1
|
Saad DE, Mansour SZ, Kandil EI, Hassan A, Moawed FSM, Elbakry MMM. Boswellic acid synergizes with low-dose ionizing radiation to mitigate thioacetamide-induced hepatic encephalopathy in rats. BMC Pharmacol Toxicol 2025; 26:6. [PMID: 39806460 PMCID: PMC11727435 DOI: 10.1186/s40360-024-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.25 Gy, twice the total dose of 0.5 Gy) was evaluated against TAA (200 mg/kg, intraperitoneal) twice-weekly for four weeks to induce liver damage and HE in rats. TAA-exposed rats exhibited a significant elevation in serum activities of liver enzymes (GGT, ALP) and plasma ammonia levels at P < 0.05 (Duncan's test) compared to the control group. Moreover, there was an increase in the levels of proinflammatory cytokines (IL6, IL12, IL18) in the TAA-exposed animals accompanied by a depletion in the activities of paraoxonase-1 and neurotransmitter contents compared with normal control rats (P < 0.05). However, the administration of BA alone or in combination with LDR led to improvements in liver and brain parameter indices. Furthermore, the histopathological assessments of liver and brain tissues supported the findings of the biochemical investigations. From the statistical analysis, it can be concluded that the combined administration of BA and exposure to LDR may possess potential hepatoprotective effects against hepatic encephalopathy-associated hyperammonemia and the consequent damage to the liver and brain. This study proposes that a combination of therapeutic approaches, LDR and BA could be a new therapeutic candidate for the management of hepatic encephalopathy.
Collapse
Affiliation(s)
- Dina E Saad
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Asmaa Hassan
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Elgazar A, El-Domany RA, Eldehna WM, Badria FA. 3-Acetyl-11-keto-β-boswellic Acid-Based Hybrids Alleviate Acetaminophen-Induced Hepatotoxicity in HepG2 by the Regulation of Inflammatory and Oxidative Stress Pathways: An Integrated Approach. ACS OMEGA 2023; 8:39490-39510. [PMID: 37901542 PMCID: PMC10601058 DOI: 10.1021/acsomega.3c05247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
In an effort to develop new compounds for managing drug-induced liver injury, we prepared 23 novel hybrids based on 3-acetyl-11-keto-β-boswellic acid (AKBA) using various biocompatible linkers. A bioguided approach was employed to identify the most promising hybrid. Eight compounds exhibited superior anti-inflammatory activity compared to the parent compound. Two of these hybrids (5b and 18) were able to reduce gene expression of TNF-α in LPS-induced inflammation in RAW 264.7 cells, similar to dexamethasone. Subsequently, the hepatoprotective potential of these hybrids was evaluated against acetaminophen (APAP) toxicity in HepG2 cells at doses of 1 and 10 μM. Both hybrids effectively restored cytokine levels, which had been elevated by APAP, to normal levels. Furthermore, they normalized depleted superoxide dismutase and reduced glutathione levels while significantly reducing malondialdehyde (MDA) levels. Network pharmacology analysis suggested that AKBA-based hybrids exert their action by regulating PI3K and EGFR pathways, activating anti-inflammatory mechanisms, and initiating tissue repair and regeneration. Molecular docking studies provided insights into the interaction of the hybrids with PI3K. Additionally, the hybrids demonstrated good stability at different pH levels, following first-order kinetics, with relatively long half-lives, suggesting potential for absorption into circulation without significant degradation.
