1
|
Martínez-Carrillo BE, De Sales-Millán A, Aguirre-Garrido JF, Valdés-Ramos R, de María Cruz-Estrada F, Castillo-Cardiel JA. Changes in the Composition and Diversity of the Intestinal Microbiota Associated with Carbohydrate Consumption in Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2024; 25:12359. [PMID: 39596424 PMCID: PMC11594722 DOI: 10.3390/ijms252212359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease, influenced by dietary and environmental factors that can modify the intestinal microbiota. The aim of this study was to evaluate changes in the composition and diversity of the intestinal microbiota associated with carbohydrate (CHO) consumption in T2DM patients. Forty patients participated, with and without T2DM. Fecal samples were collected for the characterization of microbial diversity from the massive sequencing of the 16S rRNA gene. Carbohydrate consumption was quantified using the Frequency Consumption Foods questionnaire (FCF), the groups were categorized according to Body Mass Index (BMI) and BMI + CHO consumption. The group without T2DM showed normal biochemical and anthropometric parameters, although they had a high carbohydrate consumption compared to the group with T2DM. At the phylum level, there were differences in relative abundance; the control overweight group (CL-OW > CHO) and T2DM-Normal Weight > CHO patients had increased Bacteroides and decreased Firmicutes. In contrast, the CL-OW > CHO and T2DM-OW < CHO patients, showed reduced Bacteroidetes and an elevated amount of Firmicutes. At the genus level, the differences were in the relative abundance of Roseburia, Clostridium_IV, Prevotella, and Sporobacter, associated with the consumption of carbohydrates. The groups that consumed high amounts of carbohydrates, regardless of whether they had diabetes mellitus or were overweight, had a significantly reduced proportion of Faecalibacterium, an altered proportion of Bacteroides. The high consumption of carbohydrates showed considerable modifications in the composition and diversity of the bacterial communities.
Collapse
Affiliation(s)
- Beatriz Elina Martínez-Carrillo
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - Amapola De Sales-Millán
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | | | - Roxana Valdés-Ramos
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - Flor de María Cruz-Estrada
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - José Arturo Castillo-Cardiel
- Department of Research, Continuing Education and Distance Learning, Universidad Autónoma de Durango, Durango 34209, Mexico;
| |
Collapse
|
2
|
Whelan K, Bancil AS, Lindsay JO, Chassaing B. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:406-427. [PMID: 38388570 DOI: 10.1038/s41575-024-00893-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Ultra-processed foods (UPFs) and food additives have become ubiquitous components of the modern human diet. There is increasing evidence of an association between diets rich in UPFs and gut disease, including inflammatory bowel disease, colorectal cancer and irritable bowel syndrome. Food additives are added to many UPFs and have themselves been shown to affect gut health. For example, evidence shows that some emulsifiers, sweeteners, colours, and microparticles and nanoparticles have effects on a range of outcomes, including the gut microbiome, intestinal permeability and intestinal inflammation. Broadly speaking, evidence for the effect of UPFs on gut disease comes from observational epidemiological studies, whereas, by contrast, evidence for the effect of food additives comes largely from preclinical studies conducted in vitro or in animal models. Fewer studies have investigated the effect of UPFs or food additives on gut health and disease in human intervention studies. Hence, the aim of this article is to critically review the evidence for the effects of UPF and food additives on gut health and disease and to discuss the clinical application of these findings.
Collapse
Affiliation(s)
- Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK.
| | - Aaron S Bancil
- Department of Nutritional Sciences, King's College London, London, UK
| | - James O Lindsay
- Blizard Institute, Queen Mary University of London, Barts and the London School of Medicine, London, UK
| | | |
Collapse
|
3
|
Gonza I, Goya-Jorge E, Douny C, Boutaleb S, Taminiau B, Daube G, Scippo ML, Louis E, Delcenserie V. Food additives impair gut microbiota from healthy individuals and IBD patients in a colonic in vitro fermentation model. Food Res Int 2024; 182:114157. [PMID: 38519184 DOI: 10.1016/j.foodres.2024.114157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Intestinal fibrosis is a long-term complication of inflammatory bowel diseases (IBD). Changes in microbial populations have been linked with the onset of fibrosis and some food additives are known to promote intestinal inflammation facilitating fibrosis induction. In this study, we investigated how polysorbate 80, sucralose, titanium dioxide, sodium nitrite and maltodextrin affect the gut microbiota and the metabolic activity in healthy and IBD donors (patients in remission and with a flare of IBD). The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) with a static (batch) configuration was used to evaluate the effects of food additives on the human intestinal microbiota. Polysorbate 80 and sucralose decreased butyrate-producing bacteria such as Roseburia and Faecalibacterium prausnitzii. Both compounds, also increased bacterial species positively correlated with intestinal inflammation and fibrosis (i.e.: Enterococcus, Veillonella and Mucispirillum schaedleri), especially in donors in remission of IBD. Additionally, polysorbate 80 induced a lower activity of the aryl hydrocarbon receptor (AhR) in the three groups of donors, which can affect the intestinal homeostasis. Maltodextrin, despite increasing short-chain fatty acids production, promoted the growth of Ruminococcus genus, correlated with higher risk of fibrosis, and decreased Oscillospira which is negatively associated with fibrosis. Our findings unveil crucial insights into the potential deleterious effects of polysorbate 80, sucralose and maltodextrin on human gut microbiota in healthy and, to a greater extent, in IBD patients.
