1
|
Schmale O, Mohrholz V, Papenmeier S, Jürgens K, Blumenberg M, Feldens P, Jordan S, Ruiz-Fernández P, Meeske C, Fabian J, Iwe S, Umlauf L. The control of physical and biological drivers on pelagic methane fluxes in a Patagonian fjord (Golfo Almirante Montt, Chile). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179584. [PMID: 40359835 DOI: 10.1016/j.scitotenv.2025.179584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Methane fluxes from coastal waters such as fjords and the underlying control mechanisms are poorly understood. During the austral summer, we investigated a fjord in the Chilean part of Patagonia, the Golfo Almirante Montt. The study is based on measurements of methane concentration, stable carbon isotopes and the distribution and activity of methane-oxidizing bacteria in the water column, as well as oceanographic and geological observations. Our results indicate that methane is of biogenic origin and released from gas-rich sediments at the entrance of the fjord, characterized by pockmarks and gas flares. Tidal currents and turbulent mixing at the sill cause a near-surface methane plume to spread into the main fjord basin and mix with the methane- and oxygen-depleted deep water. Wind-induced mixing at the sea surface controls the methane flux from the plume into the atmosphere. The methane plume is consumed by methanotrophic bacteria of the Methylomonadaceae and Ga0077536 families, which are differently distributed along the water column. An enrichment of the characteristic gene methane monooxygenase (pmoA) in the methane-poor deep water, and a conspicuously high δ13C-CH4 signature suggest that methane-rich intrusions regularly enter the deep water, where the methane is microbially oxidized. Our interdisciplinary study offers a comprehensive insight into the complex physical and biological processes that modulate methane dynamics in fjords and thus help to better assess how methane emissions from these systems will change under anthropogenic influence.
Collapse
Affiliation(s)
- Oliver Schmale
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany.
| | - Volker Mohrholz
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Svenja Papenmeier
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Martin Blumenberg
- Federal Institute for Geosciences and Natural Resources, Hannover, Germany
| | - Peter Feldens
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Sebastian Jordan
- Federal Institute for Geosciences and Natural Resources, Hannover, Germany
| | | | - Christian Meeske
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Jenny Fabian
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Sören Iwe
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Lars Umlauf
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
2
|
Martin-Pozas T, Jurado V, Fernandez-Cortes A, Calaforra JM, Sanchez-Moral S, Saiz-Jimenez C. Bacterial communities forming yellow biofilms in different cave types share a common core. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177263. [PMID: 39481555 DOI: 10.1016/j.scitotenv.2024.177263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
The walls of different types of caves under diverse geological settings (limestone, gypsum and volcanic) are colonized by biofilms of different colors: white, yellow, pink, grey, green to dark brown, but only a few colored biofilms such as the white, yellow and grey ones have been extensively studied. However, an assessment among the microbial communities originating these biofilms in different lithologies is lacking. Here we compare the yellow biofilms from two caves, Covadura and C3, in the Gypsum Karst of Sorbas in Spain, with those from two Spanish limestone caves (Pindal and Santian), and four volcanic caves in Spain and Italy (Viento, Honda del Bejenado, Grotta del Santo, Grotta di Monte Corruccio). The structure of yellow biofilms in gypsum caves closely resembles that found in other Spanish and European limestone caves. However, volcanic cave biofilms exhibit greater variability in their microbial community structure and morphologies. Biofilms from gypsum, limestone and volcanic caves were characterized by the abundance of the genera Crossiella and the gammaproteobacterial wb1-P19. The uncultured Euzebyaceae were abundant in gypsum and Spanish volcanic caves, while in the limestone and Italian volcanic caves, they were rare or absent. Nitrospira was also abundant in limestone and volcanic caves, but not in gypsum caves. Due to the abundances of Crossiella, gammaproteobacterial wb1-P19, and uncultured Euzebyaceae, in many different ecosystems, not only in caves, as recently reported, understanding the functional diversity in which these lineages are involved seems critical. Although we have studied a limited number of yellow biofilms from caves in Spain and Italy, data from other caves in USA and Russia also point out the existence of a similarity among the most abundant members composing the structure of yellow biofilms, suggesting that they share a common core.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Departamento de Biologia y Geologia, Universidad de Almeria, 04120 Almeria, Spain
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012 Sevilla, Spain.
| | | | - Jose Maria Calaforra
- Departamento de Biologia y Geologia, Universidad de Almeria, 04120 Almeria, Spain
| | | | - Cesareo Saiz-Jimenez
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Derwis D, Al-Hazmi HE, Majtacz J, Ciesielski S, Mąkinia J. Enhancing nitrogen removal in the partial denitrification/anammox processes for SO 4- - Rich wastewater treatment: Insights into autotrophic and mixotrophic strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120908. [PMID: 38631168 DOI: 10.1016/j.jenvman.2024.120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
The investigation of partial denitrification/anammox (PD/anammox) processes was conducted under autotrophic (N-S cycle) and mixotrophic (N-S-C cycle) conditions over 180 days. Key findings revealed the remarkable capability of SO42--dependent systems to produce NO2- effectively, supporting anaerobic NH4+ oxidation. Additionally, SO42- served as an additional electron acceptor in sulfate reduction ammonium oxidation (SRAO). Increasing influent SO42- concentrations notably improved ammonia utilization rates (AUR) and NH4+ and total nitrogen (TN) utilization efficiencies, peaking at 57% for SBR1 and nearly 100% for SBR2. Stoichiometric analysis showed a 7.5-fold increase in AUR (SRAO and anammox) in SBR1 following SO42- supplementation. However, the analysis for SBR2 indicated a shift towards SRAO and mixotrophic denitrification, with anammox disappearing entirely by the end of the study. Comparative assessments between SBR1 and SBR2 emphasized the impact of organic compounds (CH3COONa) on transformations within the N-S-C cycle. SBR1 performance primarily involved anammox, SRAO and other SO42- utilization pathways, with minimal S-dependent autotrophic denitrification (SDAD) involvement. In contrast, SBR2 performance encompassed SRAO, mixotrophic denitrification, and other pathways for SO42- production. The SRAO process involved two dominant genera, such as Candidatus Brocadia and PHOS-HE36.