Collapse
Affiliation(s)
- Abdullah
A. Elgazar
- Department
of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Ramadan A. El-Domany
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Wagdy M. Eldehna
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Farid A. Badria
- Department
of Pharmacognosy, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
4
|
Mansour SZ, Moawed FSM, Badawy MMM, Mohamed HE. Boswellic Acid Synergizes With Low-Level Ionizing Radiation to Modulate Bisphenol Induced-Lung Toxicity in Rats by Inhibiting JNK/ERK/c-Fos Pathway. Dose Response 2020; 18:1559325820969597. [PMID: 33192203 PMCID: PMC7607778 DOI: 10.1177/1559325820969597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) is a low molecular weight chemical compound that has a deleterious effect on the endocrine system. It was used in plastics manufacturing with injurious effects on different body systems. Occupational exposure to low-level ionizing radiation (<1 Gy) is shown to attenuate an established inflammatory process and therefore enhance cell protection. Therefore, the objective of this study was to investigate the protective effect of boswellic acid (BA) accompanied by whole-body low-dose gamma radiation (γ-R) against BPA-induced lung toxicity in male albino rats. BPA intoxication induced with 500 mg/kg BW. Rats received 50 mg BA/kg BW by gastric gavage concomitant with 0.5 Gy γ-R over 4 weeks. The immunoblotting and biochemical results revealed that BA and/or γ-R inhibited BPA-induced lung toxicity by reducing oxidative damage biomolecules; (MDA and NADPH oxidase gene expression), inflammatory indices (MPO, TNF-α, IL-6, and gene expression of CXCR-4). Moreover, BA and or/γ-R ameliorated the lung inflammation via regulation of the JNK/ERK/c-Fos and Nrf2/ HO-1 signaling pathways. Interestingly, our data demonstrated that BA in synergistic interaction with γ-R is efficacious control against BPA-induced lung injury via anti-oxidant mediated anti-inflammatory activities.
Collapse
Affiliation(s)
- Somya Z Mansour
- Department of Radiation Biology, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Fatma S M Moawed
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Monda M M Badawy
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Hebatallah E Mohamed
- Department of Radiation Biology, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| |
Collapse
|
5
|
Narayanankutty A. Toll-like Receptors as a Novel Therapeutic Target for Natural Products Against Chronic Diseases. Curr Drug Targets 2020; 20:1068-1080. [PMID: 30806312 DOI: 10.2174/1389450120666190222181506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLR) are one among the initial responders of the immune system which participate in the activation inflammatory processes. Several different types of TLR such as TLR2, TLR4, TLR7 and TLR9 have been identified in various cell types, each having distinct ligands like lipids, lipoproteins, nucleic acids and proteins. Though its prime concern is xenobiotic defences, TLR signalling has also recognized as an activator of inflammation and associated development of chronic degenerative disorders (CDDs) including obesity, type 2 diabetes mellitus (T2DM), fatty liver disease, cardiovascular and neurodegenerative disorders as well as various types of cancers. Numerous drugs are in use to prevent these disorders, which specifically inhibit different pathways associated with the development of CDDs. Compared to these drug targets, inhibition of TLR, which specifically responsible for the inflammatory insults has proven to be a better drug target. Several natural products have emerged as inhibitors of CDDs, which specifically targets TLR signalling, among these, many are in the clinical trials. This review is intended to summarize the recent progress on TLR association with CDDs and to list possible use of natural products, their combinations and their synthetic derivative in the prevention of TLR-driven CDD development.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, 680 555, India
| |
Collapse
|
6
|
Long X, Song J, Zhao X, Zhang Y, Wang H, Liu X, Suo H. Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress-mediated NF-κB signaling. Food Sci Nutr 2020; 8:237-245. [PMID: 31993149 PMCID: PMC6977511 DOI: 10.1002/fsn3.1296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Acetaminophen (APAP) overdose causes severe hepatotoxicity and acute liver failure. The current study aims to investigate the protection effects of silkworm pupa oil (SPO) against acute hepatic injury in APAP-exposed Kunming mice. Our results showed that the liver index and the levels of serum alanine transaminase (ALT) and aspartate transaminase (AST) in mice subjected to APAP treatment were decreased by SPO. Supplement of SPO also restored hepatic histopathological alterations induced by APAP. The APAP-induced increase in proinflammatory cytokines, including TNF-α, IL-6, and IL-12, was reversed by SPO, which was mediated by the reduction of nuclear factor (NF)-κB p65 expression and the increase in the expression of IκB-α in liver tissue. Moreover, SPO inhibited APAP-triggered oxidative stress by decreasing MDA level and increasing the activities of SOD and GSH-Px. Collectively, SPO attenuated hepatic injury induced by APAP, which attributed to the suppression of oxidative stress-mediated NF-κB signaling. Our findings suggest that SPO supplementation may be potential strategy against acute hepatic injury.
