1
|
Kokwe NH, Tshabuse F, Swalaha FM. In Vitro Characterization and Safety Assessment of Streptococcus salivarius, Levilactobacillus brevis and Pediococcus pentosaceus Isolated from the Small Intestine of Broiler Breeders. Microorganisms 2025; 13:1231. [PMID: 40572119 PMCID: PMC12195246 DOI: 10.3390/microorganisms13061231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 06/29/2025] Open
Abstract
In poultry production, antibiotics have been excessively used as growth promoters to support well-being and decrease mortality caused by pathogenic microorganisms. The overuse of antibiotics has led to the emergence of antibiotic-resistant bacteria and the presence of antibiotic residues in poultry products. To counteract this problem, probiotics could be used as adjuncts or as substitutes for preserving a diverse and balanced microflora to prevent the colonization and multiplication of pathogenic bacteria in the GI tract. This study aimed to isolate and characterize the potential probiotic properties of lactic acid bacteria from the small intestine of 23-week-old broiler breeders, with the goal of identifying potential probiotic candidates. Four phenotypically healthy broiler breeders were selected, and intestinal contents were aseptically collected and cultured on MRS agar. From the initial pool of 39 colonies, six isolates were identified based on Gram-positive and catalase-negative characteristics and further classified using 16S rRNA sequencing as Levilactobacillus brevis (n = 3), Pediococcus pentosaceus (n = 2), and Streptococcus salivarius (n = 1). These strains were further evaluated for probiotic properties such as transit resistance to simulated upper gastrointestinal conditions, antagonist activity, haemolytic activity, and cell surface properties such as autoaggregation, co-aggregation and hydrophobicity, in vitro. L. brevis NKFS8 showed good tolerance to pH 3, while P. pentosaceus NKSF10 exhibited good tolerance to pH 4 acidic conditions. All isolates demonstrated good survivability in bile salt concentration of 3% (w/v), with P. pentosaceus NKSF10 exhibiting the highest tolerance. The isolates showed a wide range of antagonistic activity against the test pathogens Pseudomonas aeruginosa (ATCC 27853), Salmonella typhimurium, Salmonella enterica (ATCC 13314), Staphylococcus aureus (ATCC 29213), and Listeria monocytogenes (ATCC 7644). Furthermore, these strains exhibited good auto-aggregation, co-aggregation, and hydrophobicity properties. In conclusion, lactic acid bacteria from the small intestine of broiler breeders present a valuable prospect for the development of effective probiotics. These probiotics can be utilized as a supplementary inclusion in poultry feed, obviating the need for antibiotics as growth promoters. Nevertheless, additional in vivo studies are required to closely monitor and assess the effects of probiotics on the gastrointestinal system of chickens.
Collapse
Affiliation(s)
- Nwabisa Happiness Kokwe
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4001, South Africa;
| | - Freedom Tshabuse
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4001, South Africa;
| |
Collapse
|
2
|
Lao J, Chen M, Yan S, Gong H, Wen Z, Yong Y, Jia D, Lv S, Zou W, Li J, Tan H, Yin H, Kong X, Liu Z, Guo F, Ju X, Li Y. Lacticaseibacillus rhamnosus G7 alleviates DSS-induced ulcerative colitis by regulating the intestinal microbiota. BMC Microbiol 2025; 25:168. [PMID: 40133818 PMCID: PMC11938729 DOI: 10.1186/s12866-025-03904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Ulcerative colitis (UC) is an intestinal disease caused by many factors that seriously harms the health of humans and animals. Probiotics are currently widely used to treat intestinal inflammation; however, different strains are specific, and the functions and effects of different strains are still unclear. In this study, Lacticaseibacillus rhamnosus G7 isolated from herdsmen yogurt was used. The results of the in vitro evaluation revealed that it had good tolerance and safety. In mice with colitis, G7 alleviated weight loss and colon shortening and reduced the DAI score. After G7 treatment, the levels of proinflammatory factors (IL-1β, IL-6 and TNF-α) and histopathological scores decreased, whereas the level of IL-10 increased. In addition, G7 rebalanced the intestinal microbial composition of colitis model mice by increasing the abundance of Faecalibaculum and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, G7 has great potential in the prevention of colitis.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
- Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, 518120, China
| | - Man Chen
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Han Gong
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dan Jia
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuting Lv
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenli Zou
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junmei Li
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Huiming Tan
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiangying Kong
- Haibei Integrated Service Center for Agriculture and Animal Husbandry, Haibei, Qinghai, 810299, China
| | - Zengyuan Liu
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fucheng Guo
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
- Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, 518120, China.