Collapse
Affiliation(s)
- Dominika Derwis
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, Olsztyn, 10-719, Poland.
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| |
Collapse
|
4
|
Gutierrez‐Patricio S, Osman JR, Gonzalez‐Pimentel JL, Jurado V, Laiz L, Concepción AL, Saiz‐Jimenez C, Miller AZ. Microbiological exploration of the Cueva del Viento lava tube system in Tenerife, Canary Islands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13245. [PMID: 38643985 PMCID: PMC11033209 DOI: 10.1111/1758-2229.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
Cueva del Viento, located in the Canary Islands, Spain, is the Earth's sixth-longest lava tube, spanning 18,500 m, and was formed approximately 27,000 years ago. This complex volcanic cave system is characterized by a unique geomorphology, featuring an intricate network of galleries. Despite its geological significance, the geomicrobiology of Cueva del Viento remains largely unexplored. This study employed a combination of culture-dependent techniques and metabarcoding data analysis to gain a comprehensive understanding of the cave's microbial diversity. The 16S rRNA gene metabarcoding approach revealed that the coloured microbial mats (yellow, red and white) coating the cave walls are dominated by the phyla Actinomycetota, Pseudomonadota and Acidobacteriota. Of particular interest is the high relative abundance of the genus Crossiella, which is involved in urease-mediated biomineralization processes, along with the presence of genera associated with nitrogen cycling, such as Nitrospira. Culture-dependent techniques provided insights into the morphological characteristics of the isolated species and their potential metabolic activities, particularly for the strains Streptomyces spp., Paenarthrobacter sp. and Pseudomonas spp. Our findings underscore the potential of Cueva del Viento as an ideal environment for studying microbial diversity and for the isolation and characterization of novel bacterial species of biotechnological interest.
Collapse
Affiliation(s)
| | - Jorge R. Osman
- Instituto de Geología Económica Aplicada (GEA)Universidad de ConcepciónConcepciónChile
| | - José Luis Gonzalez‐Pimentel
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
- Laboratorio HERCULESUniversidade de ÉvoraÉvoraPortugal
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | | | - Cesareo Saiz‐Jimenez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | - Ana Zélia Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
- Laboratorio HERCULESUniversidade de ÉvoraÉvoraPortugal
| |
Collapse
|
5
|
Turrini P, Chebbi A, Riggio FP, Visca P. The geomicrobiology of limestone, sulfuric acid speleogenetic, and volcanic caves: basic concepts and future perspectives. Front Microbiol 2024; 15:1370520. [PMID: 38572233 PMCID: PMC10987966 DOI: 10.3389/fmicb.2024.1370520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Caves are ubiquitous subterranean voids, accounting for a still largely unexplored surface of the Earth underground. Due to the absence of sunlight and physical segregation, caves are naturally colonized by microorganisms that have developed distinctive capabilities to thrive under extreme conditions of darkness and oligotrophy. Here, the microbiomes colonizing three frequently studied cave types, i.e., limestone, sulfuric acid speleogenetic (SAS), and lava tubes among volcanic caves, have comparatively been reviewed. Geological configurations, nutrient availability, and energy flows in caves are key ecological drivers shaping cave microbiomes through photic, twilight, transient, and deep cave zones. Chemoheterotrophic microbial communities, whose sustenance depends on nutrients supplied from outside, are prevalent in limestone and volcanic caves, while elevated inorganic chemical energy is available in SAS caves, enabling primary production through chemolithoautotrophy. The 16S rRNA-based metataxonomic profiles of cave microbiomes were retrieved from previous studies employing the Illumina platform for sequencing the prokaryotic V3-V4 hypervariable region to compare the microbial community structures from different cave systems and environmental samples. Limestone caves and lava tubes are colonized by largely overlapping bacterial phyla, with the prevalence of Pseudomonadota and Actinomycetota, whereas the co-dominance of Pseudomonadota and Campylobacterota members characterizes SAS caves. Most of the metataxonomic profiling data have so far been collected from the twilight and transient zones, while deep cave zones remain elusive, deserving further exploration. Integrative approaches for future geomicrobiology studies are suggested to gain comprehensive insights into the different cave types and zones. This review also poses novel research questions for unveiling the metabolic and genomic capabilities of cave microorganisms, paving the way for their potential biotechnological applications.
