1
|
Li Q, Shao H. The Role of Pathogens in Plant Invasion: Accumulation of Local Pathogens Hypothesis. MICROBIAL ECOLOGY 2025; 87:178. [PMID: 39870843 PMCID: PMC11772390 DOI: 10.1007/s00248-025-02497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
In the past decades, dozens of invasion hypotheses have been proposed to elucidate the invasion mechanisms of exotic species. Among them, the accumulation of local pathogens hypothesis (ALPH) posits that invasive plants can accumulate local generalist pathogens that have more negative effect on native species than on themselves; as a result, invasive plants might gain competitive advantages that eventually lead to their invasion success. However, research on this topic is still quite insufficient. In this context, we performed a comprehensive literature survey in order to provide a detailed description of the origin and theoretical framework of ALPH; in addition, challenges in contemporary research such as limitations in technical methods and the complexity of interactions between plants and soil microorganisms, as well as future directions of ALPH research, are also discussed in this review. So far, there are less than ten case studies supporting ALPH; therefore, more work is needed to demonstrate whether ALPH is a suitable hypothesis to elucidate the invasion success of certain plant species.
Collapse
Affiliation(s)
- Qian Li
- College of Life Science, Shihezi University, Shihezi, 832000, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China.
- Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
2
|
Dewi FS, Dewi RR, Abadi AL, Setiawan A, Aini LQ, Syib’li MA. Biocontrol of Fusarium oxysporum f. sp. cepae on Indonesian Local Garlic Plants (Lumbu Hijau) Using a Consortium of Bacillus amyloliquefaciens B1 and Arbuscular Mycorrhizal Fungi. MYCOBIOLOGY 2025; 53:18-26. [PMID: 39895927 PMCID: PMC11780700 DOI: 10.1080/12298093.2024.2433826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025]
Abstract
Garlic (Allium sativum) is an indispensable ingredient for enriching and diversifying Indonesian cuisine taste. Indonesian people always use garlic for their daily dishes and any traditional foods. Due to its widespread culinary use, its availability in the market become critical. The main challenge to consistently growing this garlic is Fusarium oxysporum f. sp. cepae, which wilts Allium plants. The application of arbuscular mycorrhiza fungi (AMF) + Bacillus amyloliquefaciens B1 on local garlic varieties named Lumbu Hijau could effectively control F. oxysporum through in vitro and in vivo experiments. In the in vitro test, B. amyloliquefaciens B1 successfully suppressed the growth of F. oxysporum up to 53.41%. The consortium application in the greenhouse reduced disease incidence by up to 39.17%, and the efficacy of this biocontrol reached 84%. In addition, this approach also positively influenced plant growth, such as plant height, total wet shoot and root weight, and also tuber weight. As such, it is essential to use this consortium of microorganisms in field research and carry out a comprehensive investigation to identify any possible phenomena that may arise in the rhizosphere after application.
Collapse
Affiliation(s)
| | - Rifani Rusiana Dewi
- Graduate Plant Pathology Study Program, Universitas Brawijaya, Malang, Indonesia
| | - Abdul Latief Abadi
- Department of Plant Pest and Diseases, Universitas Brawijaya, Malang, Indonesia
| | - Adi Setiawan
- Department of Agronomi, Universitas Brawijaya, Malang, Indonesia
| | - Luqman Qurata Aini
- Department of Plant Pest and Diseases, Universitas Brawijaya, Malang, Indonesia
| | | |
Collapse
|
3
|
Long J, Gao X, Miao Y. Effects of environmental factors on the phenotypic traits and seed element accumulation of wild Elymus nutans in Tibet. Sci Rep 2025; 15:1838. [PMID: 39805884 PMCID: PMC11731037 DOI: 10.1038/s41598-025-85415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Soil nutrients and meteorological conditions are pivotal environmental factors influencing plant growth and development. This study systematically analyzes how soil nutrients and meteorological factors influence the phenotypic growth and seed production of wild Elymus nutans in Tibet. These environmental factors are critical ecological determinants, and this research seeks to unveil the complex and diverse ecological adaptation mechanisms of the species. The research encompasses ten counties within the Tibet Autonomous Region, with sampling points distributed across seven distinct ecological environments. By evaluating root soil nutrient levels, collecting meteorological data, and analyzing growth characteristics and seed elemental composition at various sampling points, the study assesses the ecological adaptability of Elymus nutans under diverse soil nutrient and meteorological conditions. Cluster analysis categorized the 25 samples of Elymus nutans into four distinct groups, each exhibiting significant differences in height and leaf length. Correlation analysis revealed a significant negative correlation between sampling point elevation and NH₄⁺, soil total phosphorus, and available phosphorus content, while a significant positive correlation was observed with pH levels. Meteorological variables-including temperature, humidity, and precipitation-significantly influenced plant phenotypes and the elemental composition of seeds. Soil ammonium nitrogen, total phosphorus, and available phosphorus are vital nutrients for the growth of Elymus nutans, and their deficiency has a significant impact on plant phenotypes and overall growth. Environments characterized by high altitude, aridity, and intense radiation constrain plant growth. Climatic conditions influence the growth of Elymus nutans by altering the soil environment, where soil quality plays a critical role in determining growth conditions. These factors interact to collectively impact the ecosystem.
