1
|
Zhu Y, Bai S, Li N, Wang JH, Wang JK, Wang Q, Wang K, Zhang T. Expression and characterization of a novel microbial GH9 glucanase, IDSGLUC9-4, isolated from sheep rumen. Anim Biosci 2024; 37:1581-1594. [PMID: 38810985 PMCID: PMC11366526 DOI: 10.5713/ab.24.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE This study aimed to identify and characterize a novel endo-β-glucanase, IDSGLUC9-4, from the rumen metatranscriptome of Hu sheep. METHODS A novel endo-β-glucanase, IDSGLUC9-4, was heterologously expressed in Escherichia coli and biochemically characterized. The optimal temperature and pH of recombinant IDSGLUC9-4 were determined. Subsequently, substrate specificity of the enzyme was assessed using mixed-linked glucans including barley β-glucan and Icelandic moss lichenan. Thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), matrix assisted laser desorption ionization time of flight mass spectrometry analyses were conducted to determine the products released from polysaccharides and cello-oligosaccharides substrates. RESULTS The recombinant IDSGLUC9-4 exhibited temperature and pH optima of 40°C and pH 6.0, respectively. It exclusively hydrolyzed mixed-linked glucans, with significant activity observed for barley β-glucan (109.59±3.61 μmol/mg min) and Icelandic moss lichenan (35.35±1.55 μmol/mg min). TLC and HPLC analyses revealed that IDSGLUC9-4 primarily released cellobiose, cellotriose, and cellotetraose from polysaccharide substrates. Furthermore, after 48 h of reaction, IDSGLUC9-4 removed most of the glucose, indicating transglycosylation activity alongside its endo-glucanase activity. CONCLUSION The recombinant IDSGLUC9-4 was a relatively acid-resistant, mesophilic endo-glucanase (EC 3.2.1.4) that hydrolyzed glucan-like substrates, generating predominantly G3 and G4 oligosaccharides, and which appeared to have glycosylation activity. These findings provided insights into the substrate specificity and product profiles of rumen-derived GH9 glucanases and contributed to the expanding knowledge of cellulolytic enzymes and novel herbivore rumen enzymes in general.
Collapse
Affiliation(s)
- Yongzhen Zhu
- Jilin Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112,
China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Shuning Bai
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Nuo Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Jun-Hong Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Kaiying Wang
- Jilin Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112,
China
| | - Tietao Zhang
- Jilin Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112,
China
| |
Collapse
|
2
|
de Araújo EA, Cortez AA, Pellegrini VDOA, Vacilotto MM, Cruz AF, Batista PR, Polikarpov I. Molecular mechanism of cellulose depolymerization by the two-domain BlCel9A enzyme from the glycoside hydrolase family 9. Carbohydr Polym 2024; 329:121739. [PMID: 38286536 DOI: 10.1016/j.carbpol.2023.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/31/2024]
Abstract
Carbohydrate-active enzymes from the glycoside hydrolase family 9 (GH9) play a key role in processing lignocellulosic biomass. Although the structural features of some GH9 enzymes are known, the molecular mechanisms that drive their interactions with cellulosic substrates remain unclear. To investigate the molecular mechanisms that the two-domain Bacillus licheniformis BlCel9A enzyme utilizes to depolymerize cellulosic substrates, we used a combination of biochemical assays, X-ray crystallography, small-angle X-ray scattering, and molecular dynamics simulations. The results reveal that BlCel9A breaks down cellulosic substrates, releasing cellobiose and glucose as the major products, but is highly inefficient in cleaving oligosaccharides shorter than cellotetraose. In addition, fungal lytic polysaccharide oxygenase (LPMO) TtLPMO9H enhances depolymerization of crystalline cellulose by BlCel9A, while exhibiting minimal impact on amorphous cellulose. The crystal structures of BlCel9A in both apo form and bound to cellotriose and cellohexaose were elucidated, unveiling the interactions of BlCel9A with the ligands and their contribution to substrate binding and products release. MD simulation analysis reveals that BlCel9A exhibits higher interdomain flexibility under acidic conditions, and SAXS experiments indicate that the enzyme flexibility is induced by pH and/or temperature. Our findings provide new insights into BlCel9A substrate specificity and binding, and synergy with the LPMOs.
Collapse
Affiliation(s)
- Evandro Ares de Araújo
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Giuseppe Maximo Scolfaro, 10000, Campinas, SP 13083-970, Brazil; Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil
| | - Anelyse Abreu Cortez
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil
| | | | - Milena Moreira Vacilotto
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil
| | - Amanda Freitas Cruz
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil
| | - Paulo Ricardo Batista
- Oswaldo Cruz Foundation, Scientific Computing Programme, Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590, Brazil.