Collapse
Affiliation(s)
- Xingyao Long
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Jiajia Song
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
| | - Yu Zhang
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Hongwei Wang
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
| | - Huayi Suo
- College of Food ScienceSouthwest UniversityChongqingChina
| |
Collapse
|
7
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
8
|
Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int J Mol Sci 2018; 19:ijms19123776. [PMID: 30486484 PMCID: PMC6321362 DOI: 10.3390/ijms19123776] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Acetaminophen (APAP), which is also known as paracetamol or N-acetyl-p-aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation. Current clinical therapy for APAP-induced liver toxicity is the administration of N-acetyl-cysteine (NAC), a sulphydryl compound an approved drug which acts by replenishing cellular glutathione (GSH) stores in the liver. Over the past five decades, several studies indicate that the safety and efficacy of herbal extracts or plant derived compounds that are used either as monotherapy or as an adjunct therapy along with conventional medicines for hepatotoxicity have shown favorable responses. Phytochemicals mitigate necrotic cell death and protect against APAP-induced liver toxicityby restoring cellular antioxidant defense system, limiting oxidative stress and subsequently protecting mitochondrial dysfunction and inflammation. Recent experimental evidences indicat that these phytochemicals also regulate differential gene expression to modulate various cellular pathways that are implicated in cellular protection. Therefore, in this review, we highlight the role of the phytochemicals, which are shown to be efficacious in clinically relevant APAP-induced hepatotoxicity experimental models. In this review, we have made comprehensive attempt to delineate the molecular mechanism and the cellular targets that are modulated by the phytochemicals to mediate the cytoprotective effect against APAP-induced hepatotoxicity. In this review, we have also defined the challenges and scope of phytochemicals to be developed as drugs to target APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sandeep B Subramanya
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, Maharashtra 424 001, India.
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|
9
|
Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 2018; 17:274-283. [PMID: 29753208 PMCID: PMC6006912 DOI: 10.1016/j.redox.2018.04.019] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in many developed countries. Mitochondrial oxidative stress is considered to be the predominant cellular event in APAP-induced liver injury. Accordingly, N-acetyl cysteine, a known scavenger of reactive oxygen species (ROS), is recommended as an effective clinical antidote against APAP-induced acute liver injury (AILI) when it is given at an early phase; however, the narrow therapeutic window limits its use. Hence, the development of novel therapeutic approaches that can offer broadly protective effects against AILI is clearly needed. To this end, it is necessary to better understand the mechanisms of APAP hepatotoxicity. Up to now, in addition to mitochondrial oxidative stress, many other cellular processes, including phase I/phase II metabolism, endoplasmic reticulum stress, autophagy, sterile inflammation, microcirculatory dysfunction, and liver regeneration, have been identified to be involved in the pathogenesis of AILI, providing new targets for developing more effective therapeutic interventions against APAP-induced liver injury. In this review, we summarize intracellular and extracellular events involved in APAP hepatotoxicity, along with emphatic discussions on the possible therapeutic approaches targeting these different cellular events.
Collapse
Affiliation(s)
- Mingzhu Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yazhen Huo
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
10
|
Lai SW, Lin CL, Liao KF. Association between oral corticosteroid use and pyogenic liver abscesses in a case-control study. Biomedicine (Taipei) 2018; 8:5. [PMID: 29480800 PMCID: PMC5825916 DOI: 10.1051/bmdcn/2018080105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIM There are no epidemiological studies focusing on the association between oral corticosteroid use and pyogenic liver abscesses. The aim of the study was to assess whether oral corticosteroid use is associated with increased odds of pyogenic liver abscesses in adults in Taiwan. METHODS This retrospective population-based case-control study was conducted to analyze the database of the Taiwan National Health Insurance Program from 2000 to 2013. Subjects aged 20 to 84 years with their first episode of pyogenic liver abscesses were assigned as the cases (n = 881). Randomly selected subjects without pyogenic liver abscesses aged 20 to 84 years were selected as the controls (n = 3207). A multivariable logistic regression model was used to assess the odds ratio and 95% confidence interval for the correlation of oral corticosteroid use with pyogenic liver abscesses. RESULTS After regulating for confounders, the adjusted odds ratio of pyogenic liver abscesses was 1.40 for subjects currently using oral corticosteroids (95% confidence interval 1.14, 1.70), compared with subjects who never used them. Upon further analysis, the adjusted odds ratio of pyogenic liver abscesses was 1.03 for subjects with current use of oral corticosteroids when increasing dosage for every one mg (95% CI 1.01, 1.06). CONCLUSION Although the findings are not unexpected, they are important because they suggest that current use of oral corticosteroids is significantly associated with increased odds of developing pyogenic liver abscesses in adults in Taiwan, with a dose-dependent effect.