| | - Youquan Li
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
- Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, 518120, China.
| |
Collapse
|
3
|
Lv H, Sun J, Guo Y, Hang G, Wu Q, Sun Z, Zhang H. Isolation of Enterococcus hirae From Fresh White Yak Milk in Ledu District, Qinghai Province, China: A Comparative Genomic Analysis. Curr Microbiol 2025; 82:111. [PMID: 39899041 DOI: 10.1007/s00284-024-04044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Yak milk is a widely consumed dairy product rich in lactic acid bacteria. Although Enterococcus hirae (E. hirae) is commonly found in dairy products and other foods, there is limited information available on its genetic makeup in yak milk. In the present study, 10 E. hirae strains isolated and identified from fresh white yak milk samples, along with 442 E. hirae strains obtained from the NCBI database (totaling 452 strains), were subjected to comparative genomic analysis. The findings of this study revealed that E. hirae has an open pan-genomic structure that allows for its high adaptability and environmental plasticity. Notably, E. hirae isolates from fresh white yak milk had smaller genomes, encoded more functional genes, and had fewer copies of genes encoding carbohydrate-active enzymes involved in the degradation of oligosaccharide metabolism and autolysin synthesis (CE1, GH73, GH23, and GT4 families) than those from animal and human isolates (P < 0.05). Additionally, fresh white yak milk isolates carried only three intrinsic bacteriocins and lacked virulence factors, CRISPR-Cas systems, and resistance genes linked to pathogenicity, which may be attributed to their specialization in the milk-derived environment. This study provides new insights into the genetic and functional gene diversity of E. hirae and how it adapts to milk-derived habitats.
Collapse
Affiliation(s)
- Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Yuanyuan Guo
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Guoxuan Hang
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Qiong Wu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.
| |
Collapse
|
4
|
Kumari V. B. C, Huligere S, M. K. J, Goh KW, Desai SM, H. L. K, Ramu R. Characterization of Lactobacillus spp. as Probiotic and Antidiabetic Potential Isolated from Boza, Traditional Fermented Beverage in Turkey. Int J Microbiol 2024; 2024:2148676. [PMID: 38962395 PMCID: PMC11221989 DOI: 10.1155/2024/2148676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Boza, a cereal-based beverage popular in southeast Europe, is fortified with probiotics and is believed to positively impact the composition of the gut microflora. This investigation focused on fermented cereal-based beverage boza to identify strains of probiotic Lactobacillus spp. capable of inhibiting carbohydrate-hydrolysing enzymes α-glucosidase (AG) and α-amylase (AA). The isolated bacterial strains underwent a comprehensive assessment, including biochemical, molecular, and probiotic trait analyses such as tolerance survivability, adhesion, safety, and health-promoting attributes. We evaluated the inhibitory potential of the supernatant, cell lysate, and intact cells of Lactobacillus spp. Molecular analysis has revealed that isolates RAMULAB30 and RAMULAB29 exhibit a significant genetic similarity (>97%) to Lacticaseibacillus paracasei and Limosilactobacillus fermentum, respectively. These findings are documented in the NCBI database. They exhibited significant resistance to gastrointestinal and intestinal fluids, also indicating their potential for adhesion. Additionally, the isolates showed a significant antibacterial activity, particularly against Micrococcus luteus. They showed resistance to vancomycin and methicillin antibiotics but were more susceptible to streptomycin and ampicillin. Furthermore, the strains demonstrated antioxidant properties. To ensure their safety, a haemolytic assay was conducted despite their general recognition as safe (GRAS) status. The study primarily aimed to evaluate the inhibitory effects of the extract on enzymes AG and AA. Bacterial isolates demonstrated a significant inhibitory activity against both enzyme AG (32%-67% inhibition) and enzyme AA (18%-46% inhibition) in different forms, including supernatant (CS), lysed extract (CE), and intact cell (IC). These findings underscore the potential of bacterial isolates to inhibit the enzyme activity effectively. Furthermore, the L. fermentum RAMULAB29 and L. paracasei RAMULAB30 strains exhibit remarkable antidiabetic potential. Food products incorporating these strains have promising prospects as nutraceuticals, providing improved health benefits.
