1
|
Berry JL, Pike S, Shah R, Reid MW, Peng CC, Wang Y, Yellapantula V, Biegel J, Kuhn P, Hicks J, Xu L. Aqueous Humor Liquid Biopsy as a Companion Diagnostic for Retinoblastoma: Implications for Diagnosis, Prognosis, and Therapeutic Options: Five Years of Progress. Am J Ophthalmol 2024; 263:188-205. [PMID: 38040321 PMCID: PMC11148850 DOI: 10.1016/j.ajo.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE To define the prospective use of the aqueous humor (AH) as a molecular diagnostic and prognostic liquid biopsy for retinoblastoma (RB). METHODS This is a prospective, observational study wherein an AH liquid biopsy is performed at diagnosis and longitudinally through therapy for patients with RB. Tumor-derived cell-free DNA is isolated and sequenced for single nucleotide variant analysis of the RB1 gene and detection of somatic copy number alterations (SCNAs). The SCNAs are used to determine tumor fraction (TFx). Specific SCNAs, including 6p gain and focal MycN gain, along with TFx, are prospectively correlated with intraocular tumor relapse, response to therapy, and globe salvage. RESULTS A total of 26 eyes of 21 patients were included with AH taken at diagnosis. Successful ocular salvage was achieved in 19 of 26 (73.1%) eyes. Mutational analysis of 26 AH samples identified 23 pathogenic RB1 variants and 2 focal RB1 deletions; variant allele fraction ranged from 30.5% to 100% (median 93.2%). At diagnosis, SCNAs were detectable in 17 of 26 (65.4%) AH samples. Eyes with 6p gain and/or focal MycN gain had significantly greater odds of poor therapeutic outcomes (odds ratio = 6.75, 95% CI = 1.06-42.84, P = .04). Higher AH TFx was observed in eyes with vitreal progression (TFx = 46.0% ± 40.4) than regression (22.0 ± 29.1; difference: -24.0; P = .049). CONCLUSIONS Establishing an AH liquid biopsy for RB is aimed at addressing (1) our inability to biopsy tumor tissue and (2) the lack of molecular biomarkers for intraocular prognosis. Current management decisions for RB are made based solely on clinical features without objective molecular testing. This prognostic study shows great promise for using AH as a companion diagnostic. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Jesse L Berry
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.); the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.); Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.).
| | - Sarah Pike
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Rachana Shah
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles (R.S.)
| | - Mark W Reid
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Chen-Ching Peng
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Yingfei Wang
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles (R.S.); Department of Quantitative and Computational Biology, University of Southern California (Y.W.)
| | - Venkata Yellapantula
- the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.); Center for Personalized Medicine, Children's Hospital Los Angeles (V.Y., J.B.)
| | - Jaclyn Biegel
- the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.)
| | - Peter Kuhn
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.); USC Michelson Center for Convergent Biosciences and Department of Biological Sciences (P.K., J.H.), Los Angeles, California, USA
| | - James Hicks
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.); USC Michelson Center for Convergent Biosciences and Department of Biological Sciences (P.K., J.H.), Los Angeles, California, USA
| | - Liya Xu
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.); the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.)
| |
Collapse
|
2
|
Ma X, Li X, Sun Q, Luan F, Feng J. Molecular Biological Research on the Pathogenic Mechanism of Retinoblastoma. Curr Issues Mol Biol 2024; 46:5307-5321. [PMID: 38920989 PMCID: PMC11202574 DOI: 10.3390/cimb46060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Retinoblastoma (RB) is the most common intraocular malignant tumor in children, primarily attributed to the bi-allelic loss of the RB1 gene in the developing retina. Despite significant progress in understanding the basic pathogenesis of RB, comprehensively unravelling the intricate network of genetics and epigenetics underlying RB tumorigenesis remains a major challenge. Conventional clinical treatment options are limited, and despite the continuous identification of genetic loci associated with cancer pathogenesis, the development of targeted therapies lags behind. This review focuses on the reported genomic and epigenomic alterations in retinoblastoma, summarizing potential therapeutic targets for RB and providing insights for research into targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.M.); (X.L.); (Q.S.)
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.M.); (X.L.); (Q.S.)
