1
|
Gattinger D, Schlenz V, Weil T, Sattler B. From remote to urbanized: Dispersal of antibiotic-resistant bacteria under the aspect of anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171532. [PMID: 38458439 DOI: 10.1016/j.scitotenv.2024.171532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Antibiotic resistance is a growing global concern, but our understanding of the spread of resistant bacteria in remote regions remains limited. While some level of intrinsic resistance likely contributes to reduced susceptibility to antimicrobials in the environment, it is evident that human actions, particularly the (mis)use of antibiotics, play a significant role in shaping the environmental resistome, even in seemingly distant habitats like glacier ice sheets. Our research aims to bridge this knowledge gap by investigating the direct influence of human activities on the presence of antibiotic-resistant bacteria in various habitats. To achieve a comprehensive assessment of anthropogenic impact across diverse and seemingly isolated sampling sites, we developed an innovative approach utilizing Corine Land Cover data and heatmaps generated from sports activity trackers. This method allowed us to make meaningful comparisons across relatively pristine environments. Our findings indicate a noteworthy increase in culturable antibiotic-resistant bacteria with heightened human influence, as evidenced by our analysis of glacier, snow, and lake water samples. Notably, the most significant concentrations of antibiotic-resistant and multidrug-resistant microorganisms were discovered in two highly impacted sampling locations, namely the Tux Glacier and Gas Station Ellmau.
Collapse
Affiliation(s)
- Daniel Gattinger
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria.
| | - Valentin Schlenz
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Tobias Weil
- Research and Innovation Centre, Fondazione Edmund Mach, All'adige, Italy
| | - Birgit Sattler
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
2
|
Weller HI, Hiller AE, Lord NP, Van Belleghem SM. recolorize: An R package for flexible colour segmentation of biological images. Ecol Lett 2024; 27:e14378. [PMID: 38361466 DOI: 10.1111/ele.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
Colour pattern variation provides biological information in fields ranging from disease ecology to speciation dynamics. Comparing colour pattern geometries across images requires colour segmentation, where pixels in an image are assigned to one of a set of colour classes shared by all images. Manual methods for colour segmentation are slow and subjective, while automated methods can struggle with high technical variation in aggregate image sets. We present recolorize, an R package toolbox for human-subjective colour segmentation with functions for batch-processing low-variation image sets and additional tools for handling images from diverse (high-variation) sources. The package also includes export options for a variety of formats and colour analysis packages. This paper illustrates recolorize for three example datasets, including high variation, batch processing and combining with reflectance spectra, and demonstrates the downstream use of methods that rely on this output.
Collapse
Affiliation(s)
- Hannah I Weller
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Anna E Hiller
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nathan P Lord
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
3
|
Hooper S, Amelon S. Contact-independent exposure to Rhodococcus rhodochrous DAP96253 volatiles does not improve the survival rate of Myotis lucifugus (little brown bats) affected by White-nose Syndrome. PeerJ 2023; 11:e15782. [PMID: 37868049 PMCID: PMC10590100 DOI: 10.7717/peerj.15782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/03/2023] [Indexed: 10/24/2023] Open
Abstract
Since the emergence of White-nose Syndrome, a fungal disease in bats, caused by Pseudogymnoascus destructans, hibernating populations of little brown bats (Myotis lucifugus) have declined by 70-90% within P. destructans positive hibernacula. To reduce the impact of White-nose Syndrome to North American little brown bat populations we evaluated if exposure to volatile organic compounds produced by induced cells from Rhodococcus rhodochrous strain DAP96253 could improve the overwinter survival of bats infected by P. destructans. Two simultaneous field treatment trials were conducted at natural hibernacula located in Rockcastle and Breckinridge counties, Kentucky, USA. A combined total of 120 little brown bats were randomly divided into control groups (n = 60) which were not exposed to volatile organic compounds and treatment groups (n = 60) which were exposed to volatile organic compounds produced by non-growth, fermented cell paste composed of R. rhodochrous strain DAP96253 cells. Cox proportional hazard models revealed a significant decreased survival at the Rockcastle field trial site but not the Breckinridge field site. At the Breckinridge hibernacula, overwinter survival for both treatment and control groups were 60%. At the Rockcastle hibernacula, Kaplan-Meier survival curves indicated significantly increased overwinter survival of bats in the control group (43% survived) compared to the treatment group (20% survived). Although complete inhibition of P. destructans by volatile organic compounds produced by induced R. rhodochrous strain DAP96253 cells was observed in vitro studies, our results suggest that these volatile organic compounds do not inhibit P. destructans in situ and may promote P. destructans growth.