Collapse
Affiliation(s)
- Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Sujay Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Kalabharthi H. L.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| |
Collapse
|
5
|
Silva JA, Castañares M, Mouguelar H, Valenciano JA, Pellegrino MS. Isolation of lactic acid bacteria from the reproductive tract of mares as potentially beneficial strains to prevent equine endometritis. Vet Res Commun 2024; 48:1353-1366. [PMID: 38233700 DOI: 10.1007/s11259-024-10295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Endometritis, the inflammation of the endometrium, is the leading cause of subfertility in mares, and therefore responsible for major economic losses in the horse industry worldwide. It is generally treated with uterine lavages combined with ecbolic agents and local or systemic antibiotics. However, since antibiotic overuse has been associated with antimicrobial resistance in mares with persistent endometritis, new prevention and treatment alternatives are needed. One such alternative could be the use of probiotic lactic acid bacteria (LAB) isolated from the host. Thanks to their species specificity, resident microbiota may restore ecological equilibrium within the host, and therefore, help prevent infections and improve physiological functions. In the present study, 257 bacterial strains were isolated from 77 healthy mares, and 88.76% (n = 228) of them were phenotypically classified as LAB. Within this group, 65.79% were able to inhibit at least one strain from each of the genera that most commonly cause equine endometritis (Streptococcus equi subsp. zooepidemicus, Escherichia coli, and Staphylococcus spp.). Five strains (RCE11, RCE20, RCE91, RCE99, and RCE167) were selected on the basis of their beneficial properties: ability to autoaggregate and adhere to equine epithelial cells, high inhibition of and co-aggregation with all the bacteria isolated from clinical cases of endometritis evaluated, and negative co-inhibition between one another. All five were finally identified as Enterococcus spp., namely E. faecium (two strains), E. hirae (two strains), and E. gallinarum (one strain). Further studies will assess their safety and biotechnological potential for the design of a multi-strain probiotic formula to prevent equine endometritis.
Collapse
Affiliation(s)
- Jessica Alejandra Silva
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Castañares
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Horacio Mouguelar
- Departament of Anatomy, Faculty of Agronomy and Veterinary, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Javier Aguilar Valenciano
- Departament of Animal Production, Faculty of Agronomy and Veterinary, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Matías Santiago Pellegrino
- Department of Microbiology and Immunology, Faculty of Cs. Ex. Fco-Qcas y Naturales, National University of Río Cuarto, Route 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Wang R, Bai B, Huang Y, Degen A, Mi J, Xue Y, Hao L. Yaks Are Dependent on Gut Microbiota for Survival in the Environment of the Qinghai Tibet Plateau. Microorganisms 2024; 12:1122. [PMID: 38930503 PMCID: PMC11205922 DOI: 10.3390/microorganisms12061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.
Collapse
Affiliation(s)
- Runze Wang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| | - Binqiang Bai
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| | - Yayu Huang
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France;
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel;
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China;
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| |
Collapse
|
7
|
Onur M, Önlü H. Isolation, characterization of Weissella confusa and Lactococcus lactis from different milk sources and determination of probiotic features. Braz J Microbiol 2024; 55:663-679. [PMID: 38158467 PMCID: PMC10920558 DOI: 10.1007/s42770-023-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
This study aimed to investigate the probiotic properties of Lactic Acid Bacteria (LAB) isolates derived from various milk sources. These isolates identified based on their morphological characteristics and 16S rRNA gene sequencing. Four strains of Lactococcus lactis and two strains of Weissella confusa were identified with over 96% 16S rRNA gene similarity according to the NCBI-BLAST results. The survival of the isolates was determined in low pH, pepsin, bile salts, and pancreatin, and their adhesion ability was assessed by in vitro cell adhesion assay, hydrophobicity, auto- and co-aggregation, and safety criteria were determined by hemolytic, gelatinase activities, and DNAse production ability tests. The results showed that the LAB isolates had different levels of resistance to various stress factors. L. lactis subsp. cremoris MH31 showed the highest resistance to bile salt, while the highest pH resistance was observed in L. lactis MH31 at pH 3.0. All the isolates survived in pepsin exposure at pH 3.0 for 3 h. The auto-aggregation test results showed that all strains exhibited auto-aggregation ranging from 84.9 to 91.4%. Co-aggregation percentage ranged from 19 - 54% and 17 - 57% against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, respectively. The hydrophobicity capacity of the LAB isolated ranged from 35-61%. These isolates showed different adhesion abilities to Caco-2 cells (81.5% to 92.6%). None of the isolates exhibited DNase, gelatinase and hemolytic activity (γ-hemolysis). All results indicate that these LAB strains have the potential to be used as probiotics.
Collapse
Affiliation(s)
- Melda Onur
- Ministry of Agriculture and Forestry, Istanbul, Türkiye
| | - Harun Önlü
- Department of Food Processing, Vocational School of Technical Sciences, Muş Alparslan University, Muş, Türkiye.