Collapse
Affiliation(s)
- Jianting Long
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Xianlei Gao
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Yanjun Miao
- Xizang Agricultural and Animal Husbandry University, Nyingchi, 860000, China.
| |
Collapse
|
4
|
Zeng W, Xiang D, Li X, Gao Q, Chen Y, Wang K, Qian Y, Wang L, Li J, Mi Q, Huang H, Xu L, Zhao M, Zhang Y, Xiang H. Effects of combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizosphere bacteria on seedling growth and rhizosphere microecology. Front Microbiol 2025; 15:1475485. [PMID: 39867496 PMCID: PMC11758927 DOI: 10.3389/fmicb.2024.1475485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi (Funneliformis mosseae) and two PGPR (Bacillus sp., Pseudomonas sp.) on the growth of tobacco seedlings, together with high-throughput sequencing technology to reveal associated rhizosphere microecological mechanisms. All inoculation treatments significantly increased the aboveground dry weight; root dry weight; seedling nitrogen, phosphorus, and potassium uptake; plant height; stem thickness; maximum leaf area; chlorophyll content; total root length, surface area, and volume; and average root diameter. The highest values for these indices were observed in the combined treatment of F. mosseae and Pseudomonas sp. SG29 (A_SG29). Furthermore, the A_SG29 treatment yielded the highest diversity indexes and largest percentages of significantly enriched bacterial taxa, and significantly promoted the colonization of AMF in tobacco roots and Pseudomonas in rhizosphere soil. Differential metabolic-pathway predictions using PICRUSt2 showed that the A_SG29 treatment significantly increased the metabolic pathway richness of tobacco rhizosphere microorganisms, and significantly up-regulated some metabolic pathways that may benefit plant growth. Co-inoculation with F. mosseae and Pseudomonas sp. SG29 promoted tobacco-seedling growth by significantly improving rhizosphere microbial communities' structure and function. In summary, the combined inoculation of AMF and SG29 promotes tobacco seedling growth, optimizes the rhizosphere microbial community's structure and function, and serves as a sustainable microbial co-cultivation method for tobacco seedling production.