| |
Collapse
|
3
|
Falb N, Patil G, Furtmüller PG, Gabler T, Hofbauer S. Structural aspects of enzymes involved in prokaryotic Gram-positive heme biosynthesis. Comput Struct Biotechnol J 2023; 21:3933-3945. [PMID: 37593721 PMCID: PMC10427985 DOI: 10.1016/j.csbj.2023.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
The coproporphyrin dependent heme biosynthesis pathway is almost exclusively utilized by Gram-positive bacteria. This fact makes it a worthwhile topic for basic research, since a fundamental understanding of a metabolic pathway is necessary to translate the focus towards medical biotechnology, which is very relevant in this specific case, considering the need for new antibiotic targets to counteract the pathogenicity of Gram-positive superbugs. Over the years a lot of structural data on the set of enzymes acting in Gram-positive heme biosynthesis has accumulated in the Protein Database (www.pdb.org). One major challenge is to filter and analyze all available structural information in sufficient detail in order to be helpful and to draw conclusions. Here we pursued to give a holistic overview of structural information on enzymes involved in the coproporphyrin dependent heme biosynthesis pathway. There are many aspects to be extracted from experimentally determined structures regarding the reaction mechanisms, where the smallest variation of the position of an amino acid residue might be important, but also on a larger level regarding protein-protein interactions, where the focus has to be on surface characteristics and subunit (secondary) structural elements and oligomerization. This review delivers a status quo, highlights still missing information, and formulates future research endeavors in order to better understand prokaryotic heme biosynthesis.
Collapse
Affiliation(s)
- Nikolaus Falb
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Gaurav Patil
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G. Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Thomas Gabler
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
4
|
Kuch NJ, Kutschke ME, Parker A, Bingman CA, Fox BG. Contribution of calcium ligands in substrate binding and product release in the Acetovibrio thermocellus glycoside hydrolase family 9 cellulase CelR. J Biol Chem 2023; 299:104655. [PMID: 36990218 PMCID: PMC10149213 DOI: 10.1016/j.jbc.2023.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability. This study examines a GH9 from Acetovibrio thermocellus ATCC 27405, AtCelR containing a catalytic domain and a carbohydrate binding module (CBM3c). Crystal structures of the enzyme without substrate, bound to cellohexaose (substrate) or cellobiose (product), show the positioning of ligands to calcium and adjacent residues in the catalytic domain that may contribute to substrate binding and facilitate product release. We also investigated the properties of the enzyme engineered to contain an additional carbohydrate binding module (CBM3a). Relative to the catalytic domain alone, CBM3a gave improved binding for Avicel (a crystalline form of cellulose), and catalytic efficiency (kcat/KM) was improved 40× with both CBM3c and CBM3a present. However, because of the molecular weight added by CBM3a, the specific activity of the engineered enzyme was not increased relative to the native construct consisting of only the catalytic and CBM3c domains. This work provides new insight into a potential role of the conserved calcium in the catalytic domain and identifies contributions and limitations of domain engineering for AtCelR and perhaps other GH9 enzymes.
Collapse
Affiliation(s)
- Nathaniel J Kuch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark E Kutschke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alex Parker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Dane County Youth Apprenticeship Program, Dane County School Consortium, Monona, Wisconsin, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Collaborative Crystallography Core, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Ahmad S, Sajjad M, Altayb HN, Sarim Imam S, Alshehri S, Ghoneim MM, Shahid S, Usman Mirza M, Shahid Nadeem M, Kazmi I, Waheed Akhtar M. Engineering processive cellulase of Clostridium thermocellum to divulge the role of the carbohydrate-binding module. Biotechnol Appl Biochem 2023; 70:290-305. [PMID: 35483889 DOI: 10.1002/bab.2352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
The processive cellulase (CelO) is an important modular enzyme of Clostridium thermocellum. To study the effect of the carbohydrate-binding module (CBM3b) on the catalytic domain of CelO (GH5), four engineered derivatives of CelO were designed by truncation and terminal fusion of CBM3b. These are CBM at the N-terminus, native form (CelO-BC, 62 kDa); catalytic domain only (CelO-C, 42 kDa); CBM at the C-terminus (CelO-CB, 54 kDa) and CBM attached at both termini (CelO-BCB, 73 kDa). All constructs were cloned into pET22b (+) and expressed in Escherichia coli BL21 (DE3) star. The expression levels of CelO-C, CelO-CB, CelO-BC, and CelO-BCB were 35%, 35%, 30%, and 20%, respectively. The enzyme activities of CelO-C, CelO-CB, CelO-BC, and CelO-BCB against 1% regenerated amorphous cellulose (RAC) were 860, 758, 985, and 1208 units per μmole of the enzyme, respectively. The enzymes were partially purified from the lysate of E. coli cells by heat treatment followed by anion exchange FPLC purification. Against RAC, CelO-C, CelO-CB, CelO-BC, and CelO-BCB showed KM values of 32, 33, 45, and 43 mg⋅mL-1 and Vmax values of 3571, 3846, 3571, and 4545 U⋅min-1 , respectively. CBM3b at the N-terminus of GH5 linked through a P/T-rich linker was found to enhance the catalytic activity and thermostability of the enzyme.
Collapse
Affiliation(s)
- Sajjad Ahmad
- School of Biological Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Science, University of the Punjab, Lahore, Pakistan
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Saher Shahid
- School of Biological Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
6
|
Li P, Wang X, Zhang C, Xu D. Processive binding mechanism of Cel9G from Clostridium cellulovorans: molecular dynamics and free energy landscape investigations. Phys Chem Chem Phys 2023; 25:646-657. [DOI: 10.1039/d2cp04830b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The processive binding mechanism of cellulose by Cel9G from C. cellulovorans was investigated by MD and metadynamics simulations.