| |
Collapse
|
3
|
Liu Y, Xin Z, Zhang K, Jin X, Wang D. LncRNA NEAT1 promotes angiogenesis of retinoblastoma cells through regulation of the miR-106a/HIF-1α axis. Heliyon 2024; 10:e27653. [PMID: 38524558 PMCID: PMC10958356 DOI: 10.1016/j.heliyon.2024.e27653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Objective To explore the role and mechanisms of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in angiogenesis of retinoblastoma (RB) cells. Methods This study investigated the roles of NEAT1 in RB progression. The RNA expression levels of NEAT1, miR-106a, and hypoxia-inducible factor-1alpha (HIF-1α) examined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) were compared between RB cells and normal retinal pigment epithelial (RPE) cells. The binding sites between NEAT1 and miR-106a, and between miR-106a and HIF-1α were predicted by the TargetScan database and verified using the dual-luciferase reporter assay. By transfection of overexpression plasmid or shRNA of NEAT1, and/or treatment of miR-106a inhibitor or mimics, proliferation, invasion, and angiogenesis of RB cells (measured by the MTT assay, the Transwell assay, and the tube formation assay, respectively) were compared between groups. Group comparisons were analyzed using one-way analysis of variance (ANOVA), and Tukey's post-hoc test was employed for further statistical assessment. P-value less than 0.05 was considered statistically significant. Results The RNA expression levels of NEAT1 and HIF-1α were upregulated in RB cells, whereas the expression level of miR-106a was downregulated compared with RPE cells. NEAT1 overexpression or miR-106a knockdown advanced proliferation, invasion, and tube formation of RB cells. As a target of NEAT1, miR-106a could sponge HIF-1α to downregulate HIF-1α expression level. Functional analyses indicated that miR-106a knockdown reversed the inhibitory effects of NEAT1 silencing on the proliferation, invasion, and tube formation of RB cells. Furthermore, miR-106a overexpression suppressed RB cell angiogenesis by downregulating HIF-1α expression level. Conclusion NEAT1 promoted proliferation, invasion, and angiogenesis of RB cells through upregulation of HIF-1α expression level by sponging miR-106a, demonstrating that NEAT1 may be a novel target for RB treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zhiyuan Xin
- Department of Ophthalmology, Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100144, China
| | - Kun Zhang
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Xin Jin
- Department of Ophthalmology, Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100144, China
| | - Dajiang Wang
- Department of Ophthalmology, Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100144, China
| |
Collapse
|
4
|
Muniyandi A, Jensen NR, Devanathan N, Dimaras H, Corson TW. The Potential of Aqueous Humor Sampling in Diagnosis, Prognosis, and Treatment of Retinoblastoma. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 38180770 PMCID: PMC10774694 DOI: 10.1167/iovs.65.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Retinoblastoma (RB) is a rare malignant tumor that arises in the developing retina in one or both eyes of children. Pathogenic variants of the RB1 tumor suppressor gene drive the majority of germline and sporadic RB tumors. Considering the risk of tumor spread, the biopsy of RB tumor tissue is contraindicated. Advancement of chemotherapy has led to preservation of more eye globes. However, this has reduced access to tumor material from enucleation specimens. Recently, liquid biopsy of aqueous humor (AH) has advanced the RB tumor- or eye-specific genetic analysis. In particular, nucleic acid analysis of AH demonstrates the genomic copy number profiles and RB1 pathogenic variants akin to that of enucleated RB eye tissue. This advance reduces the previous limitation that genetic assessment of the primary tumor could be done only after enucleation of the eye. Additionally, nucleic acid evaluation of AH allows the exploration of the genomic landscape of RB tumors at diagnosis and during and after treatment. This review explores how AH sampling and AH nucleic acid analysis in RB patients assist in diagnosis, prognosis, and comprehending the pathophysiology of RB, which will ultimately benefit individualized treatment decisions to carefully manage this ocular cancer in children.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Nathan R. Jensen
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Ophthalmology, University of Utah, Salt Lake City, Utah, United States
| | - Nirupama Devanathan
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Helen Dimaras
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario
- Division of Clinical Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Timothy W. Corson
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Retinoblastoma: From genes to patient care. Eur J Med Genet 2022; 66:104674. [PMID: 36470558 DOI: 10.1016/j.ejmg.2022.104674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Retinoblastoma is the most common paediatric neoplasm of the retina, and one of the earliest model of cancer genetics since the identification of the master tumour suppressor gene RB1. Tumorigenesis has been shown to be driven by pathogenic variants of the RB1 locus, but also genomic and epigenomic alterations outside the locus. The increasing knowledge on this "mutational landscape" is used in current practice for precise genetic testing and counselling. Novel methods provide access to pre-therapeutic tumour DNA, by isolating cell-free DNA from aqueous humour or plasma. This is expected to facilitate assessment of the constitutional status of RB1, to provide an early risk stratification using molecular prognostic markers, to follow the response to the treatment in longitudinal studies, and to predict the response to targeted therapies. The aim of this review is to show how molecular genetics of retinoblastoma drives diagnosis, treatment, monitoring of the disease and surveillance of the patients and relatives. We first recap the current knowledge on retinoblastoma genetics and its use in every-day practice. We then focus on retinoblastoma subgrouping at the era of molecular biology, and the expected input of cell-free DNA in the field.
Collapse
|
7
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
8
|
Shi K, Zhu X, Wu J, Chen Y, Zhang J, Sun X. Centromere protein E as a novel biomarker and potential therapeutic target for retinoblastoma. Bioengineered 2021; 12:5950-5970. [PMID: 34482803 PMCID: PMC8806431 DOI: 10.1080/21655979.2021.1972080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Retinoblastoma is the most common intraocular malignancy during childhood. Currently, there is no effective treatment for metastatic retinoblastoma. We investigated potential biomarkers of retinoblastoma by utilizing three datasets from a public database. Functional enrichment analysis, including gene ontology, Kyoto encyclopedia of genes and genomes, gene set enrichment analysis and variation analysis, suggested that differentially expressed genes in retinoblastoma were enriched in accelerated cell cycle events. Protein-protein interaction analysis constructed a network consisting of six hub genes, including benzimidazoles 1 (BUB1), cyclin dependent kinase 1 (CDK1), centromere protein E (CENPE), kinesin family member 20A (KIF20A), PDZ binding kinase (PBK), and targeting protein for xklp2 (TPX2). Drug sensitivity analysis showed that nelarabine was positively correlated with five hub genes. All six genes were expressed differently in six immune subtypes and were positively correlated with stemness indices in most human cancer types. Since CENPE is the least known hub gene in retinoblastoma, we further analyzed the potential non-coding RNAs and transcription factors that regulate CENPE and built interaction networks of competing endogenous RNA and transcription factors. Immune cell infiltration, especially by plasma and B cells, was enhanced in samples with high CENPE expression. Pan-cancer analysis illustrated that CENPE was highly expressed in a wide range of human tumors. In vitro validation revealed that CENPE was significantly upregulated at both the mRNA and protein levels in retinoblastoma cells. In conclusion, CENPE, along with other hub genes, could serve as a potential biomarker and intervention target for retinoblastoma.
Collapse
Affiliation(s)
- Ke Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xinyue Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jiali Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|