Collapse
Affiliation(s)
- Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Dan Xiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Xuemei Li
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Yudong Chen
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Kunmiao Wang
- Yunnan Academy of Tobacco Science, Kunming, China
| | | | - Luoping Wang
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Jing Li
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Qili Mi
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Haitao Huang
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Li Xu
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Mingfang Zhao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Yingzhen Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
5
|
Zhao W, Du E, Luo R, Chen Y, Sun Z, Gui F. Arbuscular mycorrhizal fungus and Pseudomonas bacteria affect tomato response to Tuta absoluta (Lepidoptera: Gelechiidae) herbivory. BMC PLANT BIOLOGY 2024; 24:1236. [PMID: 39716073 DOI: 10.1186/s12870-024-05952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Tuta absoluta (Lepidoptera: Gelechiidae) is one of the most significant invasive and destructive pests worldwide, causing serious economic losses to the tomato industry. Rhizosphere microorganism, such as arbuscular mycorrhizal fungi (AMF) and Pseudomonas bacteria, can interact with plants individually or collectively to improve plant growth and resistance to pests and disease. However, the effects of AMF, Pseudomonas, and their interactions on plant responses to insect herbivores remain unclear. A pot experiment was conducted to investigate the effects of single/dual inoculation with AMF (Funneliformis mosseae, M) and Pseudomonas putida (P) on the growth and defense of tomato variety Dafen (Solanum lycopersicum L.) in response to infestation by T. absoluta, as well as the growth, development, and enzyme activity of insect. The results showed that M, P, and MP promoted tomato growth by increasing nutrient concentrations, with the growth-promoting effect of dual-inoculation significantly surpassing that of single inoculation. M, P, and MP still improved tomato growth in T. absoluta infestation, with biomass increases of 57.34%, 54.46%, and 255.49%. M, P, and MP significantly increased the defense ability of tomato, with jasmonic acid concentrations increasing by 42.15%, 60.87% and 90.02%, and phenylalanine ammonia-lyase activity increasing by 47.40%, 47.68%, and 59.97%. The inoculation treatments inhibited the growth and development of T. absoluta, reduced its feeding, prolonged its growth and development, decreased egg weight, and increased the activity of protective and detoxifying enzymes. Overall, our results indicated that AMF and bacteria can stimulate each other, positively influence tomato growth and enhance resistance to T. absoluta. These findings indicate the feasibility of AMF and bacteria in combinations as potential biocontrol agents for the management of T. absoluta.
Collapse
Affiliation(s)
- Wenyuan Zhao
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Ewei Du
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Rongchao Luo
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Yaping Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Furong Gui
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
- Graduate School, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
6
|
Hou M, Leng C, Zhu J, Yang M, Yin Y, Xing Y, Chen J. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. ENVIRONMENTAL MICROBIOME 2024; 19:82. [PMID: 39487507 PMCID: PMC11529171 DOI: 10.1186/s40793-024-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
With global climate change, ecosystems are affected, some of which are more vulnerable than others, such as alpine ecosystems. Microbes play an important role in environmental change in global ecosystems. Plants and microbes are tightly associated, and symbiotic or commensal microorganisms are crucial for plants to respond to stress, particularly for alpine plants. The current study of alpine and subalpine plant microbiome only stays at the community structure scale, but its ecological function and mechanism to help plants to adapt to the harsh environments have not received enough attention. Therefore, it is essential to systematically understand the structure, functions and mechanisms of the microbial community of alpine and subalpine plants, which will be helpful for the conservation of alpine and subalpine plants using synthetic microbial communities in the future. This review mainly summarizes the research progress of the alpine plant microbiome and its mediating mechanism of plant cold adaptation from the following three perspectives: (1) Microbiome community structure and their unique taxa of alpine and subalpine plants; (2) The role of alpine and subalpine plant microbiome in plant adaptation to cold stress; (3) Mechanisms by which the microbiome of alpine and subalpine plants promotes plant adaptation to low-temperature environments. Finally, we also discussed the future application of high-throughput technologies in the development of microbial communities for alpine and subalpine plants. The existing knowledge could improve our understanding of the important role of microbes in plant adaptation to harsh environments. In addition, perspective further studies on microbes' function confirmation and microbial manipulations in microbiome engineering were also discussed.