Collapse
Affiliation(s)
- Shih-Wei Lai
-
College of Medicine, China Medical University Taichung 404 Taiwan
-
Department of Family Medicine, China Medical University Hospital Taichung 404 Taiwan
| | - Cheng-Li Lin
-
College of Medicine, China Medical University Taichung 404 Taiwan
-
Management Office for Health Data, China Medical University Hospital Taichung 404 Taiwan
| | - Kuan-Fu Liao
-
College of Medicine, Tzu Chi University Hualien 970 Taiwan
-
Department of Internal Medicine, Taichung Tzu Chi General Hospital Taichung 427 Taiwan
| |
Collapse
|
11
|
Lin HF, Liao KF, Chang CM, Lin CL, Lai SW. Statin use correlates with reduced risk of chronic osteomyelitis: a nationwide case-control study in Taiwan. Curr Med Res Opin 2017; 33:2235-2240. [PMID: 28699801 DOI: 10.1080/03007995.2017.1354831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVE Potential association between prior statin use and chronic osteomyelitis is examined. METHODS A nationwide case-control study was conducted based on data taken from the Taiwan National Health Insurance program. The case group includes 2338 subjects aged 20-84 years newly diagnosed for chronic osteomyelitis from 2000 to 2013; the control group included 2338 randomly selected subjects without chronic osteomyelitis matched for sex, age, and index year. Statin use was respectively defined as "current", "recent" or "past" if the most recent statin prescription was filled <3 months, 3-6 months or ≥6 months prior to the chronic osteomyelitis diagnosis. Relative risk of chronic osteomyelitis associated with statin use was measured by the odds ratio (OR) with 95% confidence interval (CI) using the conditional logistic regression model. RESULTS After controlling for potential confounders, the adjusted ORs of chronic osteomyelitis were 0.57 for subjects with current statin use (95% CI 0.45, 0.72), 0.80 for subjects with recent statin use (95% CI 0.48, 1.33), and 1.00 for subjects with past statin use (95% CI 0.83, 1.20), compared patients with no prior statin use. In further analysis, the adjusted ORs of chronic osteomyelitis were 0.70 for subjects with cumulative statin use <12 months (95% CI 0.47, 1.07), and 0.56 for subjects with cumulative statins use ≥12 months (95% CI 0.41, 0.77), compared with those with no prior statin use. CONCLUSIONS Current statin use is associated with reduced concurrent diagnosis of chronic osteomyelitis, particularly for a cumulative statin use ≥12 months.