Collapse
Affiliation(s)
- Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| |
Collapse
|
7
|
A processive GH9 family endoglucanase of Bacillus licheniformis and the role of its carbohydrate-binding domain. Appl Microbiol Biotechnol 2022; 106:6059-6075. [PMID: 35948851 DOI: 10.1007/s00253-022-12117-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
One of the critical steps in lignocellulosic deconstruction is the hydrolysis of crystalline cellulose by cellulases. Endoglucanases initially facilitate the breakdown of cellulose in lignocellulosic biomass and are further aided by other cellulases to produce fermentable sugars. Furthermore, if the endoglucanase is processive, it can adsorb to the smooth surface of crystalline cellulose and release soluble sugars during repeated cycles of catalysis before dissociating. Most glycoside hydrolase family 9 (GH9) endoglucanases have catalytic domains linked to a CBM (carbohydrate-binding module) (mostly CBM3) and present the second-largest cellulase family after GH5. GH9 endoglucanases are relatively less characterized. Bacillus licheniformis is a mesophilic soil bacterium containing many glycoside hydrolase (GH) enzymes. We identified an endoglucanase gene, gh9A, encoding the GH9 family enzyme H1AD14 in B. licheniformis and cloned and overexpressed H1AD14 in Escherichia coli. The purified H1AD14 exhibited very high enzymatic activity on endoglucanase substrates, such as β-glucan, lichenan, Avicel, CMC-Na (sodium carboxymethyl cellulose) and PASC (phosphoric acid swollen cellulose), across a wide pH range. The enzyme is tolerant to 2 M sodium chloride and retains 74% specific activity on CMC after 10 days, the highest amongst the reported GH9 endoglucanases. The full-length H1AD14 is a processive endoglucanase and efficiently saccharified sugarcane bagasse. The deletion of the CBM reduces the catalytic activity and processivity. The results add to the sparse knowledge of GH9 endoglucanases and offer the possibility of characterizing and engineering additional enzymes from B. licheniformis toward developing a cellulase cocktail for improved biomass deconstruction. KEY POINTS: • H1AD14 is a highly active and processive GH9 endoglucanase from B. licheniformis. • H1AD14 is thermostable and has a very long half-life. • H1AD14 showed higher saccharification efficiency than commercial endoglucanase.
Collapse
|
8
|
Li P, Shi M, Wang X, Xu D. QM/MM investigation of the catalytic mechanism of processive endoglucanase Cel9G from Clostridium cellulovorans. Phys Chem Chem Phys 2022; 24:11919-11930. [PMID: 35514276 DOI: 10.1039/d2cp00593j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrate degradation catalyzed by glucoside hydrolases (GHs) is a major mechanism in biomass conversion. GH family 9 endoglucanase (Cel9G) from Clostridium cellulovorans, a typical multimodular enzyme, contains a catalytic domain closely linked to a family 3c carbohydrate-binding module (CBM3c). Unlike the conventional behavior proposed for other carbohydrate-binding modules, CBM3c has a direct impact on catalytic activity. In this work, extensive molecular dynamics (MD) simulations were employed to clarify the functional role of CBM3c. Furthermore, the detailed catalytic mechanism of Cel9G was investigated at the atomistic level using the combined quantum mechanical and molecular mechanical (QM/MM) method. Based on these simulations, owing to the rigidity of the peptide linker, CBM3c may affect the enzymatic activity via direct interactions with alpha helix 4 of GH9, especially with the K123 and H125 residues. In addition, using cellohexaose as a substrate, the QM/MM MD simulations confirmed that this enzyme can cleave the β-1,4-glycosidic linkage via an inverting mechanism. An oxocarbenium ion-like transition state was located with a barrier height of 19.6 kcal mol-1. Furthermore, the G(-1) pyranose unit preferentially adopted a distorted 1S5/4H5 conformer in the enzyme-substrate complex. For the cleavage of the glycosidic bond, we were able to identify a plausible route (1S5/4H5 → [4H5/4E]# → 4C1) from the reactant to the product at the G(-1) site.
Collapse
Affiliation(s)
- Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Mingsong Shi
- State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
9
|
Abstract
Glycoside hydrolase family 9 (GH9) endoglucanases are important enzymes for cellulose degradation. However, their activity on cellulose is diverse. Here, we cloned and expressed one GH9 enzyme (CalkGH9T) from Clostridium alkalicellulosi in Escherichia coli. CalkGH9T has a modular structure, containing one GH9 catalytic module, two family 3 carbohydrate binding modules, and one type I dockerin domain. CalkGH9T exhibited maximal activity at pH 7.0–8.0 and 55 °C and was resistant to urea and NaCl. It efficiently hydrolyzed carboxymethyl cellulose (CMC) but poorly degraded regenerated amorphous cellulose (RAC). Despite strongly binding to Avicel, CalkGH9T lacked the ability to hydrolyze this substrate. The hydrolysis of CMC by CalkGH9T produced a series of cello-oligomers, with cellotetraose being preferentially released. Similar proportions of soluble and insoluble reducing ends generated by hydrolysis of RAC indicated non-processive activity. Our study extends our knowledge of the molecular mechanism of cellulose hydrolysis by GH9 family endoglucanases with industrial relevance.