Collapse
Affiliation(s)
- Mengyan Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chunyan Leng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi, 830002, People's Republic of China
| | - Mingshu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongmei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
7
|
Ain QU, Hussain HA, Zhang Q, Maqbool F, Ahmad M, Mateen A, Zheng L, Imran A. Coordinated influence of Funneliformis mosseae and different plant growth-promoting bacteria on growth, root functional traits, and nutrient acquisition by maize. MYCORRHIZA 2024; 34:477-488. [PMID: 39115556 DOI: 10.1007/s00572-024-01165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/30/2024] [Indexed: 11/29/2024]
Abstract
Rhizospheric interactions among plant roots, arbuscular mycorrhizal fungi, and plant growth-promoting bacteria (PGPB) can enhance plant health by promoting nutrient acquisition and stimulating the plant immune system. This pot experiment, conducted in autoclaved soil, explored the synergistic impacts of the arbuscular mycorrhizal fungus Funneliformis mosseae with four individual bacterial strains, viz.: Cronobacter sp. Rz-7, Serratia sp. 5-D, Pseudomonas sp. ER-20 and Stenotrophomonas sp. RI-4 A on maize growth, root functional traits, root exudates, root colonization, and nutrient uptake. The comprehensive biochemical characterization of these bacterial strains includes assessments of mineral nutrient solubilization, plant hormone production, and drought tolerance. The results showed that all single and interactive treatments of the mycorrhizal fungus and bacterial strains improved maize growth, as compared with the control (no fungus or PGPB). Among single treatments, the application of the mycorrhizal fungus was more effective than the bacterial strains in stimulating maize growth. Within the bacterial treatments, Serratia sp. 5-D and Pseudomonas sp. ER-20 were more effective in enhancing maize growth than Cronobacter sp. Rz-7 and Stenotrophomonas sp. RI-4 A. All bacterial strains were compatible with Funneliformis mosseae to improve root colonization and maize growth. However, the interaction of mycorrhiza and Serratia sp. 5-D (M + 5-D) was the most prominent for maize growth improvement comparatively to all other treatments. We observed that bacterial strains directly enhanced maize growth while indirectly promoting biomass accumulation by facilitating increased mycorrhizal colonization, indicating that these bacteria acted as mycorrhizal helper bacteria.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Hafiz Athar Hussain
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Faiza Maqbool
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Muhammad Ahmad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Abdul Mateen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Li Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan.
| |
Collapse
|
8
|
Berruto CA, Demirer GS. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends Microbiol 2024; 32:858-873. [PMID: 38429182 DOI: 10.1016/j.tim.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can improve crop yields, nutrient use efficiency, plant tolerance to stressors, and confer benefits to future generations of crops grown in the same soil. Unlocking the potential of microbial communities in the rhizosphere and endosphere is therefore of great interest for sustainable agriculture advancements. Before plant microbiomes can be engineered to confer desirable phenotypic effects on their plant hosts, a deeper understanding of the interacting factors influencing rhizosphere community structure and function is needed. Dealing with this complexity is becoming more feasible using computational approaches. In this review, we discuss recent advances at the intersection of experimental and computational strategies for the investigation of plant-microbiome interactions and the engineering of desirable soil microbiomes.
Collapse
Affiliation(s)
- Chiara A Berruto
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Vultaggio L, Allevato E, Sabatino L, Ntatsi G, Rouphael Y, Torta L, La Bella S, Consentino BB. Modulation of cherry tomato performances in response to molybdenum biofortification and arbuscular mycorrhizal fungi in a soilless system. Heliyon 2024; 10:e33498. [PMID: 39027518 PMCID: PMC11255863 DOI: 10.1016/j.heliyon.2024.e33498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Molybdenum (Mo) is a crucial microelement for both, humans and plants. The use of agronomic biofortification techniques can be an alternative method to enhance Mo content in vegetables. Concomitantly, arbuscular mycorrhizal fungi (AMF) application is a valuable strategy to enhance plant performances and overcome plant abiotic distresses such as microelement overdose. The aim of this research was to estimate the direct and/or indirect effects of Mo supply at four doses [0.0, 0.5 (standard dose), 2.0 or 4.0 μmol L-1], alone or combined with AMF inoculation, on plant performances. In particular, plant height and first flower truss emission, productive features (total yield, marketable yield and average marketable fruit weight) and fruit qualitative characteristics (fruit dry matter, soluble solids content, titratable acidity, ascorbic acid, lycopene, polyphenol, nitrogen, copper, iron and molybdenum) of an established cherry tomato genotype cultivated in soilless conditions were investigated. Moreover, proline and malondialdehyde concentrations, as well as Mo hazard quotient (HQ) in response to experimental treatments were determined. A split-plot randomized experimental block design with Mo dosages as plots and +AMF or -AMF as sub-plots was adopted. Data revealed that AMF inoculation enhanced marketable yield (+50.0 %), as well as some qualitative traits, such as fruit soluble solids content (SSC) (+9.9 %), ascorbic acid (+7.3 %), polyphenols (+2.3 %), and lycopene (+2.5 %). Molybdenum application significantly increased SSC, polyphenols, fruit Mo concentration (+29.0 % and +100.0 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively) and proline, whereas it decreased N (-25.0 % and -41.6 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively). Interestingly, the application of AMF mitigated the detrimental effect of high Mo dosages (2.0 or 4.0 μmol L-1). A pronounced advance in terms of plant height 45 DAT, fruit lycopene concentration and fruit Fe, Cu and Mo concentrations was observed when AMF treatment and Mo dosages (2.0 or 4.0 μmol Mo L-1) were combined. Plants inoculated or not with AMF showed an improvement in the hazard quotient (HQ) in reaction to Mo application. However, the HQ - for a consumption of 200 g day-1 of biofortified cherry tomato - remained within the safety level for human consumption. This study suggests that Mo-implementation (at 2.0 or 4.0 μmol L-1) combined with AMF inoculation could represent a viable cultivation protocol to enhance yield, produce premium quality tomato fruits and, concomitantly, improve Mo dose in human diet. In the light of our findings, further studies on the interaction between AMF and microelements in other vegetable crops are recommended.
Collapse
Affiliation(s)
- Lorena Vultaggio
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Leo Sabatino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, 11855 Athens, Greece
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Livio Torta
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Salvatore La Bella
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Beppe Benedetto Consentino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
10
|
Han B, He Y, Chen J, Wang Y, Shi L, Lin Z, Yu L, Wei X, Zhang W, Geng Y, Shao X, Jia S. Different microbial functional traits drive bulk and rhizosphere soil phosphorus mobilization in an alpine meadow after nitrogen input. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172904. [PMID: 38703845 DOI: 10.1016/j.scitotenv.2024.172904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Enhanced nitrogen (N) input is expected to influence the soil phosphorus (P) cycling through biotic and abiotic factors. Among these factors, soil microorganisms play a vital role in regulating soil P availability. However, the divergent contribution of functional microorganisms to soil P availability in the rhizosphere and bulk soil under N addition remains unclear. We conducted an N addition experiment with four N input rates (0, 5, 10, and 15 g N m-2 year-1) in an alpine meadow over three years. Metagenomics was employed to investigate the functional microbial traits in the rhizosphere and bulk soil. We showed that N addition had positive effects on microbial functional traits related to P-cycling in the bulk and rhizosphere soil. Specifically, high N addition significantly increased the abundance of most microbial genes in the bulk soil but only enhanced the abundance of five genes in the rhizosphere soil. The soil compartment, rather than the N addition treatment, was the dominant factor explaining the changes in the diversity and network of functional microorganisms. Furthermore, the abundance of functional microbial genes had a profound effect on soil available P, particularly in bulk soil P availability driven by the ppa and ppx genes, as well as rhizosphere soil P availability driven by the ugpE gene. Our results highlight that N addition stimulates the microbial potential for soil P mobilization in alpine meadows. Distinct microbial genes play vital roles in soil P availability in bulk and rhizosphere soil respectively. This indicates the necessity for models to further our knowledge of P mobilization processes from the bulk soil to the rhizosphere soil, allowing for more precise predictions of the effects of N enrichment on soil P cycling.