Collapse
Affiliation(s)
- Hsien-Feng Lin
- a School of Chinese Medicine , China Medical University , Taichung , Taiwan
- b Department of Family Medicine , China Medical University Hospital , Taichung , Taiwan
| | - Kuan-Fu Liao
- c Department of Internal Medicine , Taichung Tzu Chi General Hospital , Taichung , Taiwan
- d College of Medicine , Tzu Chi University , Hualien , Taiwan
- e Graduate Institute of Integrated Medicine, China Medical University , Taichung , Taiwan
| | - Ching-Mei Chang
- f Department of Nursing , Tungs' Taichung Metro Habor Hospital , Taichung , Taiwan
| | - Cheng-Li Lin
- g College of Medicine , China Medical University , Taichung , Taiwan
- h Management Office for Health Data, China Medical University Hospital , Taichung , Taiwan
| | - Shih-Wei Lai
- b Department of Family Medicine , China Medical University Hospital , Taichung , Taiwan
- g College of Medicine , China Medical University , Taichung , Taiwan
| |
Collapse
|
12
|
Lai SW, Lin CL, Liao KF. Population-based cohort study investigating the association between weight loss and pyogenic liver abscesses. Biomedicine (Taipei) 2017; 7:26. [PMID: 29130451 PMCID: PMC5682981 DOI: 10.1051/bmdcn/2017070426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND AIM Few systematic studies focus on the association between weight loss and pyogenic liver abscesses. The objective of the study was to assess the association between weight loss and pyogenic liver abscesses in adults in Taiwan. METHODS This population-based cohort study utilized the database of the Taiwan National Health Insurance Program. Totally, 8453 subjects aged 20 to 84 years with newly diagnosed weight loss between 2000 and 2012 were assigned as the weight loss group, and 33777 randomly selected subjects without weight loss were assigned as the non-weight loss group. Both the weight loss and the non-weight loss groups were matched according to sex, age, and comorbidities. The incidence of pyogenic liver abscesses at the end of 2013 was measured in both groups. RESULTS A multivariable Cox proportional hazards regression model was done and presented evidence that the adjusted HR of pyogenic liver abscess was 2.47 (95 %CI 1.21, 5.02) for those subjects with weight loss and without comorbidities, as compared with those subjects without weight loss and without comorbidities. Among the weight loss group, 5% developed pyogenic liver abscesses within 3 months. CONCLUSION Weight loss is associated with pyogenic liver abscesses in adults. Yet weight loss might not be an early clinical symptom of undiagnosed pyogenic liver abscesses.
Collapse
Affiliation(s)
- Shih-Wei Lai
-
College of Medicine, China Medical University Taichung 404 Taiwan
-
Department of Family Medicine, China Medical University Hospital Taichung 404 Taiwan
| | - Cheng-Li Lin
-
College of Medicine, China Medical University Taichung 404 Taiwan
-
Management Office for Health Data, China Medical University Hospital Taichung 404 Taiwan
| | - Kuan-Fu Liao
-
College of Medicine, Tzu Chi University Hualien 970 Taiwan
-
Department of Internal Medicine, Taichung Tzu Chi General Hospital Taichung 427 Taiwan
-
Graduate Institute of Integrated Medicine, China Medical University Taichung 404 Taiwan
| |
Collapse
|
13
|
Lin HF, Liao KF, Chang CM, Lin CL, Lai SW. Tamoxifen usage correlates with increased risk of Parkinson's disease in older women with breast cancer: a case-control study in Taiwan. Eur J Clin Pharmacol 2017; 74:99-107. [PMID: 28967041 DOI: 10.1007/s00228-017-2341-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Little is known about the association between tamoxifen usage and risk of Parkinson's disease in women with breast cancer. The present study aimed to evaluate the association between tamoxifen usage and Parkinson's disease in older women with breast cancer in Taiwan. METHODS We conducted a retrospective nationwide case-control study using the database of the Taiwan National Health Insurance Program. In total, 293 female subjects with breast cancer, aged 65 years and above, who were newly diagnosed with Parkinson's disease between 2000 and 2011 were included. Additionally, 1053 female subjects with breast cancer aged 65 years and above without Parkinson's disease were randomly selected as controls. Both cases and controls were matched for age and comorbidities. Ever use of tamoxifen was defined as subjects who had at least a prescription for tamoxifen before the index date, whereas never use of tamoxifen was defined as those who never had a prescription for tamoxifen before the index date. We used the unconditional logistic regression model to calculate the odds ratio (OR) and 95% confidence interval (CI) for the association between tamoxifen usage and risk of Parkinson's disease. RESULTS After adjusting for confounding variables, the adjusted OR of Parkinson's disease was 3.32 for subjects with ever use of tamoxifen (95% CI, 2.50-4.43), compared with nonusers. Further analysis showed that the adjusted ORs of Parkinson's disease were 3.21 (95% CI, 2.29-4.49), 3.95 (95% CI, 2.77-5.64), and 11.4 (95% CI, 2.63-49.7) for subjects with < 2, 2-6, and ≥ 6 years of cumulative tamoxifen usage, respectively, when compared with nonusers. CONCLUSIONS Tamoxifen usage was associated with a 3.32-fold increase in the likelihood of having Parkinson's disease among older women with breast cancer in Taiwan.
