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland
| | - Andrew W Byrne
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland.
| | - Christina Byrne
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland
| | - Mícheál Casey
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland
| | - Orla Flynn
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland
| | - Jose Maria Lozano
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland
| | - Ferdia Marnell
- National Parks and Wildlife Service, Department of Housing, Local Government and Heritage, 90 King Street North, Dublin, Ireland
| | - Maire McElroy
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland
| | - Neil Reid
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast (QUB), Belfast, UK
| | - Margaret Wilson
- Department of Agriculture, Food and the Marine (DAFM), Dublin, Ireland
| | | |
Collapse
|
13
|
Marín-García PJ, Llobat L. What Are the Keys to the Adaptive Success of European Wild Rabbit ( Oryctolagus cuniculus) in the Iberian Peninsula? Animals (Basel) 2021; 11:2453. [PMID: 34438909 PMCID: PMC8388719 DOI: 10.3390/ani11082453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
The European wild rabbit (Oryctolagus cuniculus) plays an important ecological role in the ecosystems of the Iberian Peninsula. Recently, rabbit populations have drastically reduced, so the species is now considered endangered. However, in some places, this animal is considered a pest. This is the conservation paradox of the 21st century: the wild rabbit is both an invasive alien and an endangered native species. The authors of this review aimed to understand the keys to the adaptive success of European rabbits, addressing all aspects of their biology in order to provide the keys to the ecological management of this species. Aspects including nutrition, genetics, immunity interactions with the environment, behaviour, and conflict with human activities were reviewed. Ultimately, rabbits are resilient and adaptable. The main adaptations that explain the rabbit's adaptive success are its nutrition (wide adaptation to food and good nutritional use of caecotrophy), immune system (powerful and developed), and other aspects related to genetics and behaviour. Rabbits' relationship with humans has led them to colonise other places where they have become pests. Despite these adaptations, populations in native places have been drastically reduced in recent years. Since it serves as a bastion of the Mediterranean ecosystem, a specific conservation program for this species must be carried out. Therefore, a study of the rabbit's response to diseases and nutrition (especially protein), as well as the interaction between them, is of special interest.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| |
Collapse
|
14
|
Abrantes J, Lopes AM. A Review on the Methods Used for the Detection and Diagnosis of Rabbit Hemorrhagic Disease Virus (RHDV). Microorganisms 2021; 9:972. [PMID: 33946292 PMCID: PMC8146303 DOI: 10.3390/microorganisms9050972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
Since the early 1980s, the European rabbit (Oryctolagus cuniculus) has been threatened by the rabbit hemorrhagic disease (RHD). The disease is caused by a lagovirus of the family Caliciviridae, the rabbit hemorrhagic disease virus (RHDV). The need for detection, identification and further characterization of RHDV led to the development of several diagnostic tests. Owing to the lack of an appropriate cell culture system for in vitro propagation of the virus, much of the methods involved in these tests contributed to our current knowledge on RHD and RHDV and to the development of vaccines to contain the disease. Here, we provide a comprehensive review of the RHDV diagnostic tests used since the first RHD outbreak and that include molecular, histological and serological techniques, ranging from simpler tests initially used, such as the hemagglutination test, to the more recent and sophisticated high-throughput sequencing, along with an overview of their potential and their limitations.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana M. Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Bao S, An K, Liu C, Xing X, Fu X, Xue H, Wen F, He X, Wang J. Rabbit Hemorrhagic Disease Virus Isolated from Diseased Alpine Musk Deer ( Moschus sifanicus). Viruses 2020; 12:v12080897. [PMID: 32824417 PMCID: PMC7472292 DOI: 10.3390/v12080897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) is the causative agent of rabbit hemorrhagic disease (RHD), and its infection results in mortality of 70-90% in farmed and wild rabbits. RHDV is thought to replicate strictly in rabbits. However, there are also reports showing that gene segments from the RHDV genome or antibodies against RHDV have been detected in other animals. Here, we report the detection and isolation of a RHDV from diseased Alpine musk deer (Moschussifanicus). The clinical manifestations in those deer were sudden death without clinical signs and hemorrhage in the internal organs. To identify the potential causative agents of the disease, we used sequence independent single primer amplification (SISPA) to detect gene segments from viruses in the tissue samples collected from the dead deer. From the obtained sequences, we identified some gene fragments showing very high nucleotide sequence similarity with RHDV genome. Furthermore, we identified caliciviral particles using an electron microscope in the samples. The new virus was designated as RHDV GS/YZ. We then designed primers based on the genome sequence of an RHDV strain CD/China to amplify and sequence the whole genome of the virus. The genome of the virus was determined to be 7437 nucleotides in length, sharing the highest genome sequence identity of 98.7% with a Chinese rabbit strain HB. The virus was assigned to the G2 genotype of RHDVs according to the phylogenetic analyses based on both the full-length genome and VP60 gene sequences. Animal experiments showed that GS/YZ infection in rabbits resulted in the macroscopic and microscopic lesions similar to that caused by the other RHDVs. This is the first report of RHDV isolated from Alpine musk deer, and our findings extended the epidemiology and host range of RHDV.
Collapse
Affiliation(s)
- Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
- Correspondence: (S.B.); (J.W.); Tel.: +86-931-7631229 (S.B.); +86-451-51051770 (J.W.)
| | - Kai An
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Chunguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (C.L.); (X.H.)
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Xiaoping Fu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Huiwen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Fengqin Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (C.L.); (X.H.)
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (C.L.); (X.H.)
- Correspondence: (S.B.); (J.W.); Tel.: +86-931-7631229 (S.B.); +86-451-51051770 (J.W.)
| |
Collapse
|
16
|
|