Collapse
|
10
|
From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnol Adv 2021; 50:107770. [PMID: 33989704 DOI: 10.1016/j.biotechadv.2021.107770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
In this review, we argue that there is much to be learned by transferring knowledge from research on lignocellulose degradation to that on plastic. Plastic waste accumulates in the environment to hazardous levels, because it is inherently recalcitrant to biological degradation. Plants evolved lignocellulose to be resistant to degradation, but with time, fungi became capable of utilising it for their nutrition. Examples of how fungal strategies to degrade lignocellulose could be insightful for plastic degradation include how fungi overcome the hydrophobicity of lignin (e.g. production of hydrophobins) and crystallinity of cellulose (e.g. oxidative approaches). In parallel, knowledge of the methods for understanding lignocellulose degradation could be insightful such as advanced microscopy, genomic and post-genomic approaches (e.g. gene expression analysis). The known limitations of biological lignocellulose degradation, such as the necessity for physiochemical pretreatments for biofuel production, can be predictive of potential restrictions of biological plastic degradation. Taking lessons from lignocellulose degradation for plastic degradation is also important for biosafety as engineered plastic-degrading fungi could also have increased plant biomass degrading capabilities. Even though plastics are significantly different from lignocellulose because they lack hydrolysable C-C or C-O bonds and therefore have higher recalcitrance, there are apparent similarities, e.g. both types of compounds are mixtures of hydrophobic polymers with amorphous and crystalline regions, and both require hydrolases and oxidoreductases for their degradation. Thus, many lessons could be learned from fungal lignocellulose degradation.
Collapse
|
11
|
Hershko Rimon A, Livnah O, Rozman Grinberg I, Ortiz de Ora L, Yaniv O, Lamed R, Bayer EA, Frolow F, Voronov-Goldman M. Novel clostridial cell-surface hemicellulose-binding CBM3 proteins. Acta Crystallogr F Struct Biol Commun 2021; 77:95-104. [PMID: 33830074 PMCID: PMC8034430 DOI: 10.1107/s2053230x21002764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Å resolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.
Collapse
Affiliation(s)
- Almog Hershko Rimon
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Oded Livnah
- The Wolfson Center for Applied and Structural Biology, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Inna Rozman Grinberg
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology Research, Tel Aviv University, Ramat Aviv 69978, Israel
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lizett Ortiz de Ora
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Oren Yaniv
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Raphael Lamed
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Edward A. Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 760001, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| | - Felix Frolow
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Milana Voronov-Goldman
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
12
|
Ogonda LA, Saumonneau A, Dion M, Muge EK, Wamalwa BM, Mulaa FJ, Tellier C. Characterization and engineering of two new GH9 and GH48 cellulases from a Bacillus pumilus isolated from Lake Bogoria. Biotechnol Lett 2021; 43:691-700. [PMID: 33386499 DOI: 10.1007/s10529-020-03056-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To search for new alkaliphilic cellulases and to improve their efficiency on crystalline cellulose through molecular engineering RESULTS: Two novel cellulases, BpGH9 and BpGH48, from a Bacillus pumilus strain were identified, cloned and biochemically characterized. BpGH9 is a modular endocellulase belonging to the glycoside hydrolase 9 family (GH9), which contains a catalytic module (GH) and a carbohydrate-binding module belonging to class 3 and subclass c (CBM3c). This enzyme is extremely tolerant to high alkali pH and remains significantly active at pH 10. BpGH48 is an exocellulase, belonging to the glycoside hydrolase 48 family (GH48) and acts on the reducing end of oligo-β1,4 glucanes. A truncated form of BpGH9 and a chimeric fusion with an additional CBM3a module was constructed. The deletion of the CBM3c module results in a significant decline in the catalytic activity. However, fusion of CBM3a, although in a non native position, enhanced the activity of BpGH9 on crystalline cellulose. CONCLUSIONS A new alkaliphilic endocellulase BpGH9, was cloned and engineered as a fusion protein (CBM3a-BpGH9), which led to an improved activity on crystalline cellulose.
Collapse
Affiliation(s)
- Lydia A Ogonda
- Université de Nantes, CNRS, UFIP, UMR6286, 2, rue de la Houssinière, 44322, Nantes, France.,Department of Biochemistry, School of Medicine, College of Health Sciences, University of Nairobi, P.O BOX 30197-00100, Nairobi, Kenya.,Department of Medical Biochemistry, School of Medicine, Masinde Muliro University of Science and Technology, P.O BOX 190-50100, Kakamega, Kenya
| | - Amélie Saumonneau
- Université de Nantes, CNRS, UFIP, UMR6286, 2, rue de la Houssinière, 44322, Nantes, France
| | - Michel Dion
- Université de Nantes, IRS2, 44000, Nantes, France
| | - Edward K Muge
- Department of Biochemistry, School of Medicine, College of Health Sciences, University of Nairobi, P.O BOX 30197-00100, Nairobi, Kenya
| | - Benson M Wamalwa
- Department of Chemistry, School of Physical Sciences, College of Biological and Physical Sciences, University of Nairobi, P.O BOX 30197-00100, Nairobi, Kenya
| | - Francis J Mulaa
- Department of Biochemistry, School of Medicine, College of Health Sciences, University of Nairobi, P.O BOX 30197-00100, Nairobi, Kenya
| | - Charles Tellier
- Université de Nantes, CNRS, UFIP, UMR6286, 2, rue de la Houssinière, 44322, Nantes, France.