Collapse
Affiliation(s)
- Hsien-Feng Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Family Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan
| | - Kuan-Fu Liao
- Department of Internal Medicine, Taichung Tzu Chi General Hospital, Taichung, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Mei Chang
- Department of Nursing, Tungs' Taichung Metro Habor Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Lai
- Department of Family Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan. .,College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Correlation between proton pump inhibitors and risk of pyogenic liver abscess. Eur J Clin Pharmacol 2017; 73:1019-1025. [PMID: 28434021 DOI: 10.1007/s00228-017-2256-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVE Little is known about the relationship between proton pump inhibitors use and pyogenic liver abscess. The objective of this study was to evaluate the correlation between proton pump inhibitors use and pyogenic liver abscess in Taiwan. METHODS This was a population-based case-control study using the database of the Taiwan National Health Insurance Program since 2000 to 2011. Subjects aged 20 to 84 who experienced their first episode of pyogenic liver abscess were enrolled as the case group (n = 1372). Randomly selected subjects aged 20 to 84 without pyogenic liver abscess were enrolled as the control group (n = 1372). Current use, early use, and late use of proton pump inhibitors was defined as subjects whose last one tablet for proton pump inhibitors was noted ≤30 days, between 31 to 90 days and ≥91 days before the date of admission for pyogenic liver abscess. Subjects who never received a prescription for proton pump inhibitors were defined as nonusers of proton pump inhibitors. A multivariable unconditional logistic regression model was used to measure the odds ratio and 95% confidence interval to evaluate the correlation between proton pump inhibitors use and pyogenic liver abscess. RESULTS After adjusting for confounders, the adjusted odds ratio of pyogenic liver abscess was 7.59 for subjects with current use of proton pump inhibitors (95% confidence interval 5.05, 11.4), when compared with nonusers. CONCLUSIONS Current use of proton pump inhibitors is associated with a greater risk of pyogenic liver abscess.
Collapse
|
15
|
Horng CT, Liu ZH, Huang YT, Lee HJ, Wang CJ. Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals. J Food Drug Anal 2016; 25:862-871. [PMID: 28987363 PMCID: PMC9328886 DOI: 10.1016/j.jfda.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
Acetaminophen (APAP) induced inflammation and oxidative stress can cause cell death to induce liver damage. The antioxidative and anti-inflammatory effect of Mulberry (Morus australis) leaf extract (MLE) was shown in previous studies. In this study, we investigated the modulation of MLE on APAP induced inflammation and oxidative stress in rat liver injury or liver cancer cell (HepG2). Wistar rat was fed orally with MLE (0.5% or 1.0 %) for 1 week, and then, 900 mg/kg of APAP was injected intraperitoneally (i.p.). Pretreatment of MLE decreased obvious foci of inflammatory cell infiltration in liver. It also reduced the expression of inflammatory parameters including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in liver. Treating with MLE increased the antioxidative enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase. Giving APAP to HepG2 hepatocyte was conducted to elucidate the mechanism of MLE or its functional components. The result showed that APAP upregulated hepatic protein expression of (myeloid differentiation factor 88) MyD88, nuclear factor kappa B (NF-kB), inhibitor of kappa B (IkB), c-Jun N-terminal kinases (JNK), and receptor interacting proteins (RIP1 and RIP3). Pretreatment of MLE, gallic acid (GA), gallocatechin gallate (GCG), or protocatechuic acid (PCA) suppressed the indicated protein expression. These findings confirmed that MLE has the potential to protect liver from APAP-induced inflammation, and the protecting mechanism might involve decreasing oxidative stress and regulating the innate immunity involving MyD88.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Medical Education Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Zhi-Hong Liu
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Huang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan
| | - Huei-Jane Lee
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung, Taiwan; Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|