Collapse
Affiliation(s)
- Paolo Turrini
- Department of Science, Roma Tre University, Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
6
|
Kuo J, Liu D, Wen WH, Chiu CY, Chen W, Wu YW, Lai FT, Lin CH. Different microbial communities in paddy soils under organic and nonorganic farming. Braz J Microbiol 2024; 55:777-788. [PMID: 38147271 PMCID: PMC10920611 DOI: 10.1007/s42770-023-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
Organic agriculture is a farming method that provides healthy food and is friendly to the environment, and it is developing rapidly worldwide. This study compared microbial communities in organic farming (Or) paddy fields to those in nonorganic farming (Nr) paddy fields based on 16S rDNA sequencing and analysis. The predominant microorganisms in both soils were Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, and Nitrospirota. The alpha diversity of the paddy soil microbial communities was not different between the nonorganic and organic farming systems. The beta diversity of nonmetric multidimensional scaling (NMDS) revealed that the two groups were significantly separated. Distance-based redundancy analysis (db-RDA) suggested that soil pH and electrical conductivity (EC) had a positive relationship with the microbes in organic paddy soils. There were 23 amplicon sequence variants (ASVs) that showed differential abundance. Among them, g_B1-7BS (Proteobacteria), s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 (p_GAL15), c_Thermodesulfovibrionia (Nitrospirota), two of f_Anaerolineaceae (Chloroflexi), and two of g_S085 (Chloroflexi) showed that they were more abundant in organic soils, whereas g_11-24 (Acidobacteriota), g__Subgroup_7 (Acidobacteriota), and g_Bacillus (Firmicutes) showed differential abundance in nonorganic paddy soils. Functional prediction of microbial communities in paddy soils showed that functions related to carbohydrate metabolism could be the major metabolic activities. Our work indicates that organic farming differs from nonorganic farming in terms of microbial composition in paddy soils and provides specific microbes that might be helpful for understanding soil fertility.
Collapse
Affiliation(s)
- Jimmy Kuo
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 94450, Taiwan
| | - Daniel Liu
- Department of Biomedical Sciences, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Wei Hao Wen
- Department of Biomedical Sciences, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Ching Yuan Chiu
- Department of Bioresources, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Wanyu Chen
- Department of Bioresources, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Yun Wen Wu
- Department of Bioresources, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Fang-Ting Lai
- Department of Medicinal Botanicals and Foods On Health Applications, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Chorng-Horng Lin
- Department of Biomedical Sciences, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan.
| |
Collapse
|
7
|
Palma V, González-Pimentel JL, Jimenez-Morillo NT, Sauro F, Gutiérrez-Patricio S, De la Rosa JM, Tomasi I, Massironi M, Onac BP, Tiago I, González-Pérez JA, Laiz L, Caldeira AT, Cubero B, Miller AZ. Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169583. [PMID: 38154629 DOI: 10.1016/j.scitotenv.2023.169583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Lanzarote (Canary Islands, Spain) is one of the best terrestrial analogs to Martian volcanology. Particularly, Lanzarote lava tubes may offer access to recognizably preserved chemical and morphological biosignatures valuable for astrobiology. By combining microbiological, mineralogical, and organic geochemistry tools, an in-depth characterization of speleothems and associated microbial communities in lava tubes of Lanzarote is provided. The aim is to untangle the underlying factors influencing microbial colonization in Earth's subsurface to gain insight into the possibility of similar subsurface microbial habitats on Mars and to identify biosignatures preserved in lava tubes unequivocally. The microbial communities with relevant representativeness comprise chemoorganotrophic, halophiles, and/or halotolerant bacteria that have evolved as a result of the surrounding oceanic environmental conditions. Many of these bacteria have a fundamental role in reshaping cave deposits due to their carbonatogenic ability, leaving behind an organic record that can provide evidence of past or present life. Based on functional profiling, we infer that Crossiella is involved in fluorapatite precipitation via urea hydrolysis and propose its Ca-rich precipitates as compelling biosignatures valuable for astrobiology. In this sense, analytical pyrolysis, stable isotope analysis, and chemometrics were conducted to characterize the complex organic fraction preserved in the speleothems and find relationships among organic families, microbial taxa, and precipitated minerals. We relate organic compounds with subsurface microbial taxa, showing that organic families drive the microbiota of Lanzarote lava tubes. Our data indicate that bacterial communities are important contributors to biomarker records in volcanic-hosted speleothems. Within them, the lipid fraction primarily consists of low molecular weight n-alkanes, α-alkenes, and branched-alkenes, providing further evidence that microorganisms serve as the origin of organic matter in these formations. The ongoing research in Lanzarote's lava tubes will help develop protocols, routines, and predictive models that could provide guidance on choosing locations and methodologies for searching potential biosignatures on Mars.
Collapse
Affiliation(s)
- Vera Palma
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | | | | | - Francesco Sauro
- Department of Earth Sciences and Environmental Geology, University of Bologna, Italy
| | | | - José M De la Rosa
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ilaria Tomasi
- Geosciences Department, University of Padova, Padova, Italy
| | | | - Bogdan P Onac
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, USA; Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Igor Tiago
- CFE-Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - José A González-Pérez
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana T Caldeira
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana Z Miller
- HERCULES Laboratory, University of Évora, Évora, Portugal; Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain.