Collapse
Affiliation(s)
- Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| | - Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| | - Samiha Boutaleb
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| | - Edouard Louis
- Hepato - Gastroenterology and Digestive Oncology Department, CHU of Liège, Liège, Belgium.
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| |
Collapse
|
4
|
Márquez Álvarez CDM, Gómez-Crisóstomo NP, De la Cruz-Hernández EN, El-Hafidi M, Pedraza-Chaverri J, Medina-Campos ON, Martínez-Abundis E. Chronic consumption of imbalance diets high in sucrose or fat induces abdominal obesity with different pattern of metabolic disturbances and lost in Langerhans cells population. Life Sci 2024; 336:122305. [PMID: 38030061 DOI: 10.1016/j.lfs.2023.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
AIM Obesity is a worldwide health issue, associated with development of type 2 Diabetes Mellitus. The aim of this study is to analyze the effect of consumption of two hypercaloric diets on metabolic disturbance and beta cells damage. MAIN METHODS Male Wistar rats were subjected to twelve months consumption of three diets: a Control balanced diet (CTD, carbohydrates 58 %, proteins 29 %, lipids 13 %) and two hypercaloric diets, high in sucrose (HSD, carbohydrates 68 %, proteins 22 %, lipids 10 %) or high in fat (HFD, carbohydrates 31 %, proteins 14 %, lipids 55 %). Serum levels of glucose, triglycerides and free fatty acids were measured after zoometric parameters determination. Antioxidant enzymes activity and oxidative stress-marker were measured in pancreas tissue among histological analysis of Langerhans islets. KEY FINDINGS Although diets were hypercaloric, the amount of food consumed by rats decreased, resulting in an equal caloric consumption. The HSD induced hypertriglyceridemia and hyperglycemia with higher levels in free fatty acids (FFA, lipotoxicity); whereas HFD did not increased neither the triglycerides nor FFA, nevertheless the loss of islets' cell was larger. Both diets induced obesity with hyperglycemia and significant reduction in Langerhans islets size. SIGNIFICANCE Our results demonstrate that consumption of HSD induces more significant metabolic disturbances that HFD, although both generated pancreas damage; as well hypercaloric diet consumption is not indispensable to becoming obese; the chronic consumption of unbalanced diets (rich in carbohydrates or lipids) may lead to abdominal obesity with metabolic and functional disturbances, although the total amount of calories are similar.
Collapse
Affiliation(s)
- Corazón de María Márquez Álvarez
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur, Cuarta Sección, C.P. 86650 Comalcalco, Tabasco, Mexico
| | - Nancy P Gómez-Crisóstomo
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur, Cuarta Sección, C.P. 86650 Comalcalco, Tabasco, Mexico
| | - Erick N De la Cruz-Hernández
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur, Cuarta Sección, C.P. 86650 Comalcalco, Tabasco, Mexico
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, 14080 CDMX, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Eduardo Martínez-Abundis
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur, Cuarta Sección, C.P. 86650 Comalcalco, Tabasco, Mexico.
| |
Collapse
|
5
|
Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 2022; 10:microorganisms10010167. [PMID: 35056616 PMCID: PMC8780106 DOI: 10.3390/microorganisms10010167] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Diet is a key environmental factor in inflammatory bowel disease (IBD) and, at the same time, represents one of the most promising therapies for IBD. Our daily diet often contains food additives present in numerous processed foods and even in dietary supplements. Recently, researchers and national authorities have been paying much attention to their toxicity and effects on gut microbiota and health. This review aims to gather the latest data focusing on the potential role of food additives in the pathogenesis of IBDs through gut microbiota modulation. Some artificial emulsifiers and sweeteners can induce the dysbiosis associated with an alteration of the intestinal barrier, an activation of chronic inflammation, and abnormal immune response accelerating the onset of IBD. Even if most of these results are retrieved from in vivo and in vitro studies, many artificial food additives can represent a potential hidden driver of gut chronic inflammation through gut microbiota alterations, especially in a population with IBD predisposition. In this context, pending the confirmation of these results by large human studies, it would be advisable that IBD patients avoid the consumption of processed food containing artificial food additives and follow a personalized nutritional therapy prescribed by a clinical nutritionist.
Collapse
|