| |
Collapse
|
13
|
Kumar K, Singh S, Sharma K, Goyal A. Computational modeling and small-angle X-ray scattering based structure analysis and identifying ligand cleavage mechanism by processive endocellulase of family 9 glycoside hydrolase (HtGH9) from Hungateiclostridium thermocellum ATCC 27405. J Mol Graph Model 2020; 103:107808. [PMID: 33248343 DOI: 10.1016/j.jmgm.2020.107808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
The cellulases of family 9 glycoside hydrolase with subtle difference in amino acid sequence have shown different types of catalytic activities such as endo-, exo- or processive endocellulase. However, the reason behind the different types of catalytic activities still unclear. In this study, the processive endocellulase, HtGH9 of family 9 GH from Hungateiclostridium thermocellum was modeled by homology modeling. The catalytic module (HtGH9t) of HtGH9 modeled structure displayed the (α/α)6 barrel topology and associated family 3 carbohydrate binding module (HtCBM3c) displayed β-sandwich fold. Ramachandran plot of HtGH9 modeled structure displayed all the amino acid residues in allowed region except Asn225 and Asp317. Secondary structure analysis of modeled HtGH9 showed the presence of 41.3% α-helices and 11.0% β-strands which was validated through circular dichroism analysis that showed the presence of 42.6% α-helices and 14.5% β-strands. Molecular Dynamic (MD) simulation of HtGH9 structure for 50 ns showed Root Mean Square Deviation (RMSD), 0.84 nm and radius of gyration (Rg) 3.1 nm. The Small-angle X-ray scattering of HtGH9 confirmed the monodisperse state. The radius of gyration for globular shape (Rg) was 5.50 ± 0.15 nm and for rod shape (Rc) by Guinier plot was 2.0 nm. The loop formed by amino acid residues, 264-276 towards one end of the catalytic site of HtGH9 forms a barrier, that blocks the non-reducing end of the cellulose chain causing the processive cleavage resulting in the release of cellotetraose. The position of the corresponding loop in cellulases of family 9 GH is responsible for different types of cleavage patterns.
Collapse
Affiliation(s)
- Krishan Kumar
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shubha Singh
- Division of Biological Sciences and Engineering, Netaji Subhas University of Technology, Delhi, 110078, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Laboratory of Small Molecules & Macro Molecular Crystallography, Department of Bioengineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Mandelli F, de Morais MAB, de Lima EA, Oliveira L, Persinoti GF, Murakami MT. Spatially remote motifs cooperatively affect substrate preference of a ruminal GH26-type endo-β-1,4-mannanase. J Biol Chem 2020; 295:5012-5021. [PMID: 32139511 PMCID: PMC7152760 DOI: 10.1074/jbc.ra120.012583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Indexed: 01/28/2023] Open
Abstract
β-Mannanases from the glycoside hydrolase 26 (GH26) family are retaining hydrolases that are active on complex heteromannans and whose genes are abundant in rumen metagenomes and metatranscriptomes. These enzymes can exhibit distinct modes of substrate recognition and are often fused to carbohydrate-binding modules (CBMs), resulting in a molecular puzzle of mechanisms governing substrate preference and mode of action that has not yet been pieced together. In this study, we recovered a novel GH26 enzyme with a CBM35 module linked to its N terminus (CrMan26) from a cattle rumen metatranscriptome. CrMan26 exhibited a preference for galactomannan as substrate and the crystal structure of the full-length protein at 1.85 Å resolution revealed a unique orientation of the ancillary domain relative to the catalytic interface, strategically positioning a surface aromatic cluster of the ancillary domain as an extension of the substrate-binding cleft, contributing to galactomannan preference. Moreover, systematic investigation of nonconserved residues in the catalytic interface unveiled that residues Tyr195 (-3 subsite) and Trp234 (-5 subsite) from distal negative subsites have a key role in galactomannan preference. These results indicate a novel and complex mechanism for substrate recognition involving spatially remote motifs, distal negative subsites from the catalytic domain, and a surface-associated aromatic cluster from the ancillary domain. These findings expand our molecular understanding of the mechanisms of substrate binding and recognition in the GH26 family and shed light on how some CBMs and their respective orientation can contribute to substrate preference.