| |
Collapse
|
8
|
Martin-Pozas T, Cuezva S, Fernandez-Cortes A, Benavente D, Saiz-Jimenez C, Sanchez-Moral S. Prokaryotic communities inhabiting a high-radon subterranean ecosystem (Castañar Cave, Spain): Environmental and substrate-driven controls. Microbiol Res 2023; 277:127511. [PMID: 37852679 DOI: 10.1016/j.micres.2023.127511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Castañar Cave (Caceres, Spain) is a unique show cave known for its high natural radiation levels. This study presents a comprehensive analysis of its prokaryotic diversity, specifically focusing on investigating the influence of environmental conditions and substrate characteristics on the prokaryotic community structure in the cave sediments. Additionally, the research aims to evaluate the potential impact of human activities on the cave ecosystem. The identification of distinct bioclimatic zones within the cave was made possible through a combination of environmental and microbial monitoring (ATP assays). The results reveal sediment texture as a significant factor, notably affecting the structure, diversity, and phylogenetic variability of the microbial community, including both Bacteria and Archaea. The proportion of clay minerals in sediments plays a crucial role in regulating moisture levels and nutrient availability. These substrate properties collectively exert a significant selective pressure on the structure of prokaryotic communities within cave sediments. The molecular approach shows that heterotrophic bacteria, including those with chitinolytic enzymes, primarily inhabit the cave. Furthermore, chemoautotrophic nitrifiers such as the archaea Nitrososphaeria and the genus Nitrospira, as well as methanotrophic bacteria from the phyla Methylomirabilota, Pseudomonadota, and Verrucomicrobiota, are also present. Remarkably, despite being a show cave, the cave microbiota displays minimal impacts from human activities and the surface ecosystem. Prokaryotic populations exhibit stability in the innermost areas, while the tourist trail area experiences slightly higher biomass increases due to visitor traffic. This suggests that conservation efforts have successfully limited the entry of external nutrients into the innermost cave areas. Additionally, the results suggest that integrating biomarkers like ATP into environmental monitoring can significantly enhance the methods used to study the negative impacts of tourism on cave ecosystems.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcala, 28805 Madrid, Spain.
| | | | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
9
|
Gogoleva N, Chervyatsova O, Balkin A, Kuzmina L, Shagimardanova E, Kiseleva D, Gogolev Y. Microbial tapestry of the Shulgan-Tash cave (Southern Ural, Russia): influences of environmental factors on the taxonomic composition of the cave biofilms. ENVIRONMENTAL MICROBIOME 2023; 18:82. [PMID: 37990336 PMCID: PMC10662634 DOI: 10.1186/s40793-023-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Cave biotopes are characterized by stable low temperatures, high humidity, and scarcity of organic substrates. Despite the harsh oligotrophic conditions, they are often inhabited by rich microbial communities. Abundant fouling with a wide range of morphology and coloration of colonies covers the walls of the Shulgan-Tash cave in the Southern Urals. This cave is also famous for the unique Paleolithic painting discovered in the middle of the last century. We aimed to investigate the diversity, distribution, and potential impact of these biofilms on the cave's Paleolithic paintings, while exploring how environmental factors influence the microbial communities within the cave. RESULTS The cave's biofilm morphotypes were categorized into three types based on the ultrastructural similarities. Molecular taxonomic analysis identified two main clusters of microbial communities, with Actinobacteria dominating in most of them and a unique "CaveCurd" community with Gammaproteobacteria prevalent in the deepest cave sections. The species composition of these biofilms reflects changes in environmental conditions, such as substrate composition, temperature, humidity, ventilation, and CO2 content. Additionally, it was observed that cave biofilms contribute to biocorrosion on cave wall surfaces. CONCLUSIONS The Shulgan-Tash cave presents an intriguing example of a stable extreme ecosystem with diverse microbiota. However, the intense dissolution and deposition of carbonates caused by Actinobacteria pose a potential threat to the preservation of the cave's ancient rock paintings.
Collapse
Affiliation(s)
- Natalia Gogoleva
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondsee, 5310, Austria.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia.
| | | | - Alexander Balkin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Lyudmila Kuzmina
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - Daria Kiseleva
- Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia
- Institute of Fundamental Education, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russia
| | - Yuri Gogolev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| |
Collapse
|
10
|
Theodorescu M, Bucur R, Bulzu PA, Faur L, Levei EA, Mirea IC, Cadar O, Ferreira RL, Souza-Silva M, Moldovan OT. Environmental Drivers of the Moonmilk Microbiome Diversity in Some Temperate and Tropical Caves. MICROBIAL ECOLOGY 2023; 86:2847-2857. [PMID: 37606696 DOI: 10.1007/s00248-023-02286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Moonmilk is a cave deposit that was used for medical and cosmetic purposes and has lately raised interest for its antimicrobial potential. We studied five moonmilk samples from four caves with different microclimatic conditions, two temperate in north-western and northern Romania (Ferice, Fața Apei, and Izvorul Tăușoarelor caves) and one tropical in Minas Gerais, Brazil (Nestor Cave). The physicochemical and mineralogical analyses confirmed the presence of calcite and dolomite as the main phase in the moonmilk. A 16S rRNA gene-based metabarcoding approach showed the most abundant bacteria phyla Proteobacteria, GAL15, Actinobacteriota, and Acidobacteriota. The investigated caves differed in the dominant orders of bacteria, with the highest distance between the Romanian and Nestor Cave samples. Climate and, implicitly, the soil microbiome can be responsible for some differences we found between all the samples. However, other factors can be involved in shaping the moonmilk microbiome, as differences were found between samples in the same cave (Ferice). In our five moonmilk samples, 1 phylum, 70 orders (~ 36%), and 252 genera (~ 47%) were unclassified, which hints at the great potential of cave microorganisms for future uses.