Collapse
Affiliation(s)
- Sarah Hooper
- Department of Veterinary Pathobiology, University of Missouri - Columbia, Columbia, MO, United States of America
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Sybill Amelon
- USDA US Forest Service Northern Research Station, Columbia, MO, United States of America
| |
Collapse
|
4
|
Andres SE, Emery NJ, Rymer PD, Powell JR. Soil chemistry and fungal communities are associated with dieback in an Endangered Australian shrub. PLANT AND SOIL 2023; 483:47-70. [PMID: 36211803 PMCID: PMC9525234 DOI: 10.1007/s11104-022-05724-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Field surveys across known populations of the Endangered Persoonia hirsuta (Proteaceae) in 2019 suggested the soil environment may be associated with dieback in this species. To explore how characteristics of the soil environment (e.g., pathogens, nutrients, soil microbes) relate to dieback, a soil bioassay (Experiment 1) was conducted using field soils from two dieback effected P. hirsuta populations. Additionally, a nitrogen addition experiment (Experiment 2) was conducted to explore how the addition of soil nitrogen impacts dieback. METHODS The field soils were baited for pathogens, and soil physiochemical and microbial community characteristics were assessed and related to dieback among plants in the field and nursery-grown plants inoculated with the same field soils. Roots from inoculated plants were harvested to confirm the presence of soil pathogens and root-associated endophytes. Using these isolates, a dual culture antagonism assay was performed to examine competition among these microbes and identify candidate pathogens or pathogen antagonists. RESULTS Dieback among plants in the field and Experiment 1 was associated with soil physiochemical properties (nitrogen and potassium), and soil microbes were identified as significant indicators of healthy and dieback-affected plants. Plants in Experiment 2 exhibited greater dieback when treated with elevated nitrogen. Additionally, post-harvest culturing identified fungi and other soil pathogens, some of which exhibited antagonistic behavior. CONCLUSION This study identified candidate fungi and soil physiochemical properties associated with observed dieback and dieback resistance in an Endangered shrub and provides groundwork for further exploring what drives dieback and how it can be managed to promote the conservation of wild populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11104-022-05724-7.
Collapse
Affiliation(s)
- Samantha E. Andres
- Hawkesbury Institute for the Environment, Richmond, New South Wales 2753 Australia
| | - Nathan J. Emery
- The Australian PlantBank, Australian Botanic Garden, Australian Institute of Botanical Science, Mount Annan, New South Wales 2567 Australia
| | - Paul D. Rymer
- Hawkesbury Institute for the Environment, Richmond, New South Wales 2753 Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment, Richmond, New South Wales 2753 Australia
| |
Collapse
|
5
|
Murat F, Mbengue N, Winge SB, Trefzer T, Leushkin E, Sepp M, Cardoso-Moreira M, Schmidt J, Schneider C, Mößinger K, Brüning T, Lamanna F, Belles MR, Conrad C, Kondova I, Bontrop R, Behr R, Khaitovich P, Pääbo S, Marques-Bonet T, Grützner F, Almstrup K, Schierup MH, Kaessmann H. The molecular evolution of spermatogenesis across mammals. Nature 2023; 613:308-316. [PMID: 36544022 PMCID: PMC9834047 DOI: 10.1038/s41586-022-05547-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals1-6, probably owing to the evolutionary pressure on males to be reproductively successful7. However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.