Collapse
Affiliation(s)
- Bing Han
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yicheng He
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an 710061, China
| | - Yufei Wang
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Lina Shi
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Zhenrong Lin
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Lu Yu
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xiaoting Wei
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Wantong Zhang
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yiyi Geng
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xinqing Shao
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Shangang Jia
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
11
|
Kozikova D, Pascual I, Goicoechea N. Arbuscular Mycorrhizal Fungi Improve the Performance of Tempranillo and Cabernet Sauvignon Facing Water Deficit under Current and Future Climatic Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1155. [PMID: 38674564 PMCID: PMC11054116 DOI: 10.3390/plants13081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Climate change (CC) threatens Mediterranean viticulture. Rhizospheric microorganisms may be crucial for the adaptation of plants to CC. Our objective was to assess whether the association of two grapevine varieties with arbuscular mycorrhizal fungi (AMF) increases grapevine's resilience to environmental conditions that combine elevated atmospheric CO2, increased air temperatures, and water deficit. Tempranillo (T) and Cabernet Sauvignon (CS) plants, grafted onto R110 rootstocks, either inoculated (+M) or not (-M) with AMF, were grown in temperature-gradient greenhouses under two environmental conditions: (i) current conditions (ca. 400 ppm air CO2 concentration plus ambient air temperature, CATA) and (ii) climate change conditions predicted by the year 2100 (700 ppm of CO2 plus ambient air temperature +4 °C, CETE). From veraison to maturity, for plants of each variety, inoculation treatment and environmental conditions were also subjected to two levels of water availability: full irrigation (WW) or drought cycles (D). Therefore, the number of treatments applied to each grapevine variety was eight, resulting from the combination of two inoculation treatments (+M and -M), two environmental conditions (CATA and CETE), and two water availabilities (WW and D). In both grapevine varieties, early drought decreased leaf conductance and transpiration under both CATA and CETE conditions and more markedly in +M plants. Photosynthesis did not decrease very much, so the instantaneous water use efficiency (WUE) increased, especially in drought +M plants under CETE conditions. The increase in WUE coincided with a lower intercellular-to-atmospheric CO2 concentration ratio and reduced plant hydraulic conductance. In the long term, mycorrhization induced changes in the stomatal anatomy under water deficit and CETE conditions: density increased in T and decreased in CS, with smaller stomata in the latter. Although some responses were genotype-dependent, the interaction of the rootstock with AMF appeared to be a key factor in the acclimation of the grapevine to water deficit under both current and future CO2 and temperature conditions.
Collapse
Affiliation(s)
| | - Inmaculada Pascual
- Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, Spain), BIOMA Institute for Biodiversity and the Environment, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain; (D.K.); (N.G.)
| | | |
Collapse
|
12
|
Khan W, Zhu Y, Khan A, Zhao L, Yang YM, Wang N, Hao M, Ma Y, Nepal J, Ullah F, Rehman MMU, Abrar M, Xiong YC. Above-and below-ground feedback loop of maize is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170417. [PMID: 38280611 DOI: 10.1016/j.scitotenv.2024.170417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Drought is a potent abiotic stressor that arrests crop growth, significantly affecting crop health and yields. The arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR) can offer to protect plants from stressful environments through improving water, and nutrient use efficiency by strengthening plant root structure and harnessing favorable rhizosphere environments. When Acaulospora laevis (AMF) and Bacillus subtilus (PGPR) are introduced in combination, enhanced root growth and beneficial microbial colonization can mitigate drought stress. To assess this potential, a pot experiment was done with maize (Zea mays L.) to explore the effects of A. laevis and B. subtilus under different water levels (well-watered = 80 %; moderate water stress = 55 %; and severe water stress = 35 %) on maize yield, soil microbial activities, nutrients contents, root, and leaf functioning. Plants exposed to severe drought stress hampered their root and leaf functioning, and reduced grain yield compared with control plants. Combined use of AMF and PGPR increased root colonization (104.6 %-113.2 %) and microbial biomass carbon (36.38 %-40.23 %) under moderate to severe drought conditions over control. Higher root colonization was strongly linked with elevated ACC (aminocyclopropane-1-carboxylic acid) production, subsequently enhancing water use efficiency (21.62 %-12.77 %), root hydraulic conductivity (1.9 %-1.4 %) and root nutrient uptake under moderate to severe drought conditions. Enhanced nutrient uptake further promoted leaf photosynthetic rate by 27.3 %-29.8 % under moderate and severe drought stress. Improving leaf and root physiological functioning enhanced maize grain yield under stressful environments. Furthermore, co-inoculation with AMF-PGPR reduced cellular damage by lowering oxidative enzyme levels and increasing antioxidative enzyme activities, improving plant performance and grain yield under stressful environments. Conclusively, the synergistic interaction of AMF with PGPR ensured plant stress tolerance by reducing cellular injury, facilitating root-leaf functioning, enhancing nutrient-water-use-efficiencies, and increasing yield under drought stress.
