1
|
Susanti WI, Krashevska V, Widyastuti R, Stiegler C, Gunawan D, Scheu S, Potapov AM. Seasonal fluctuations of litter and soil Collembola and their drivers in rainforest and plantation systems. PeerJ 2024; 12:e17125. [PMID: 38577414 PMCID: PMC10993886 DOI: 10.7717/peerj.17125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia). Across land-use systems, the density of Collembola in the litter was at a maximum at the beginning of the wet season, whereas in soil it generally varied little. The community composition of Collembola changed with season and the differences between land-use systems were most pronounced at the beginning of the dry season. Water content, pH, fungal and bacterial biomarkers, C/N ratio and root biomass were identified as factors related to seasonal variations in species composition of Collembola across different land-use systems. We conclude that (1) conversion of rainforest into plantation systems aggravates detrimental effects of low moisture during the dry season on soil invertebrate communities; (2) Collembola communities are driven by common environmental factors across land-use systems, with water content, pH and food availability being most important; (3) Collembola in litter are more sensitive to climatic variations than those in soil. Overall, the results document the sensitivity of tropical soil invertebrate communities to seasonal climatic variations, which intensifies the effects of the conversion of rainforest into plantation systems on soil biodiversity.
Collapse
Affiliation(s)
- Winda Ika Susanti
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany
| | - Valentyna Krashevska
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany
| | - Rahayu Widyastuti
- Department of Soil Sciences and Land Resources, Bogor Institute of Agriculture, Bogor, Indonesia
| | | | - Dodo Gunawan
- Center for Climate Change Information, Agency for Meteorology Climatology and Geophysics, Jakarta, Indonesia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, Göttingen, Germany
| | - Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Institute of Biology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Wildermuth B, Dönges C, Matevski D, Penanhoat A, Seifert CL, Seidel D, Scheu S, Schuldt A. Tree species identity, canopy structure and prey availability differentially affect canopy spider diversity and trophic composition. Oecologia 2023; 203:37-51. [PMID: 37709958 PMCID: PMC10615988 DOI: 10.1007/s00442-023-05447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy properties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance and diversity, but native beech and beech-conifer mixtures had the highest diversity at landscape scale. Spider community composition differed between monospecific stands, with broadleaf-conifer mixtures mitigating these differences. Irrespective of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availability. Broadleaf-conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. This indicates that intermediate heterogeneity might result in high stability of ecological communities.
Collapse
Affiliation(s)
- Benjamin Wildermuth
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany.
| | - Clemens Dönges
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Dragan Matevski
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Animal Ecology, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Alice Penanhoat
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Carlo L Seifert
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Dominik Seidel
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Stefan Scheu
- Animal Ecology Group, JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Andreas Schuldt
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Mawan A, Hartke TR, Deharveng L, Zhang F, Buchori D, Scheu S, Drescher J. Response of arboreal Collembola communities to the conversion of lowland rainforest into rubber and oil palm plantations. BMC Ecol Evol 2022; 22:144. [DOI: 10.1186/s12862-022-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
In the last decades, Southeast Asia has experienced massive conversion of rainforest into rubber and oil palm monoculture plantations. The effects of this land-use change on canopy arthropods are still largely unknown. Arboreal Collembola are among the most abundant canopy arthropods in tropical forests, potentially forming a major component of the canopy food web by contributing to the decomposition of arboreal litter and being an important prey for canopy arthropod predators. We investigated abundance, richness, and community composition of, as well as the influence of a series of environmental factors on, canopy Collembola communities in four land-use systems in Jambi Province, Sumatra, Indonesia: (1) lowland rainforest, (2) jungle rubber (rubber agroforest), and monoculture plantations of (3) rubber and (4) oil palm.
Results
Using canopy fogging in 32 research plots in both the dry and rainy seasons in 2013, we collected 77,104 specimens belonging to 68 (morpho) species. Generally, Collembola communities were dominated by few species including two species of the genus Salina (Paronellidae; 34% of total individuals) and two species of Lepidocyrtinae (Entomobryidae; 20%). The abundance of Collembola in lowland rainforest (53.4 ± 30.7 ind. m−2) was more than five times higher than in rubber plantations, and more than ten times higher than in oil palm plantations; abundances in jungle rubber were intermediate. Collembola species richness was highest in rainforest (18.06 ± 3.60 species) and jungle rubber (16.88 ± 2.33 species), more than twice that in rubber or oil palm. Collembola community composition was similar in rainforest and jungle rubber, but different from monoculture plantations which had similar Collembola community composition to each other. The environmental factors governing community composition differed between the land-use systems and varied between seasons.
