1
|
Wang Z, You L, Gong N, Li C, Li Z, Shen J, Wan L, Luo K, Su X, Feng L, Chen S, Lin W. Comprehensive Expression Analysis of the WRKY Gene Family in Phoebe bournei under Drought and Waterlogging Stresses. Int J Mol Sci 2024; 25:7280. [PMID: 39000387 PMCID: PMC11242546 DOI: 10.3390/ijms25137280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
In response to biotic and abiotic stresses, the WRKY gene family plays a crucial role in plant growth and development. This study focused on Phoebe bournei and involved genome-wide identification of WRKY gene family members, clarification of their molecular evolutionary characteristics, and comprehensive mapping of their expression profiles under diverse abiotic stress conditions. A total of 60 WRKY gene family members were identified, and their phylogenetic classification revealed three distinct groups. A conserved motif analysis underscored the significant conservation of motif 1 and motif 2 among the majority of PbWRKY proteins, with proteins within the same class sharing analogous gene structures. Furthermore, an examination of cis-acting elements and protein interaction networks revealed several genes implicated in abiotic stress responses in P. bournei. Transcriptomic data were utilized to analyze the expression patterns of WRKY family members under drought and waterlogged conditions, with subsequent validation by quantitative real-time PCR (RT-qPCR) experiments. Notably, PbWRKY55 exhibited significant expression modulation under drought stress; PbWRKY36 responded prominently to waterlogging stress; and PbWRKY18, PbWRKY38, and PbWRKY57 demonstrated altered expression under both drought and waterlogging stresses. This study revealed the PbWRKY candidate genes that potentially play a pivotal role in enhancing abiotic stress resilience in P. bournei. The findings have provided valuable insights and knowledge that can guide further research aimed at understanding and addressing the impacts of abiotic stress within this species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.W.); (L.Y.); (N.G.); (C.L.); (Z.L.); (J.S.); (L.W.); (K.L.); (X.S.); (L.F.)
| | - Wenjun Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.W.); (L.Y.); (N.G.); (C.L.); (Z.L.); (J.S.); (L.W.); (K.L.); (X.S.); (L.F.)
| |
Collapse
|
2
|
Yan Y, Yan Z, Zhao G. Genome-wide identification of WRKY transcription factor family members in Miscanthus sinensis (Miscanthus sinensis Anderss). Sci Rep 2024; 14:5522. [PMID: 38448638 PMCID: PMC10918066 DOI: 10.1038/s41598-024-55849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Miscanthus is an emerging sustainable bioenergy crop whose growing environment is subject to many abiotic and biological stresses. WRKY transcription factors play an important role in stress response and growth of biotic and abiotic. To clarify the distribution and expression of the WRKY genes in Miscanthus, it is necessary to classify and phylogenetically analyze the WRKY genes in Miscanthus. The v7.1 genome assembly of Miscanthus was analyzed by constructing an evolutionary tree. In Miscanthus, there are 179 WRKY genes were identified. The 179 MsWRKYs were classified into three groups with conserved gene structure and motif composition. The tissue expression profile of the WRKY genes showed that MsWRKY genes played an essential role in all growth stages of plants. At the early stage of plant development, the MsWRKY gene is mainly expressed in the rhizome of plants. In the middle stage, it is mainly expressed in the leaf. At the end stage, mainly in the stem. According to the results, it showed significant differences in the expression of the MsWRKY in different stages of Miscanthus sinensis. The results of the study contribute to a better understanding of the role of the MsWRKY gene in the growth and development of Miscanthus.