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Türkiye.
| |
Collapse
|
8
|
Gohil P, Nanavati B, Patel K, Suthar V, Joshi M, Patil DB, Joshi CG. Assessing the efficacy of probiotics in augmenting bovine reproductive health: an integrated in vitro, in silico, and in vivo study. Front Microbiol 2023; 14:1137611. [PMID: 37275132 PMCID: PMC10232901 DOI: 10.3389/fmicb.2023.1137611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
The aim of this study was to isolate and characterize bovine-vaginal probiotics genotypically and phenotypically using in silico and evaluate their in vivo performance in buffaloes with endometritis. For the in vitro isolation and characterization, vaginal swabs were collected from 34 cows and 17 buffaloes, and 709 primary bacterial isolates with probiotic activity were obtained using MRS agar media. Two isolates Lactiplantibacillus plantarum KUGBRC (LPKUGBRC) and Pediococcus pentosaceus GBRCKU (PPGBRCKU) demonstrated optimum in vitro probiotic activities as compared to Lacticaseibacillus rhamnosus GG including, acid production, secretion of fatty acids and exopolysaccharide, cell surface hydrophobicity, self-aggregating and co-aggregating capacity with pathogens, anti-microbial activity and bacteriocin-like compounds against pathogens Escherichia coli and Staphylococcus aureus in cell-free supernatant and absence of hemolytic activity. Their phenotypic capacity was confirmed by analyzing the whole genome sequencing data and identifying genes and pathways associated with probiotic properties. These probiotic isolates have shown no virulence genes were discovered in their genomic study. In vivo study of 92 buffaloes suffering from clinical endometritis with purulent cervico-vaginal mucus (CVM) were randomly allocated 40 × 108 CFU/ml LPKUGBRC and PPGBRCKU and 40 ml Normal saline. The LPKUGBRC reduced the duration between administration of probiotic to induction of healthy estrus significantly. However, no effect was observed on pregnancy rate. These results suggest that LPKUGBRC and PPGBRCKU probiotic bacteria demonstrate probiotic efficiency and adaptability. Further sourced from the same niche as the targeted infection, they offer a distinct advantage in targeting the specific microbial population associated with endometritis. The findings of this study highlight the potential of LPKUGBRC and PPGBRCKU probiotics in treating endometritis and suggest further exploration of their clinical applications.
Collapse
Affiliation(s)
- Purva Gohil
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Bhavya Nanavati
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Kajal Patel
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Vishal Suthar
- Directorate of Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Deepak B. Patil
- Directorate of Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
9
|
Zhang Q, Wang M, Ma X, Li Z, Jiang C, Pan Y, Zeng Q. In vitro investigation on lactic acid bacteria isolatedfrom Yak faeces for potential probiotics. Front Cell Infect Microbiol 2022; 12:984537. [PMID: 36189367 PMCID: PMC9523120 DOI: 10.3389/fcimb.2022.984537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In order to evaluate the potential and safety of lactic acid bacteria (LAB) isolated from faeces samples of Ganan yak as probiotic for prevention and/or treatment of yak diarrhea, four strains of LAB including Latilactobacillus curvatus (FY1), Weissella cibaria (FY2), Limosilactobacillus mucosae (FY3), and Lactiplantibacillus pentosus (FY4) were isolated and identified in this study. Cell surface characteristics (hydrophobicity and cell aggregation), acid resistance and bile tolerance, compatibility, antibacterial activity and in vitro cell adhesion tests were also carried out to evaluate the probiotic potential of LAB. The results showed that the four isolates had certain acid tolerance, bile salt tolerance, hydrophobicity and cell aggregation, all of which contribute to the survival and colonization of LAB in the gastrointestinal tract. There is no compatibility between the four strains, so they can be combined into a mixed probiotic formula. Antimicrobial tests showed that the four strains were antagonistic to Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Moreover, the in vitro safety of the four isolates were determined through hemolytic analysis, gelatinase activity, and antibacterial susceptibility experiments. The results suggest that all the four strains were considered as safe because they had no hemolytic activity, no gelatinase activity and were sensitive to most antibacterial agents. Moreover, the acute oral toxicity test of LAB had no adverse effect on body weight gain, food utilization and organ indices in Kunming mice. In conclusion, the four LAB isolated from yak feces have considerable potential to prevent and/or treat yak bacterial disease-related diarrhea.
Collapse
Affiliation(s)
- Qingli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chenghui Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|