Conclusions
Overall, this is the first in-depth report on the structure of arboreal Collembola communities in lowland rainforest and agricultural replacement systems in Southeast Asia. The results highlight the potentially major consequences of land-use change for the functioning of arboreal arthropod food webs.
Collapse
|
4
|
Yu G, Li Z, Zhao Y, Liu J, Peng Y. An Ant-Mimicking Jumping Spider Achieves Higher Predation Probability with Lower Success Rate When Exposed to Ethanol. INSECTS 2022; 13:1009. [PMID: 36354833 PMCID: PMC9694002 DOI: 10.3390/insects13111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Ethanol (ETOH) affects many animals' behaviour in nature; for example, honeybees become more aggressive after consuming ETOH. In previous studies, scientists have used honeybees and fruit flies as models to determine if they showed a strong preference to ETOH. Moreover, ETOH could affect their locomotion and learning abilities. However, whether and how ETOH affects spiders is unclear as of yet. In this study, we used empirical experiments to determine whether spiders showed preference for ETOH, as well as the potential benefits of spiders choosing ETOH, by using a common spider, Myrmarachne gisti, which has a high probability of contacting ETOH in their habitat. In our experiment, M. gisti showed a significant preference for ETOH. Although the success rate of the first attack was significantly decreased when M. gisti were exposed to ETOH, they had a significantly higher predation probability, since fruit flies also showed a significant preference for ETOH. Our findings suggested that ETOH could affect the prey capture efficiency of M. gisti, and indicated that spiders might evolve to use ETOH to locate a potential hunting place. Taken together, our findings suggested that M. gisti evolved to adapt to ETOH and could use it as a signal of the presence of food resources.
Collapse
Affiliation(s)
- Guocheng Yu
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zichang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
5
|
Ramos D, Hartke TR, Buchori D, Dupérré N, Hidayat P, Lia M, Harms D, Scheu S, Drescher J. Rainforest conversion to rubber and oil palm reduces abundance, biomass and diversity of canopy spiders. PeerJ 2022; 10:e13898. [PMID: 35990898 PMCID: PMC9390325 DOI: 10.7717/peerj.13898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Rainforest canopies, home to one of the most complex and diverse terrestrial arthropod communities, are threatened by conversion of rainforest into agricultural production systems. However, little is known about how predatory arthropod communities respond to such conversion. To address this, we compared canopy spider (Araneae) communities from lowland rainforest with those from three agricultural systems in Jambi Province, Sumatra, Indonesia, i.e., jungle rubber (rubber agroforest) and monoculture plantations of rubber and oil palm. Using canopy fogging, we collected 10,676 spider specimens belonging to 36 families and 445 morphospecies. The four most abundant families (Salticidae N = 2,043, Oonopidae N = 1,878, Theridiidae N = 1,533 and Clubionidae N = 1,188) together comprised 62.2% of total individuals, while the four most speciose families, Salticidae (S = 87), Theridiidae (S = 83), Araneidae (S = 48) and Thomisidae (S = 39), contained 57.8% of all morphospecies identified. In lowland rainforest, average abundance, biomass and species richness of canopy spiders was at least twice as high as in rubber or oil palm plantations, with jungle rubber showing similar abundances as rainforest, and intermediate biomass and richness. Community composition of spiders was similar in rainforest and jungle rubber, but differed from rubber and oil palm, which also differed from each other. Canonical Correspondence Analysis showed that canopy openness, aboveground tree biomass and tree density together explained 18.2% of the variation in spider communities at family level. On a morphospecies level, vascular plant species richness and tree density significantly affected the community composition but explained only 6.8% of the variance. While abundance, biomass and diversity of spiders declined strongly with the conversion of rainforest into monoculture plantations of rubber and oil palm, we also found that a large proportion of the rainforest spider community can thrive in extensive agroforestry systems such as jungle rubber. Despite being very different from rainforest, the canopy spider communities in rubber and oil palm plantations may still play a vital role in the biological control of canopy herbivore species, thus contributing important ecosystem services. The components of tree and palm canopy structure identified as major determinants of canopy spider communities may aid in decision-making processes toward establishing cash-crop plantation management systems which foster herbivore control by spiders.