Collapse
Affiliation(s)
- Wasim Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application, Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China.
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Miao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ning Wang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Meng Hao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yue Ma
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jaya Nepal
- Department of Soil, Water & Ecosystem Sciences, Indian River Research Center, University of Florida, Fort Pierce, FL, USA
| | - Fazal Ullah
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Muhammad Maqsood Ur Rehman
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Muhammad Abrar
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
13
|
Atala C, Reyes SA, Molina-Montenegro MA. Assessing the Importance of Native Mycorrhizal Fungi to Improve Tree Establishment after Wildfires. J Fungi (Basel) 2023; 9:jof9040421. [PMID: 37108876 PMCID: PMC10144394 DOI: 10.3390/jof9040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
The Chilean matorral is a heavily threatened Mediterranean-type ecosystem due to human-related activities such as anthropogenic fires. Mycorrhizal fungi may be the key microorganisms to help plants cope with environmental stress and improve the restoration of degraded ecosystems. However, the application of mycorrhizal fungi in the restoration of the Chilean matorral is limited because of insufficient local information. Consequently, we assessed the effect of mycorrhizal inoculation on the survival and photosynthesis at set intervals for two years after a fire event in four native woody plant species, namely: Peumus boldus, Quillaja saponaria, Cryptocarya alba, and Kageneckia oblonga, all dominant species of the matorral. Additionally, we assessed the enzymatic activity of three enzymes and macronutrient in the soil in mycorrhizal and non-mycorrhizal plants. The results showed that mycorrhizal inoculation increased survival in all studied species after a fire and increased photosynthesis in all, but not in P. boldus. Additionally, the soil associated with mycorrhizal plants had higher enzymatic activity and macronutrient levels in all species except in Q. saponaria, in which there was no significant mycorrhization effect. The results suggest that mycorrhizal fungi could increase the fitness of plants used in restoration initiatives after severe disturbances such as fires and, consequently, should be considered for restoration programs of native species in threatened Mediterranean ecosystems.
Collapse
Affiliation(s)
- Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso 2340000, Chile
| | - Sebastián A. Reyes
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso 2340000, Chile
| | - Marco A. Molina-Montenegro
- Centre for Integrative Ecology (CIE), Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Avda. Lircay s/n, Talca 3460000, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3460000, Chile
- Correspondence:
| |
Collapse
|
14
|
Das PP, Singh KR, Nagpure G, Mansoori A, Singh RP, Ghazi IA, Kumar A, Singh J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. ENVIRONMENTAL RESEARCH 2022; 214:113821. [PMID: 35810815 DOI: 10.1016/j.envres.2022.113821] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Plants can achieve their proper growth and development with the help of microorganisms associated with them. Plant-associated microbes convert the unavailable nutrients to available form and make them useful for plants. Besides nutrient acquisition, soil microbes also inhibit the pathogens that cause harm to plant growth and induces defense response. Due to the beneficial activities of soil nutrient-microbe-plant interactions, it is necessary to study more on this topic and develop microbial inoculant technology in the agricultural field for better crop improvement. The soil microbes can be engineered, and plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting bacteria (PGPB) technology can be developed as well, as its application can be improved for utilization as biofertilizer, biopesticides, etc., instead of using harmful chemical biofertilizers. Moreover, plant growth-promoting microbe inoculants can enhance crop productivity. Although, scientists have discussed several tools and techniques by omics and gene editing approaches for crop improvement to avoid biotic and abiotic stress and make the plant healthier and more nutritive. However, beneficial soil microbes that help plants with the nutrient acquisition, development, and stress resistance were ignored, and farmers started utilizing chemical fertilizers. Thus, this review attempts to summarize the interaction system of plant microbes, the role of beneficiary soil microbes in the rhizosphere zone, and their role in plant health promotion, particularly in the nutrition acquisition of the plant. The review will also provide a better understanding of soil microbes that can be exploited as biofertilizers and plant growth promoters in the field to create environmentally friendly, sustainable agriculture systems.