Collapse
Affiliation(s)
- Yongkang Yan
- Faculty of Science, the University of Hong Kong, Hong Kong, China.
| | - Zhanyou Yan
- Shijiazhuang Tiedao University, Shijiazhuang, China
| | - Guofang Zhao
- Hebei Vocational University of Industry and Technology, Shijiazhuang, China
| |
Collapse
|
3
|
Zhu R, Gao N, Luo J, Shi W. Genome and Transcriptome Analysis of the Torreya grandis WRKY Gene Family during Seed Development. Genes (Basel) 2024; 15:267. [PMID: 38540326 PMCID: PMC10970084 DOI: 10.3390/genes15030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Torreya grandis, an economically significant evergreen tree species exclusive to subtropical China, is highly valued for its seeds. However, the seed development process of T. grandis remains relatively unexplored. Given the pivotal role WRKY transcription factors (TFs) play in coordinating diverse cellular and biological activities, as well as crucial signaling pathways essential for plant growth and development, and the lack of comprehensive investigation into their specific functions in T. grandis, our study investigated its genome and successfully isolated 78 WRKY genes and categorized them into three distinct clades. A conserved motif analysis unveiled the presence of the characteristic WRKY domain in each identified TgWRKY protein. The examination of gene structures revealed variable numbers of introns (ranging from zero to eight) and exons (ranging from one to nine) among TgWRKY genes. A chromosomal distribution analysis demonstrated the presence of TgWRKY across eight chromosomes in T. grandis. Tissue-specific expression profiling unveiled distinctive patterns of these 78 TgWRKY genes across various tissues. Remarkably, a co-expression analysis integrating RNA-seq data and morphological assessments pinpointed the pronounced expression of TgWRKY25 during the developmental stages of T. grandis seeds. Moreover, a KEGG enrichment analysis, focusing on genes correlated with TgWRKY25 expression, suggested its potential involvement in processes such as protein processing in the endoplasmic reticulum, starch, and sucrose metabolism, thereby modulating seed development in T. grandis. These findings not only underscore the pivotal role of WRKY genes in T. grandis seed development but also pave the way for innovative breeding strategies.
Collapse
Affiliation(s)
- Ruiqian Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (R.Z.); (N.G.); (J.L.)
| | - Ning Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (R.Z.); (N.G.); (J.L.)
| | - Jiali Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (R.Z.); (N.G.); (J.L.)
| | - Wenhui Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (R.Z.); (N.G.); (J.L.)
- Key Laboratory of Bamboo Science and Technology, Zhejiang A&F University, Ministry of Education, Hangzhou 311300, China
| |
Collapse
|
4
|
Rai GK, Mishra S, Chouhan R, Mushtaq M, Chowdhary AA, Rai PK, Kumar RR, Kumar P, Perez-Alfocea F, Colla G, Cardarelli M, Srivastava V, Gandhi SG. Plant salinity stress, sensing, and its mitigation through WRKY. FRONTIERS IN PLANT SCIENCE 2023; 14:1238507. [PMID: 37860245 PMCID: PMC10582725 DOI: 10.3389/fpls.2023.1238507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Salinity or salt stress has deleterious effects on plant growth and development. It imposes osmotic, ionic, and secondary stresses, including oxidative stress on the plants and is responsible for the reduction of overall crop productivity and therefore challenges global food security. Plants respond to salinity, by triggering homoeostatic mechanisms that counter salt-triggered disturbances in the physiology and biochemistry of plants. This involves the activation of many signaling components such as SOS pathway, ABA pathway, and ROS and osmotic stress signaling. These biochemical responses are accompanied by transcriptional modulation of stress-responsive genes, which is mostly mediated by salt-induced transcription factor (TF) activity. Among the TFs, the multifaceted significance of WRKY proteins has been realized in many diverse avenues of plants' life including regulation of plant stress response. Therefore, in this review, we aimed to highlight the significance of salinity in a global perspective, the mechanism of salt sensing in plants, and the contribution of WRKYs in the modulation of plants' response to salinity stress. This review will be a substantial tool to investigate this problem in different perspectives, targeting WRKY and offering directions to better manage salinity stress in the field to ensure food security.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Rekha Chouhan
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Pradeep K. Rai