Collapse
Affiliation(s)
- Daniel Ramos
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Tamara R. Hartke
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Damayanti Buchori
- Center for Transdisciplinary and Sustainability Sciences, IPB University, Bogor, West Java, Indonesia
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Nadine Dupérré
- Center for Taxonomy and Morphology, Zoological Museum Hamburg, Leibnitz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Purnama Hidayat
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Mayanda Lia
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Danilo Harms
- Center for Taxonomy and Morphology, Zoological Museum Hamburg, Leibnitz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Stefan Scheu
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
- Center for Biodiversity and Sustainable Land Use, Georg-August Universität Göttingen, Göttingen, Germany
| | - Jochen Drescher
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| |
Collapse
|
6
|
Pashkevich MD, Spear DM, Advento AD, Caliman JP, Foster WA, Luke SH, Naim M, Ps S, Snaddon JL, Turner EC. Spiders in canopy and ground microhabitats are robust to changes in understory vegetation management practices in mature oil palm plantations (Riau, Indonesia). Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhou Z, Krashevska V, Widyastuti R, Scheu S, Potapov A. Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel. eLife 2022; 11:75428. [PMID: 35357306 PMCID: PMC9033302 DOI: 10.7554/elife.75428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Agricultural expansion is among the main threats to biodiversity and functions of tropical ecosystems. It has been shown that conversion of rainforest into plantations erodes biodiversity, but further consequences for food-web structure and energetics of belowground communities remains little explored. We used a unique combination of stable isotope analysis and food-web energetics to analyze in a comprehensive way consequences of the conversion of rainforest into oil palm and rubber plantations on the structure of and channeling of energy through soil animal food webs in Sumatra, Indonesia. Across the animal groups studied, most of the taxa had lower litter-calibrated Δ13C values in plantations than in rainforests, suggesting that they switched to freshly-fixed plant carbon ('fast' energy channeling) in plantations from the detrital C pathway ('slow' energy channeling) in rainforests. These shifts led to changes in isotopic divergence, dispersion, evenness, and uniqueness. However, earthworms as major detritivores stayed unchanged in their trophic niche and monopolized the detrital pathway in plantations, resulting in similar energetic metrics across land-use systems. Functional diversity metrics of soil food webs were associated with reduced amount of litter, tree density, and species richness in plantations, providing guidelines on how to improve the complexity of the structure of and channeling of energy through soil food webs. Our results highlight the strong restructuring of soil food webs with the conversion of rainforest into plantations threatening soil functioning and ecosystem stability in the long term.
Collapse
Affiliation(s)
- Zheng Zhou
- JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Valentyna Krashevska
- JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Rahayu Widyastuti
- Department of Soil Sciences and Land Resources, Institut Pertanian Bogor, Bogor, Indonesia
| | - Stefan Scheu
- JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Anton Potapov
- JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Kreider JJ, Chen T, Hartke TR, Buchori D, Hidayat P, Nazarreta R, Scheu S, Drescher J. Rainforest conversion to monocultures favors generalist ants with large colonies. Ecosphere 2021. [DOI: 10.1002/ecs2.3717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jan J. Kreider
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| | - Ting‐Wen Chen
- Institute of Soil Biology Biology Centre of the Czech Academy of Sciences Na Sádkách 7 Ceske Budejovice 37005 Czech Republic
| | - Tamara R. Hartke
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| | - Damayanti Buchori
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
- Center for Transdisciplinary and Sustainability Sciences IPB University Jl. Raya Pajajartan Bogor 16153 Indonesia
| | - Purnama Hidayat
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
| | - Rizky Nazarreta
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
| | - Stefan Scheu
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 Göttingen 37077 Germany
| | - Jochen Drescher
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| |
Collapse
|