Collapse
Affiliation(s)
- Mihail Theodorescu
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, 400006, Cluj-Napoca, Romania
| | - Ruxandra Bucur
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, 400006, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Virgil Fulicea 3, 400022, Cluj-Napoca, Romania
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, 37005, České Budějovice, Czech Republic
| | - Luchiana Faur
- Romanian Institute of Science and Technology, Virgil Fulicea 3, 400022, Cluj-Napoca, Romania
- Emil Racovita Institute of Speleology, 13 Septembrie 13, 050711, Bucharest, Romania
| | - Erika Andrea Levei
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, 400293, Cluj-Napoca, Romania
| | - Ionuț Cornel Mirea
- Romanian Institute of Science and Technology, Virgil Fulicea 3, 400022, Cluj-Napoca, Romania
- Emil Racovita Institute of Speleology, 13 Septembrie 13, 050711, Bucharest, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, 400293, Cluj-Napoca, Romania
| | - Rodrigo Lopes Ferreira
- Centro de Estudos em Biologia Subterrânea, Setor de Biodiversidade Subterrânea, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Campus Universitário, Lavras, Minas Gerais, 37202-553, Brazil
| | - Marconi Souza-Silva
- Centro de Estudos em Biologia Subterrânea, Setor de Biodiversidade Subterrânea, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Campus Universitário, Lavras, Minas Gerais, 37202-553, Brazil
| | - Oana Teodora Moldovan
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, 400006, Cluj-Napoca, Romania.
- Romanian Institute of Science and Technology, Virgil Fulicea 3, 400022, Cluj-Napoca, Romania.
- Centro Nacional sobre la Evolucion Humana, Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.
| |
Collapse
|
11
|
Martin-Pozas T, Fernandez-Cortes A, Cuezva S, Cañaveras JC, Benavente D, Duarte E, Saiz-Jimenez C, Sanchez-Moral S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165218. [PMID: 37419360 DOI: 10.1016/j.scitotenv.2023.165218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
In the absence of sunlight, caves harbor a great diversity of microbial colonies to extensive biofilms with different sizes and colors visible to the naked eye. One of the most widespread and visible types of biofilm are those with yellow hues that can constitute a serious problem for the conservation of cultural heritage in many caves, such as Pindal Cave (Asturias, Spain). This cave, declared a World Heritage Site by UNESCO for its Paleolithic parietal art, shows a high degree of development of yellow biofilms that represents a real threat to the conservation of painted and engraved figures. This study aims to: 1) identify the microbial structures and the most characteristic taxa composing the yellow biofilms, 2) seek the linked microbiome reservoir primarily contributing to their growth; 3) seed light on the driving vectors that contribute to their formation and determine the subsequent proliferation and spatial distribution. To achieve this goal, we used amplicon-based massive sequencing, in combination with other techniques such as microscopy, in situ hybridization and environmental monitoring, to compare the microbial communities of yellow biofilms with those of drip waters, cave sediments and exterior soil. The results revealed microbial structures related to the phylum Actinomycetota and the most characteristic bacteria in yellow biofilms, represented by the genera wb1-P19, Crossiella, Nitrospira, and Arenimonas. Our findings suggest that sediments serve as potential reservoirs and colonization sites for these bacteria that can develop into biofilms under favorable environmental and substrate conditions, with a particular affinity for speleothems and rugged-surfaced rocks found in condensation-prone areas. This study presents an exhaustive study of microbial communities of yellow biofilms in a cave, which could be used as a procedure for the identification of similar biofilms in other caves and to design effective conservation strategies in caves with valuable cultural heritage.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | | | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcala, Campus Cientifico-Tecnologico, 28802 Alcala de Henares, Spain.
| | - Juan Carlos Cañaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
12
|
Tsouggou N, Oikonomou A, Papadimitriou K, Skandamis PN. 16S and 18S rDNA Amplicon Sequencing Analysis of Aesthetically Problematic Microbial Mats on the Walls of the Petralona Cave: The Use of Essential Oils as a Cleaning Method. Microorganisms 2023; 11:2681. [PMID: 38004693 PMCID: PMC10673238 DOI: 10.3390/microorganisms11112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of microbial communities on cave walls and speleothems is an issue that requires attention. Traditional cleaning methods using water, brushes, and steam can spread the infection and cause damage to the cave structures, while chemical agents can lead to the formation of toxic compounds and damage the cave walls. Essential oils (EOs) have shown promising results in disrupting the cell membrane of bacteria and affecting their membrane permeability. In this study, we identified the microorganisms forming unwanted microbial communities on the walls and speleothems of Petralona Cave using 16S and 18S rDNA amplicon sequencing approaches and evaluated the efficacy of EOs in reducing the ATP levels of these ecosystems. The samples exhibited a variety of both prokaryotic and eukaryotic microorganisms, including Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, the SAR supergroup, Opisthokonta, Excavata, Archaeplastida, and Amoebozoa. These phyla are often found in various habitats, including caves, and contribute to the ecological intricacy of cave ecosystems. In terms of the order and genus taxonomy, the identified biota showed abundances that varied significantly among the samples. Functional predictions were also conducted to estimate the differences in expressed genes among the samples. Oregano EO was found to reduce ATP levels by 87% and 46% for black and green spots, respectively. Consecutive spraying with cinnamon EO further reduced ATP levels, with reductions of 89% for black and 88% for green spots. The application of a mixture solution caused a significant reduction up to 96% in ATP levels of both areas. Our results indicate that EOs could be a promising solution for the treatment of microbial communities on cave walls and speleothems.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Alexandra Oikonomou
- Ephorate of Palaeoanthropology and Speleology, Hellenic Republic Ministry of Culture and Sports, Ardittou 34b, 11636 Athens, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| |
Collapse
|
13
|
Nicolosi G, Gonzalez-Pimentel JL, Piano E, Isaia M, Miller AZ. First Insights into the Bacterial Diversity of Mount Etna Volcanic Caves. MICROBIAL ECOLOGY 2023; 86:1632-1645. [PMID: 36750476 PMCID: PMC10497698 DOI: 10.1007/s00248-023-02181-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
While microbial communities in limestone caves across the world are relatively understood, knowledge of the microbial composition in lava tubes is lagging behind. These caves are found in volcanic regions worldwide and are typically lined with multicolored microbial mats on their walls and ceilings. The Mount Etna (Sicily, S-Italy) represents one of the most active volcanos in the world. Due to its outstanding biodiversity and geological features, it was declared Natural Heritage of Humanity by the UNESCO in 2013. Despite the presence of more than 200 basaltic lava tubes, the microbial diversity of these hypogean systems has never been investigated so far. Here, we investigated bacterial communities in four lava tubes of Mount Etna volcano. Field emission scanning electron microscopy (FESEM) was carried out for the morphological characterization and detection of microbial features. We documented an abundant presence of microbial cells with different morphotypes including rod-shaped, filamentous, and coccoidal cells with surface appendages, resembling actinobacteria reported in other lava tubes across the world. Based on 16S rRNA gene analysis, the colored microbial mats collected were mostly composed of bacteria belonging to the phyla Actinomycetota, Pseudomonadota, Acidobacteriota, Chloroflexota, and Cyanobacteria. At the genus level, the analysis revealed a dominance of the genus Crossiella, which is actively involved in biomineralization processes, followed by Pseudomonas, Bacillus, Chujaibacter, and Sphingomonas. The presence of these taxa is associated with the carbon, nitrogen, and ammonia cycles, and some are possibly related to the anthropic disturbance of these caves. This study provides the first insight into the microbial diversity of the Etna volcano lava tubes, and expands on previous research on microbiology of volcanic caves across the world.