- Advance Center for Horticulture Research, Udheywala, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu & Kashmir, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Council of Agricultural Research (ICAR), Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar
- Division of Integrated Farming System, Central Arid Zone Research Institute, Indian Council of Agricultural Research (ICAR), Jodhpur, India
| | - Francisco Perez-Alfocea
- Department of Nutrition, Centre for Applied Soil Science and Biology of the Segura (CEBAS), of the Spanish National Research Council (CSIC), Murcia, Spain
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Sumit G. Gandhi
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| |
Collapse
|
5
|
Arroyo-Álvarez E, Chan-León A, Girón-Ramírez A, Fuentes G, Estrella-Maldonado H, Santamaría JM. Genome-Wide Analysis of WRKY and NAC Transcription Factors in Carica papaya L. and Their Possible Role in the Loss of Drought Tolerance by Recent Cultivars through the Domestication of Their Wild Ancestors. PLANTS (BASEL, SWITZERLAND) 2023; 12:2775. [PMID: 37570929 PMCID: PMC10421361 DOI: 10.3390/plants12152775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 08/13/2023]
Abstract
A genome-wide analysis for two families of key transcription factors (TF; WRKY and NAC) involved in drought response revealed 46 WRKY and 66 NAC members of the Carica papaya genome. A phylogenetic analysis grouped the CpWRKY proteins into three groups (I, II a, b, c, d, e and III), while the CpNAC proteins were clustered into 15 groups. The conserved domains, chromosomal localization and promoter cis-acting elements were also analyzed. In addition, from a previous transcriptome study of two contrasting genotypes in response to 14 days of water deficit stress (WDS), we found that 29 of the 46 CpWRKYs genes and 25 of the 66 CpNACs genes were differentially expressed in response to the WDS. In the present paper, the native wild genotype (WG) (collected in its center of origin) consistently showed a higher expression (transcripts per million; TPM and fold change; FC) than the commercial genotype (CG) in almost all the members of the CpWRKY and CpNAC gene families. To corroborate this, we selected CpWRKY50 and CpNAC83.1 for further evaluation by RT-qPCR. Consistently, the WG showed higher relative expression levels (REL) after 14 days of WDS than the CG, in both the leaves and roots. The results suggest that the CpWRKY and CpNAC TF families are important for drought tolerance in this species. The results may also suggest that, during the domestication process, the ability of the native (wild) C. papaya genotypes to respond to drought (including the overexpression of the CpWRKY and CpNAC genes) was somehow reduced in the current commercial genotypes.
Collapse
Affiliation(s)
- Erick Arroyo-Álvarez
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico
| | - Arianna Chan-León
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico
| | - Amaranta Girón-Ramírez
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico
| | - Gabriela Fuentes
- Independent Researcher, Calle 6ª, 279 a, Jardines de Vista Alegre, Mérida 97138, Yucatán, Mexico
| | - Humberto Estrella-Maldonado
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Tlapacoyan 93600, Veracruz, Mexico
| | - Jorge M. Santamaría
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico
| |
Collapse
|
6
|
Long L, Gu L, Wang S, Cai H, Wu J, Wang J, Yang M. Progress in the understanding of WRKY transcription factors in woody plants. Int J Biol Macromol 2023; 242:124379. [PMID: 37178519 DOI: 10.1016/j.ijbiomac.2023.124379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
The WRKY transcription factor (TF) family, named for its iconic WRKY domain, is among the largest and most functionally diverse TF families in higher plants. WRKY TFs typically interact with the W-box of the target gene promoter to activate or inhibit the expression of downstream genes; these TFs are involved in the regulation of various physiological responses. Analyses of WRKY TFs in numerous woody plant species have revealed that WRKY family members are broadly involved in plant growth and development, as well as responses to biotic and abiotic stresses. Here, we review the origin, distribution, structure, and classification of WRKY TFs, along with their mechanisms of action, the regulatory networks in which they are involved, and their biological functions in woody plants. We consider methods currently used to investigate WRKY TFs in woody plants, discuss outstanding problems, and propose several new research directions. Our objective is to understand the current progress in this field and provide new perspectives to accelerate the pace of research that enable greater exploration of the biological functions of WRKY TFs.