Collapse
Affiliation(s)
- Fernanda Mandelli
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Mariana Abrahão Bueno de Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Evandro Antonio de Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | | | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Mário Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
15
|
Kumar K, Singal S, Goyal A. Role of carbohydrate binding module (CBM3c) of GH9 β-1,4 endoglucanase (Cel9W) from Hungateiclostridium thermocellum ATCC 27405 in catalysis. Carbohydr Res 2019; 484:107782. [DOI: 10.1016/j.carres.2019.107782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022]
|
16
|
von Freiesleben P, Moroz OV, Blagova E, Wiemann M, Spodsberg N, Agger JW, Davies GJ, Wilson KS, Stålbrand H, Meyer AS, Krogh KBRM. Crystal structure and substrate interactions of an unusual fungal non-CBM carrying GH26 endo-β-mannanase from Yunnania penicillata. Sci Rep 2019; 9:2266. [PMID: 30783168 PMCID: PMC6381184 DOI: 10.1038/s41598-019-38602-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
Endo-β(1 → 4)-mannanases (endomannanases) catalyse degradation of β-mannans, an abundant class of plant polysaccharides. This study investigates structural features and substrate binding of YpenMan26A, a non-CBM carrying endomannanase from Yunnania penicillata. Structural and sequence comparisons to other fungal family GH26 endomannanases showed high sequence similarities and conserved binding residues, indicating that fungal GH26 endomannanases accommodate galactopyranosyl units in the -3 and -2 subsites. Two striking amino acid differences in the active site were found when the YpenMan26A structure was compared to a homology model of Wsp.Man26A from Westerdykella sp. and the sequences of nine other fungal GH26 endomannanases. Two YpenMan26A mutants, W110H and D37T, inspired by differences observed in Wsp.Man26A, produced a shift in how mannopentaose bound across the active site cleft and a decreased affinity for galactose in the -2 subsite, respectively, compared to YpenMan26A. YpenMan26A was moreover found to have a flexible surface loop in the position where PansMan26A from Podospora anserina has an α-helix (α9) which interacts with its family 35 CBM. Sequence alignment inferred that the core structure of fungal GH26 endomannanases differ depending on the natural presence of this type of CBM. These new findings have implications for selecting and optimising these enzymes for galactomannandegradation.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark.,DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga V Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Mathias Wiemann
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | | | - Jane W Agger
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Anne S Meyer
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
17
|
Jeng WY, Liu CI, Lu TJ, Lin HJ, Wang NC, Wang AHJ. Crystal Structures of the C-Terminally Truncated Endoglucanase Cel9Q from Clostridium thermocellum Complexed with Cellodextrins and Tris. Chembiochem 2019; 20:295-307. [PMID: 30609216 DOI: 10.1002/cbic.201800789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 11/11/2022]
Abstract
Endoglucanase CtCel9Q is one of the enzyme components of the cellulosome, which is an active cellulase system in the thermophile Clostridium thermocellum. The precursor form of CtCel9Q comprises a signal peptide, a glycoside hydrolase family 9 catalytic domain, a type 3c carbohydrate-binding module (CBM), and a type I dockerin domain. Here, we report the crystal structures of C-terminally truncated CtCel9Q (CtCel9QΔc) complexed with Tris, Tris+cellobiose, cellobiose+cellotriose, cellotriose, and cellotetraose at resolutions of 1.50, 1.70, 2.05, 2.05 and 1.75 Å, respectively. CtCel9QΔc forms a V-shaped homodimer through residues Lys529-Glu542 on the type 3c CBM, which pairs two β-strands (β4 and β5 of the CBM). In addition, a disulfide bond was formed between the two Cys535 residues of the protein monomers in the asymmetric unit. The structures allow the identification of four minus (-) subsites and two plus (+) subsites; this is important for further understanding the structural basis of cellulose binding and hydrolysis. In the oligosaccharide-free and cellobiose-bound CtCel9QΔc structures, a Tris molecule was found to be bound to three catalytic residues of CtCel9Q and occupied subsite -1 of the CtCel9Q active-site cleft. Moreover, the enzyme activity assay in the presence of 100 mm Tris showed that the Tris almost completely suppressed CtCel9Q hydrolase activity.
Collapse
Affiliation(s)
- Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Te-Jung Lu
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, 89 Wenhua 1st Street, Tainan, 717, Taiwan
| | - Hong-Jie Lin
- University Center for Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan
| | - Nai-Chen Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Sec 2, Taipei, 115, Taiwan
| |
Collapse
|
18
|
de Araújo EA, de Oliveira Neto M, Polikarpov I. Biochemical characterization and low-resolution SAXS structure of two-domain endoglucanase BlCel9 from Bacillus licheniformis. Appl Microbiol Biotechnol 2018; 103:1275-1287. [PMID: 30547217 DOI: 10.1007/s00253-018-9508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022]
Abstract
Lignocellulose feedstock constitutes the most abundant carbon source in the biosphere; however, its recalcitrance remains a challenge for microbial conversion into biofuel and bioproducts. Bacillus licheniformis is a microbial mesophilic bacterium capable of secreting a large number of glycoside hydrolase (GH) enzymes, including a glycoside hydrolase from GH family 9 (BlCel9). Here, we conducted biochemical and biophysical studies of recombinant BlCel9, and its low-resolution molecular shape was retrieved from small angle X-ray scattering (SAXS) data. BlCel9 is an endoglucanase exhibiting maximum catalytic efficiency at pH 7.0 and 60 °C. Furthermore, it retains 80% of catalytic activity within a broad range of pH values (5.5-8.5) and temperatures (up to 50 °C) for extended periods of time (over 48 h). It exhibits the highest hydrolytic activity against phosphoric acid swollen cellulose (PASC), followed by bacterial cellulose (BC), filter paper (FP), and to a lesser extent carboxymethylcellulose (CMC). The HPAEC-PAD analysis of the hydrolytic products demonstrated that the end product of the enzymatic hydrolysis is primarily cellobiose, and also small amounts of glucose, cellotriose, and cellotetraose are produced. SAXS data analysis revealed that the enzyme adopts a monomeric state in solution and has a molecular mass of 65.8 kDa as estimated from SAXS data. The BlCel9 has an elongated shape composed of an N-terminal family 3 carbohydrate-binding module (CBM3c) and a C-terminal GH9 catalytic domain joined together by 20 amino acid residue long linker peptides. The domains are closely juxtaposed in an extended conformation and form a relatively rigid structure in solution, indicating that the interactions between the CBM3c and GH9 catalytic domains might play a key role in cooperative cellulose biomass recognition and hydrolysis.