Collapse
Affiliation(s)
- Giuseppe Nicolosi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Centro Speleologico Etneo, Catania, Italy
| | | | - Elena Piano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Ana Z Miller
- HERCULES Laboratory, University of Évora, Évora, Portugal.
- Instituto de Recursos Naturales Y Agrobiologia de Sevilla (IRNAS-CSIC), Seville, Spain.
| |
Collapse
|
14
|
Liu X, Wang H, Wang W, Cheng X, Wang Y, Li Q, Li L, Ma L, Lu X, Tuovinen OH. Nitrate determines the bacterial habitat specialization and impacts microbial functions in a subsurface karst cave. Front Microbiol 2023; 14:1115449. [PMID: 36846803 PMCID: PMC9947541 DOI: 10.3389/fmicb.2023.1115449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Karst caves are usually considered as natural laboratories to study pristine microbiomes in subsurface biosphere. However, effects of the increasingly detected nitrate in underground karst ecosystem due to the acid rain impact on microbiota and their functions in subsurface karst caves have remained largely unknown. In this study, samples of weathered rocks and sediments were collected from the Chang Cave, Hubei province and subjected to high-throughput sequencing of 16S rRNA genes. The results showed that nitrate significantly impacted bacterial compositions, interactions, and functions in different habitats. Bacterial communities clustered according to their habitats with distinguished indicator groups identified for each individual habitat. Nitrate shaped the overall bacterial communities across two habitats with a contribution of 27.2%, whereas the pH and TOC, respectively, structured bacterial communities in weathered rocks and sediments. Alpha and beta diversities of bacterial communities increased with nitrate concentration in both habitats, with nitrate directly affecting alpha diversity in sediments, but indirectly on weathered rocks by lowering pH. Nitrate impacted more on bacterial communities in weathered rocks at the genus level than in sediments because more genera significantly correlated with nitrate concentration in weathered rocks. Diverse keystone taxa involved in nitrogen cycling were identified in the co-occurrence networks such as nitrate reducers, ammonium-oxidizers, and N2-fixers. Tax4Fun2 analysis further confirmed the dominance of genes involved in nitrogen cycling. Genes of methane metabolism and carbon fixation were also dominant. The dominance of dissimilatory and assimilatory nitrate reduction in nitrogen cycling substantiated nitrate impact on bacterial functions. Our results for the first time revealed the impact of nitrate on subsurface karst ecosystem in terms of bacterial compositions, interactions, and functions, providing an important reference for further deciphering the disturbance of human activities on the subsurface biosphere.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Weiqi Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiheng Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qing Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Lu Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Cheng X, Xiang X, Yun Y, Wang W, Wang H, Bodelier PLE. Archaea and their interactions with bacteria in a karst ecosystem. Front Microbiol 2023; 14:1068595. [PMID: 36814573 PMCID: PMC9939782 DOI: 10.3389/fmicb.2023.1068595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Karst ecosystems are widely distributed around the world, accounting for 15-20% of the global land area. However, knowledge on microbial ecology of these systems does not match with their global importance. To close this knowledge gap, we sampled three niches including weathered rock, sediment, and drip water inside the Heshang Cave and three types of soils overlying the cave (forest soil, farmland soil, and pristine karst soil). All these samples were subjected to high-throughput sequencing of V4-V5 region of 16S rRNA gene and analyzed with multivariate statistical analysis. Overall, archaeal communities were dominated by Thaumarchaeota, whereas Actinobacteria dominated bacterial communities. Thermoplasmata, Nitrosopumilaceae, Aenigmarchaeales, Crossiella, Acidothermus, and Solirubrobacter were the important predictor groups inside the Heshang Cave, which were correlated to NH4 + availability. In contrast, Candidatus Nitrososphaera, Candidatus Nitrocosmicus, Thaumarchaeota Group 1.1c, and Pseudonocardiaceae were the predictors outside the cave, whose distribution was correlated with pH, Ca2+, and NO2 -. Tighter network structures were found in archaeal communities than those of bacteria, whereas the topological properties of bacterial networks were more similar to those of total prokaryotic networks. Both chemolithoautotrophic archaea (Candidatus Methanoperedens and Nitrosopumilaceae) and bacteria (subgroup 7 of Acidobacteria and Rokubacteriales) were the dominant keystone taxa within the co-occurrence networks, potentially playing fundamental roles in obtaining energy under oligotrophic conditions and thus maintaining the stability of the cave ecosystem. To be noted, all the keystone taxa of karst ecosystems were related to nitrogen cycling, which needs further investigation, particularly the role of archaea. The predicted ecological functions in karst soils mainly related to carbohydrate metabolism, biotin metabolism, and synthesis of fatty acid. Our results offer new insights into archaeal ecology, their potential functions, and archaeal interactions with bacteria, which enhance our understanding about the microbial dark matter in the subsurface karst ecosystems.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