Collapse
Affiliation(s)
- Lianxiang Long
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Lijiao Gu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Shijie Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Hongyu Cai
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jianghao Wu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jinmao Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| |
Collapse
|
7
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Li J, Yu H, Liu M, Chen B, Dong N, Chang X, Wang J, Xing S, Peng H, Zha L, Gui S. Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus. PLANT SIGNALING & BEHAVIOR 2022; 17:2089473. [PMID: 35730590 PMCID: PMC9225661 DOI: 10.1080/15592324.2022.2089473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.
Collapse
Affiliation(s)
- Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesState Key Laboratory of Dao-Di, Beijing, Hebei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of traditional Chinese medicine resources, Anhui University of Chinese Medicine, Hefei, Anhui, China
- CONTACT Liangping Zha College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application Anhui University of Chinese Medicine, Hefei, Anhui, China
- Shuangying Gui College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, Chinai
| |
Collapse
|
9
|
Zhou W, Yang S, Yang L, Xiao R, Chen S, Wang D, Wang S, Wang Z. Genome-Wide Identification of the Hypericum perforatum WRKY Gene Family Implicates HpWRKY85 in Drought Resistance. Int J Mol Sci 2022; 24:ijms24010352. [PMID: 36613796 PMCID: PMC9820127 DOI: 10.3390/ijms24010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
WRKY, named for its special heptapeptide conserved sequence WRKYGOK, is one of the largest transcription factor families in plants and is widely involved in plant responses to biotic, abiotic, and hormonal stresses, especially the important regulatory function in response to drought stress. However, there is no complete comprehensive analysis of this family in H. perforatum, which is one of the most extensively studied plants and is probably the best-known herbal medicine on the market today, serving as an antidepressant, neuroprotective, an antineuralgic, and an antiviral. Here, we identified 86 HpWRKY genes according to the whole genome database of H. perforatum, and classified them into three groups through phylogenetic analysis. Gene structure, conserved domain, motif, cis-elements, gene ontology, and expression profiling were performed. Furthermore, it was found that HpWRKY85, a homologous gene of AtWRKY75, showed obvious responses to drought treatment. Subcellular localization analysis indicated that this protein was localized in the nucleus by the Arabidopsis protoplasts transient transfection. Meanwhile, HpWRKY85-overexpressing Arabidopsis plants showed a stronger ability of root growth and scavenging endogenous reactive oxygen species. The results provide a reference for further understanding the role of HpWRKY85 in the molecular mechanism of drought resistance of H. perforatum.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
| | - Shu Yang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China
| | - Lei Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
| | - Ruyi Xiao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
| | - Shiyi Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
| | - Shiqiang Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
- Correspondence:
| |
Collapse
|
10
|
Han X, Rong H, Tian Y, Qu Y, Xu M, Xu LA. Genome-Wide Identification of PLATZ Transcription Factors in Ginkgo biloba L. and Their Expression Characteristics During Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:946194. [PMID: 35812908 PMCID: PMC9262033 DOI: 10.3389/fpls.2022.946194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 05/20/2023]
Abstract
Plant AT-rich protein and zinc-binding protein (PLATZ) is a class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. PLATZ plays an important role in seed development, water tolerance, and cell proliferation in early plant growth. In this study, 11 GbPLATZs were identified from the ginkgo genome with complete PLATZ-conserved domains, which represents a smaller number compared with angiosperms. Multi-species phylogenetic analysis showed that PLATZ genes were conserved in seed plants, and the 11 members were represented by four groups, among which groups I and II were closely related. Analysis of gene structures, sequence module characteristics, and expression patterns showed that GbPLATZs were similar within and differed between groups. RNA-seq and qRT-PCR results showed that GbPLATZs had distinct expression patterns. Most genes were associated with seed development, among which six genes were highly related. Subcellular localization experiments showed that six GbPLATZ proteins related to seed development were localized in the nucleus, suggesting that they might function as traditional transcription factors. This study provides a basis for understanding the structural differentiation, evolutionary characteristics, expression profile, and potential functions of PLATZ transcription factors in Ginkgo biloba.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-an Xu