Collapse
Affiliation(s)
- Evandro Ares de Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil
| | - Mário de Oliveira Neto
- Departmento de Física e Biofísica, Universidade Estadual Paulista "Júlio de Mesquita Filho", R. Prof. Dr. Antonio Celso Wagner Zanin 689, Jardim Sao Jose, Botucatu, SP, 18618-970, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
19
|
Ellinghaus TL, Pereira JH, McAndrew RP, Welner DH, DeGiovanni AM, Guenther JM, Tran HM, Feldman T, Simmons BA, Sale KL, Adams PD. Engineering glycoside hydrolase stability by the introduction of zinc binding. Acta Crystallogr D Struct Biol 2018; 74:702-710. [PMID: 29968680 PMCID: PMC6038386 DOI: 10.1107/s2059798318006678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 02/04/2023] Open
Abstract
The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activity with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.
Collapse
Affiliation(s)
- Thomas L. Ellinghaus
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jose H. Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan P. McAndrew
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ditte H. Welner
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andy M. DeGiovanni
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joel M. Guenther
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Huu M. Tran
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Taya Feldman
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth L. Sale
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Guerriero G, Sergeant K, Legay S, Hausman JF, Cauchie HM, Ahmad I, Siddiqui KS. Novel Insights from Comparative In Silico Analysis of Green Microalgal Cellulases. Int J Mol Sci 2018; 19:E1782. [PMID: 29914107 PMCID: PMC6032398 DOI: 10.3390/ijms19061782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022] Open
Abstract
The assumption that cellulose degradation and assimilation can only be carried out by heterotrophic organisms was shattered in 2012 when it was discovered that the unicellular green alga, Chlamydomonas reinhardtii (Cr), can utilize cellulose for growth under CO₂-limiting conditions. Publications of genomes/transcriptomes of the colonial microalgae, Gonium pectorale (Gp) and Volvox carteri (Vc), between 2010⁻2016 prompted us to look for cellulase genes in these algae and to compare them to cellulases from bacteria, fungi, lower/higher plants, and invertebrate metazoans. Interestingly, algal catalytic domains (CDs), belonging to the family GH9, clustered separately and showed the highest (33⁻42%) and lowest (17⁻36%) sequence identity with respect to cellulases from invertebrate metazoans and bacteria, respectively, whereas the identity with cellulases from plants was only 27⁻33%. Based on comparative multiple alignments and homology models, the domain arrangement and active-site architecture of algal cellulases are described in detail. It was found that all algal cellulases are modular, consisting of putative novel cysteine-rich carbohydrate-binding modules (CBMs) and proline/serine-(PS) rich linkers. Two genes were found to encode a protein with a putative Ig-like domain and a cellulase with an unknown domain, respectively. A feature observed in one cellulase homolog from Gp and shared by a spinach cellulase is the existence of two CDs separated by linkers and with a C-terminal CBM. Dockerin and Fn-3-like domains, typically found in bacterial cellulases, are absent in algal enzymes. The targeted gene expression analysis shows that two Gp cellulases consisting, respectively, of a single and two CDs were upregulated upon filter paper addition to the medium.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Henry-Michel Cauchie
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Irshad Ahmad
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Khawar Sohail Siddiqui
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
21
|
Zhang KD, Li W, Wang YF, Zheng YL, Tan FC, Ma XQ, Yao LS, Bayer EA, Wang LS, Li FL. Processive Degradation of Crystalline Cellulose by a Multimodular Endoglucanase via a Wirewalking Mode. Biomacromolecules 2018; 19:1686-1696. [DOI: 10.1021/acs.biomac.8b00340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kun-Di Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People’s Republic of China
| | - Wen Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People’s Republic of China
| | - Ye-Fei Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
| | - Yan-Lin Zheng
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, People’s Republic of China
| | - Fang-Cheng Tan
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
| | - Xiao-Qing Ma
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, People’s Republic of China
| | - Li-Shan Yao
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lu-Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People’s Republic of China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, People’s Republic of China
| |
Collapse
|
22
|
Сarbohydrate binding module CBM28 of endoglucanase Cel5D from Caldicellulosiruptor bescii recognizes crystalline cellulose. Int J Biol Macromol 2018; 107:305-311. [DOI: 10.1016/j.ijbiomac.2017.08.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/23/2022]
|
23
|
Costa MGS, Silva YF, Batista PR. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region. Phys Chem Chem Phys 2018; 20:7643-7652. [DOI: 10.1039/c7cp07073j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cellulase collective motions design through linker mutations leads to the enhancement of protein flexibility and function.