Collapse
Affiliation(s)
- Prajna Priyadarshini Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 211005, India
| | - Gunjan Nagpure
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Aadil Mansoori
- Department of Botany, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Anirudh Kumar
- Department of Botany, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 211005, India.
| |
Collapse
|
15
|
Wang L, Tang Z. How do arbuscular mycorrhizas affect reproductive functional fitness of host plants? FRONTIERS IN PLANT SCIENCE 2022; 13:975488. [PMID: 36072330 PMCID: PMC9441947 DOI: 10.3389/fpls.2022.975488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis in soil may be directly or indirectly involved in the reproductive process of sexually reproducing plants (seed plants), and affect their reproductive fitness. However, it is not clear how underground AM symbiosis affects plant reproductive function. Here, we reviewed the studies on the effects of AM symbiosis on plant reproductive fitness including both male function (pollen) and female function (seed). AM symbiosis regulates the development and function of plant sexual organs by affecting the nutrient using strategy and participating in the formation of hormone networks and secondary compounds in host plants. The nutrient supply (especially phosphorus supply) of AM symbiosis may be the main factor affecting plant's reproductive function. Moreover, the changes in hormone levels and secondary metabolite content induced by AM symbiosis can also affect host plants reproductive fitness. These effects can occur in pollen formation and transport, pollen tube growth and seed production, and seedling performance. Finally, we discuss other possible effects of AM symbiosis on the male and female functional fitness, and suggest several additional factors that may be involved in the influence of AM symbiosis on the reproductive fitness of host plants. We believe that it is necessary to accurately identify and verify the mechanisms driving the changes of reproductive fitness of host plant in symbiotic networks in the future. A more thorough understanding of the mechanism of AM symbiosis on reproductive function will help to improve our understanding of AM fungus ecological roles and may provide references for improving the productivity of natural and agricultural ecosystems.
Collapse
|
16
|
Wang Q, Wang C, Wei Y, Yao W, Lei Y, Sun Y. Soil Microbes Drive the Flourishing Growth of Plants From Leucocalocybe mongolica Fairy Ring. Front Microbiol 2022; 13:893370. [PMID: 35668763 PMCID: PMC9164162 DOI: 10.3389/fmicb.2022.893370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Fairy ring is a natural phenomenon in which fungal fruiting bodies occur as a ring on a spot. This ring is produced due to spore ejection by Basidiomycetous fungi and forms a lush growing plant belt. However, the drivers for such formations and the potential plant growth-promoting rhizobacteria in fairy ring soils remain unknown. Fairy rings formed by Leucocalocybe mongolica were selected in this study. Soil characteristics and microbial (bacteria and fungi) community structures between beneath and outside the fairy rings were compared through high-throughput sequencing. Beneficial bacterial resources were excavated using dependent culturable methods. Soil electrical conductivity and available potassium were higher in the soil beneath the ring than outside it. These parameters were positively correlated with the dominant microbial community, but microbial diversity was lower. In the soil beneath the fairy ring, Bacteroidetes and Basidiomycota were more abundant, whereas Verrucomicrobia was less prevalent. Bacillus pumilus (strain BG-5) was isolated from the soil beneath the ring. Strain BG-5 can solubilize phosphorus and produce indole-3-acetic acid, NH4 +, and siderophores. Furthermore, strain BG-5 enhanced salt tolerance and promoted the growth of Arabidopsis thaliana, wheat (Triticum aestivum), and cotton (Gossypium hirsutum) seedlings. This study indicated the presence of abundant beneficial microbes driving the flourishing growth of plants in the fairy ring soil and provided bio-resources for agricultural growth-promoting agents.
Collapse
Affiliation(s)
- Qiqi Wang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, Shihezi, China
| | - Chong Wang
- Ürümqi Customs Technique Center, Ürümqi, China
| | - Yumei Wei
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, Shihezi, China
| | - Weiqin Yao
- Ürümqi Customs Technique Center, Ürümqi, China
| | - Yonghui Lei
- Department of Plant protection, College of Agriculture, Shihezi University, Shihezi, China
| | - Yanfei Sun
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, Shihezi, China
| |
Collapse
|