Collapse
Affiliation(s)
- Florent Murat
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany. .,INRAE, LPGP, Rennes, France.
| | - Noe Mbengue
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
| | - Sofia Boeg Winge
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Timo Trefzer
- Berlin Institute of Health at Charité, University of Medicine Berlin, Corporate Member of the Free University of Berlin, Humboldt-University of Berlin, Berlin, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | | | - Julia Schmidt
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Celine Schneider
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Katharina Mößinger
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Thoomke Brüning
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Francesco Lamanna
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | | | - Christian Conrad
- Berlin Institute of Health at Charité, University of Medicine Berlin, Corporate Member of the Free University of Berlin, Humboldt-University of Berlin, Berlin, Germany
| | - Ivanela Kondova
- Biomedical Primate Research Center (BPRC), Rijswijk, the Netherlands
| | - Ronald Bontrop
- Biomedical Primate Research Center (BPRC), Rijswijk, the Netherlands
| | - Rüdiger Behr
- German Primate Center (DPZ), Platform Degenerative Diseases, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Philipp Khaitovich
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Miquel Crusafont Catalan Institute of Paleontology, Autonomous University of Barcelona, Barcelona, Spain
| | - Frank Grützner
- The Robinson Research Institute, School of Biological Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Neto AIS, Antonio ESDE, Tomazi L, Silva MBDA, Fraga RE. Viability of sex identification of the blue-fronted Amazon parrot (Amazona aestiva) based on iris color sexual dichromatism. AN ACAD BRAS CIENC 2021; 93:e20210060. [PMID: 34614090 DOI: 10.1590/0001-3765202120210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Reintroducing apprehended wild animal in a natural environment is a complex process that involves many steps, including rehabilitating individuals and ensuring viable populations for reproduction; as such, the proportion between males and females to be reintroduced need to be considered carefully. The need of specialized techniques to identify sex on species that do not present discernible sexual dimorphisms can be a hardship to a successful reintroduction. Amazona aestiva, one of the most apprehended species on Brazil, is an example of such case, as sexing techniques employed for it often involves molecular or surgical procedures. Some authors, however, describe potential sexual dimorphisms that could be discernible to the human eye, one of those being an iris color dichromatism between males and females that could present a more conventional way to discern sex on this species. We analyzed the viability of sex identification by direct observation of iris sexual dichromatism, comparing suggestions by professionals familiarized with the species to molecular sexing by Polymerase Chain Reaction (PCR) and measuring color similarity between individuals using digital colorimetry. We found no significant correspondence between sex indication based on direct observation and molecular sexing results, and no relationship between iris color and sex by colorimetric analysis.
Collapse
Affiliation(s)
- Antonio I S Neto
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade (PPGECB), Universidade Estadual de Santa Cruz (UESC), Pavilhão Prof. Max de Menezes, 1° andar, sala 1DA, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Edma S DE Antonio
- Instituto Multidisciplinar em Saúde, Campus Anísio Teixeira, Universidade Federal da Bahia, Rua Rio de Contas, 58, Candeias, 45029-094 Vitória da Conquista, BA, Brazil
| | - Laize Tomazi
- Instituto Multidisciplinar em Saúde, Campus Anísio Teixeira, Universidade Federal da Bahia, Rua Rio de Contas, 58, Candeias, 45029-094 Vitória da Conquista, BA, Brazil
| | - Márcio B DA Silva
- Instituto Multidisciplinar em Saúde, Campus Anísio Teixeira, Universidade Federal da Bahia, Rua Rio de Contas, 58, Candeias, 45029-094 Vitória da Conquista, BA, Brazil
| | - Ricardo E Fraga
- Instituto Multidisciplinar em Saúde, Campus Anísio Teixeira, Universidade Federal da Bahia, Rua Rio de Contas, 58, Candeias, 45029-094 Vitória da Conquista, BA, Brazil
| |
Collapse
|
7
|
Johnson JS, Sharp NW, Monarchino MN, Lilley TM, Edelman AJ. No Sign of Infection in Free-Ranging Myotis austroriparius Hibernating in the Presence of Pseudogymnoascus destructans in Alabama. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Joseph S. Johnson
- Department of Biological Sciences, Ohio University, Athens, OH 45701
| | - Nicholas W. Sharp
- Alabama Non-game Wildlife Program, Division of Wildlife and Freshwater Fisheries, Tanner, AL 35671
| | | | - Thomas M. Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Andrew J. Edelman
- Department of Biology, University of West Georgia, Carrollton, GA 30118
| |
Collapse
|