Collapse
Affiliation(s)
- M. G. S. Costa
- Programa de Computação Científica (PROCC)
- Fundação Oswaldo Cruz
- Rio de Janeiro
- Brazil
| | - Y. F. Silva
- Programa de Computação Científica (PROCC)
- Fundação Oswaldo Cruz
- Rio de Janeiro
- Brazil
| | - P. R. Batista
- Programa de Computação Científica (PROCC)
- Fundação Oswaldo Cruz
- Rio de Janeiro
- Brazil
| |
Collapse
|
24
|
Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Curr Opin Struct Biol 2017; 44:151-160. [DOI: 10.1016/j.sbi.2017.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
|
25
|
Devendran S, Abdel-Hamid AM, Evans AF, Iakiviak M, Kwon IH, Mackie RI, Cann I. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides. Sci Rep 2016; 6:35342. [PMID: 27748409 PMCID: PMC5066209 DOI: 10.1038/srep35342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/28/2016] [Indexed: 12/01/2022] Open
Abstract
Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.
Collapse
Affiliation(s)
- Saravanan Devendran
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ahmed M Abdel-Hamid
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Anton F Evans
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Michael Iakiviak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - In Hyuk Kwon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Roderick I Mackie
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Isaac Cann
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
Campos BM, Liberato MV, Alvarez TM, Zanphorlin LM, Ematsu GC, Barud H, Polikarpov I, Ruller R, Gilbert HJ, Zeri ACDM, Squina FM. A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties. J Biol Chem 2016; 291:23734-23743. [PMID: 27621314 DOI: 10.1074/jbc.m116.744383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked β1,3-β1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical β-sandwich fold comprising two β-sheets. The planar ligand binding site, observed in a parallel orientation with the β-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs.
Collapse
Affiliation(s)
| | | | | | | | | | - Hernane Barud
- the Centro Universitário de Araraquara-UNIARA, BioPolMat, CEP 14801-340, Araraquara-SP, Brazil
| | - Igor Polikarpov
- the Instituto de Física de São Carlos, Universidade de São Paulo, CEP 13566-590, São Carlos, São Paulo, Brazil
| | - Roberto Ruller
- the Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), and
| | - Harry J Gilbert
- the Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle-upon-Tyne NE 4HH, United Kingdom, and
| | - Ana Carolina de Mattos Zeri
- the Laboratório Nacional de Luz Sincrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | | |
Collapse
|
27
|
Ruiz DM, Turowski VR, Murakami MT. Effects of the linker region on the structure and function of modular GH5 cellulases. Sci Rep 2016; 6:28504. [PMID: 27334041 PMCID: PMC4917841 DOI: 10.1038/srep28504] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
The association of glycosyl hydrolases with catalytically inactive modules is a successful evolutionary strategy that is commonly used by biomass-degrading microorganisms to digest plant cell walls. The presence of accessory domains in these enzymes is associated with properties such as higher catalytic efficiency, extension of the catalytic interface and targeting of the enzyme to the proper substrate. However, the importance of the linker region in the synergistic action of the catalytic and accessory domains remains poorly understood. Thus, this study examined how the inter-domain region affects the structure and function of modular GH5 endoglucanases, by using cellulase 5A from Bacillus subtilis (BsCel5A) as a model. BsCel5A variants featuring linkers with different stiffnesses or sizes were designed and extensively characterized, revealing that changes in flexibility or rigidity in this region differentially affect kinetic behavior. Regarding the linker length, we found that precise inter-domain spacing is required to enable efficient hydrolysis because excessively long or short linkers were equally detrimental to catalysis. Together, these findings identify molecular and structural features that may contribute to the rational design of chimeric and multimodular glycosyl hydrolases.
Collapse
Affiliation(s)
- Diego M. Ruiz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas/SP, 13083-970, Brazil
| | - Valeria R. Turowski
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas/SP, 13083-970, Brazil
| | - Mario T. Murakami
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas/SP, 13083-970, Brazil
| |
Collapse
|
28
|
Kolek SA, Bräuning B, Shaw Stewart PD. A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase. Acta Crystallogr F Struct Biol Commun 2016; 72:307-12. [PMID: 27050265 PMCID: PMC4822988 DOI: 10.1107/s2053230x16004118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/10/2016] [Indexed: 11/10/2022] Open
Abstract
Random microseed matrix screening (rMMS), in which seed crystals are added to random crystallization screens, is an important breakthrough in soluble protein crystallization that increases the number of crystallization hits that are available for optimization. This greatly increases the number of soluble protein structures generated every year by typical structural biology laboratories. Inspired by this success, rMMS has been adapted to the crystallization of membrane proteins, making LCP seed stock by scaling up LCP crystallization conditions without changing the physical and chemical parameters that are critical for crystallization. Seed crystals are grown directly in LCP and, as with conventional rMMS, a seeding experiment is combined with an additive experiment. The new method was used with the bacterial integral membrane protein OmpF, and it was found that it increased the number of crystallization hits by almost an order of magnitude: without microseeding one new hit was found, whereas with LCP-rMMS eight new hits were found. It is anticipated that this new method will lead to better diffracting crystals of membrane proteins. A method of generating seed gradients, which allows the LCP seed stock to be diluted and the number of crystals in each LCP bolus to be reduced, if required for optimization, is also demonstrated.
Collapse
Affiliation(s)
| | - Bastian Bräuning
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | | |
Collapse
|