- Key Laboratory of Forestry Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Ayoub Khan M, Dongru K, Yifei W, Ying W, Penghui A, Zicheng W. Characterization of WRKY Gene Family in Whole-Genome and Exploration of Flowering Improvement Genes in Chrysanthemum lavandulifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:861193. [PMID: 35557735 PMCID: PMC9087852 DOI: 10.3389/fpls.2022.861193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 05/27/2023]
Abstract
Chrysanthemum is a well-known ornamental plant with numerous uses. WRKY is a large family of transcription factors known for a variety of functions ranging from stress resistance to plant growth and development. Due to the limited research on the WRKY family in chrysanthemums, we examined them for the first time in Chrysanthemum lavandulifolium. A total of 138 ClWRKY genes were identified, which were classified into three groups. Group III in C. lavandulifolium contains 53 members, which is larger than group III of Arabidopsis. The number of introns varied from one to nine in the ClWRKY gene family. The "WRKYGQK" motif is conserved in 118 members, while other members showed slight variations. AuR and GRE responsive cis-acting elements were located in the promoter region of WRKY members, which are important for plant development and flowering induction. In addition, the W box was present in most genes; the recognition site for the WRKY gene may play a role in autoregulation and cross-regulation. The expression of the most variable 19 genes in terms of different parameters was observed at different stages. Among them, 10 genes were selected due to the presence of CpG islands, while nine genes were selected based on their close association with important Arabidopsis genes related to floral traits. ClWRKY36 and ClWRKY45 exhibit differential expression at flowering stages in the capitulum, while methylation is detected in three genes, including ClWRKY31, ClWRKY100, and ClWRKY129. Our results provide a basis for further exploration of WRKY members to find their functions in plant growth and development, especially in flowering traits.
Collapse
|
12
|
Genome-wide identification of nitrate transporter 2 (NRT2) gene family and functional analysis of MeNRT2.2 in cassava (Manihot esculenta Crantz). Gene 2022; 809:146038. [PMID: 34688819 DOI: 10.1016/j.gene.2021.146038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Nitrate transporter 2 (NRT2) proteins play an important role in nitrate uptake and utilization in plants. The NRT2 family has been identified and functionally characterized in many plants. However, no systematic identification of NRT2 family members has been reported in cassava (Manihot esculenta Crantz). In this study, six MeNRT2 genes were identified from cassava genome and named as MeNRT2.1-2.6 according to their chromosomal locations. Phylogenetic tree showed that NRT2 proteins were divided into four main subgroups, which was further supported by their gene structure and conserved motifs. All six MeNRT2 genes are randomly distributed on 4 chromosomes (LG8, LG11, LG13, and LG17), two tandem duplicated genes (MeNRT2.3/MeNRT2.4) and a pair of segmental duplicated gene (MeNRT2.1/MeNRT2.2) was detected. Subsequently, expression profiles of MeNRT2 genes in eight different tissues and in response to nitrate deficient treatment were analyzed. The results showed that the MeNRT2 genes had differential expression patterns. All of MeNRT2 genes induced by nitrate deficiency, of them the MeNRT2.2 had the highest expression level after treatment. Arabidopis transformed with MeNRT2.2 gene showed higher fresh weight than wild type plants in response to N starvation, suggesting that MeNRT2.2 play important role in adapting to low nitrogen. Taken together, our results provide the reference for further analyses of the molecular functions of the MeNRT2 gene family, but also some candidate genes for developing nitrogen efficient crops.