16
|
Farda B, Vaccarelli I, Ercole C, Djebaili R, Del Gallo M, Pellegrini M. Exploring structure, microbiota, and metagenome functions of epigean and hypogean black deposits by microscopic, molecular and bioinformatic approaches. Sci Rep 2022; 12:19405. [PMID: 36371463 PMCID: PMC9653421 DOI: 10.1038/s41598-022-24159-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study revealed how Bacteria and Archaea communities and their metabolic functions differed between two groups of black deposits identified in gorge and cave environments. Scanning electron microscopy coupled with energy dispersive spectroscopy was used to analyse the presence of microbial biosignatures and the elemental composition of samples. Metabarcoding of the V3-V4 regions of 16S rRNA was used to investigate Bacteria and Archaea communities. Based on 16S rRNA sequencing results, PICRUSt software was used to predict metagenome functions. Micrographs showed that samples presented microbial biosignatures and microanalyses highlighted Mn concretions and layers on Al-Si surfaces. The 16S rRNA metabarcoding alpha-diversity metrics showed similar Simpson's and Shannon indices and different values of the Chao-1 index. The amplicon sequence variants (ASVs) analysis at the different taxonomic levels showed a diverse genera composition. However, the communities of all samples shared the presence of uncultured ASVs belonging to the Gemmatales family (Phylogenesis: Gemmataceae; Planctomycetes; Planctomycetota; Bacteria). The predicted metagenome functions analysis revealed diverse metabolic profiles of the Cave and Gorge groups. Genes coding for essential Mn metabolism were present in all samples. Overall, the findings on structure, microbiota, and predicted metagenome functions showed a similar microbial contribution to epigean and hypogean black deposits Mn metabolism.
Collapse
Affiliation(s)
- Beatrice Farda
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ilaria Vaccarelli
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Claudia Ercole
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rihab Djebaili
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maddalena Del Gallo
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marika Pellegrini
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
17
|
Martin-Pozas T, Cuezva S, Fernandez-Cortes A, Cañaveras JC, Benavente D, Jurado V, Saiz-Jimenez C, Janssens I, Seijas N, Sanchez-Moral S. Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154921. [PMID: 35364174 DOI: 10.1016/j.scitotenv.2022.154921] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcalá, Scientific Technological Campus, 28802 Alcalá de Henares, Spain; Plants and Ecosystems, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.
| | | | - Juan Carlos Cañaveras
- Department of Environmental and Earth Sciences, University of Alicante, San Vicente del Raspeig Campus, 03690 Alicante, Spain.
| | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, San Vicente del Raspeig Campus, 03690 Alicante, Spain.
| | - Valme Jurado
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Ivan Janssens
- Plants and Ecosystems, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Naomi Seijas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
18
|
Miller AZ, Jiménez-Morillo NT, Coutinho ML, Gazquez F, Palma V, Sauro F, Pereira MF, Rull F, Toulkeridis T, Caldeira AT, Forti P, Calaforra JM. Organic geochemistry and mineralogy suggest anthropogenic impact in speleothem chemistry from volcanic show caves of the Galapagos. iScience 2022; 25:104556. [PMID: 35789844 PMCID: PMC9250005 DOI: 10.1016/j.isci.2022.104556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
The network of lava tubes is one of the most unexploited natural wonders of the Galapagos Islands. Here, we provide the first morphological, mineralogical, and biogeochemical assessment of speleothems from volcanic caves of the Galapagos to understand their structure, composition, and origin, as well as to identify organic molecules preserved in speleothems. Mineralogical analyses revealed that moonmilk and coralloid speleothems from Bellavista and Royal Palm Caves were composed of calcite, opal-A, and minor amounts of clay minerals. Extracellular polymeric substances, fossilized bacteria, silica microspheres, and cell imprints on siliceous minerals evidenced microbe-mineral interactions and biologically-mediated silica precipitation. Alternating depositional layers between siliceous and carbonate minerals and the detection of biomarkers of surface vegetation and anthropogenic stressors indicated environmental and anthropogenic changes (agriculture, human waste, and cave visits) on these unique underground resources. Stable isotope analysis and Py-GC/MS were key to robustly identify biomarkers, allowing for implementation of future protection policies. Speleothems from lava tubes of Galapagos are archives of anthropogenic stressors Moonmilk and coralloids are composed of calcite, opal-A, and clay minerals Microbe-mineral interactions promote mineral dissolution and precipitation Biomarkers of surface vegetation and anthropogenic impacts detected by Py-GC/MS
Collapse
Affiliation(s)
- Ana Z. Miller
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Seville, Spain
- HERCULES Laboratory, University of Évora, Évora, Portugal
- Corresponding author
| | - Nicasio T. Jiménez-Morillo
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | | | - Fernando Gazquez
- Department of Biology and Geology, University of Almería, Almería, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Almería, Spain
| | - Vera Palma
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | - Francesco Sauro
- Department of Earth Sciences and Environmental Geology, University of Bologna, Bologna, Italy
| | | | - Fernando Rull
- CSIC-CAB Associated Unit ERICA, Department of Condensed Matter Physics, Mineralogy and Crystallography, University of Valladolid, Boecillo, Spain
| | | | | | - Paolo Forti
- Department of Earth Sciences and Environmental Geology, University of Bologna, Bologna, Italy
| | - José M. Calaforra
- Department of Biology and Geology, University of Almería, Almería, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Almería, Spain
| |
Collapse
|
19
|
Gonzalez-Pimentel JL, Hermosin B, Saiz-Jimenez C, Jurado V. Streptomyces benahoarensis sp. nov. Isolated From a Lava Tube of La Palma, Canary Islands, Spain. Front Microbiol 2022; 13:907816. [PMID: 35651486 PMCID: PMC9149447 DOI: 10.3389/fmicb.2022.907816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Two Streptomyces strains, labeled as MZ03-37T and MZ03-48, were isolated from two different samples, a mucolite-type speleothem and a microbial mat on the walls of a lava tube from La Palma Island (Canary Islands). Phylogenetic analysis based on concatenated sequences of six housekeeping genes indicated that both strains belonged to the same species. The closest relatives for both strains were Streptomyces palmae CMU-AB204T (98.71%), Streptomyces catenulae NRRL B-2342T (98.35%), and Streptomyces ramulosus NRRL B-2714T (98.35%). Multi-locus sequence analysis (MLSA), based on five house-keeping gene alleles (i.e., atpD, gyrB, recA, rpoB, and trpB), indicated that both isolated strains were closely related to S. catenulae NRRL B-2342T. Whole-genome average nucleotide identity (ANI) scores of both strains were in the threshold value for species delineation with the closest species. Both strains presented a G+C content of 72.1 mol%. MZ03-37T was light brown in substrate and white in aerial mycelium, whereas MZ03-48 developed a black aerial and substrate mycelium. No pigment diffusion was observed in both strains. They grew at 10°C-37°C (optimum 28°C-32°C) and in the presence of up to 15% (w/v) NaCl. MZ03-37T grew at pH 5-10 (optimal 6-9), whereas MZ03-48 grew at pH 4-11 (optimal 5-10). LL-Diaminopimelic acid was the main diamino acid identified. The predominant fatty acids in both strains were iso-C16:0, anteiso-C15:0, C16:0, and iso-C14:0. The major isoprenoid quinones were MK-9(H6) and MK-9(H8), and the main polar lipids were aminolipid, phospholipid, and phosphoglycolipid. In silico analyses for functional annotation predicted the presence of gene clusters involved in resistome mechanisms and in the synthesis of described antimicrobials such as linocin-M18 and curamycin, as well as different genes likely involved in mechanisms for active compound synthesis, both already described and not discovered so far. On the basis of their phylogenetic relatedness and their phenotypic and genotypic features, the strains MZ03-37T and MZ03-48 represented a novel species within the genus Streptomyces, for which the name Streptomyces benahoarensis sp. nov. is proposed. The type strain is MZ03-37T (= CECT 9805 = DSMZ 8002); and MZ03-48 (= CECT 9806 = DSMZ 8011) is a reference strain.
Collapse
Affiliation(s)
| | - Bernardo Hermosin
- Instituto de Recursos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Sevilla, Spain
| | - Cesareo Saiz-Jimenez
- Instituto de Recursos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Sevilla, Spain
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Sevilla, Spain
| |
Collapse
|
20
|
Jurado V, Del Rosal Y, Jimenez de Cisneros C, Liñan C, Martin-Pozas T, Gonzalez-Pimentel JL, Hermosin B, Saiz-Jimenez C. Microbial communities in carbonate precipitates from drip waters in Nerja Cave, Spain. PeerJ 2022; 10:e13399. [PMID: 35529484 PMCID: PMC9074860 DOI: 10.7717/peerj.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Research on cave microorganisms has mainly focused on the microbial communities thriving on speleothems, rocks and sediments; however, drip water bacteria and calcite precipitation has received less attention. In this study, microbial communities of carbonate precipitates from drip waters in Nerja, a show cave close to the sea in southeastern Spain, were investigated. We observed a pronounced difference in the bacterial composition of the precipitates, depending on the galleries and halls. The most abundant phylum in the precipitates of the halls close to the cave entrance was Proteobacteria, due to the low depth of this sector, the direct influence of a garden on the top soil and the infiltration of waters into the cave, as well as the abundance of members of the order Hyphomicrobiales, dispersing from plant roots, and other Betaproteobacteria and Gammaproteobacteria, common soil inhabitants. The influence of marine aerosols explained the presence of Marinobacter, Idiomarina, Thalassobaculum, Altererythrobacter and other bacteria due to the short distance from the cave to the sea. Nineteen out of forty six genera identified in the cave have been reported to precipitate carbonate and likely have a role in mineral deposition.
Collapse
Affiliation(s)
- Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia (IRNAS-CSIC), Sevilla, Spain
| | | | | | - Cristina Liñan
- Departamento de Ecologia y Geologia, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | | | | | - Bernardo Hermosin
- Instituto de Recursos Naturales y Agrobiologia (IRNAS-CSIC), Sevilla, Spain
| | | |
Collapse
|