Collapse
|
13
|
Wu K, Qu Y, Rong H, Han X, Tian Y, Xu L. Identification and Expression Analysis of the Populus trichocarpa GASA-Gene Family. Int J Mol Sci 2022; 23:ijms23031507. [PMID: 35163431 PMCID: PMC8835824 DOI: 10.3390/ijms23031507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
The gibberellic acid-stimulated Arabidopsis (GASA) gene family plays an important regulatory role in the growth and development of plants. In this study, we identified 19 GASA genes using bioinformatics-based methods in Populus trichocarpa, and these PtGASA genes could be divided into three categories based on their phylogenetic relationships. Based on an analysis of the structure and motifs of these genes, it was concluded that PtGASA class II members are more conserved than class I and class III members are, and the results of collinearity analysis showed that members of class II are collinearly related in poplar. Expression analysis of Populus trichocarpa roots, stems, and leaves showed that most of the PtGASA genes are expressed at higher levels in the stems or roots than in the leaves; a similar expression pattern was found in Vitis vinifera, indicating that the GASA-family members mainly play a role in the morphogenesis of poplar. Considering the phenomenon of gene amplification, we found that the higher the similarity of homologous genes was, the more similar the expression patterns. This study represents the first whole-genome identification and expression-profile analysis of the GASA-gene family in poplar, a model species, laying a foundation for functional studies of poplar GASA genes and serving as a reference for related research on other woody plant species.
Collapse
Affiliation(s)
| | | | | | | | | | - Li’an Xu
- Correspondence: ; Tel.: +86-25-8542-7882
| |
Collapse
|
14
|
Zhu S, Fan R, Xiong X, Li J, Xiang L, Hong Y, Ye Y, Zhang X, Yu X, Chen Y. MeWRKY IIas, Subfamily Genes of WRKY Transcription Factors From Cassava, Play an Important Role in Disease Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:890555. [PMID: 35720572 PMCID: PMC9201764 DOI: 10.3389/fpls.2022.890555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important tropical crop for food, fodder, and energy. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) occurs in all cassava growing regions and threatens global cassava production. WRKY transcription factor family plays the essential roles during plant growth, development, and abiotic or biotic stress. Particularly, previous studies have revealed the important role of the group IIa WRKY genes in plant disease resistance. However, a comprehensive analysis of group IIa subfamily in cassava is still missing. Here, we identified 102 WRKY members, which were classified into three groups, I, II, and III. Transient expression showed that six MeWRKY IIas were localized in the nucleus. MeWRKY IIas transcripts accumulated significantly in response to SA, JA, and Xam. Overexpression of MeWRKY27 and MeWRKY33 in Arabidopsis enhanced its resistance to Pst DC3000. In contrast, silencing of MeWRKY27 and MeWRKY33 in cassava enhanced its susceptibility to Xam. Co-expression network analysis showed that different downstream genes are regulated by different MeWRKY IIa members. The functional analysis of downstream genes will provide clues for clarifying molecular mechanism of cassava disease resistance. Collectively, our results suggest that MeWRKY IIas are regulated by SA, JA signaling, and coordinate response to Xam infection.
Collapse
Affiliation(s)
- Shousong Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ruochen Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xi Xiong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jianjun Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Li Xiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Yuhui Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yiwei Ye
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- CGIAR Research Program on Roots Tubers and Bananas (RTB), International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Xiaohui Yu
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Yinhua Chen
| |
Collapse
|
15
|
Genome-Wide Identification and Transcriptional Expression Profiles of Transcription Factor WRKY in Common Walnut ( Juglans regia L.). Genes (Basel) 2021; 12:genes12091444. [PMID: 34573426 PMCID: PMC8466090 DOI: 10.3390/genes12091444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
The transcription factor WRKY is widely distributed in the plant kingdom, playing a significant role in plant growth, development and response to stresses. Walnut is an economically important temperate tree species valued for both its edible nuts and high-quality wood, and its response to various stresses is an important factor that determines the quality of its fruit. However, in walnut trees themselves, information about the WRKY gene family remains scarce. In this paper, we perform a comprehensive study of the WRKY gene family in walnut. In total, we identified 103 WRKY genes in the common walnut that are clustered into 4 groups and distributed on 14 chromosomes. The conserved domains all contained a WRKY domain, and motif 2 was observed in most WRKYs, suggesting a high degree of conservation and similar functions within each subfamily. However, gene structure was significantly differentiated between different subfamilies. Synteny analysis indicates that there were 56 gene pairs in J. regia and A. thaliana, 76 in J. regia and J. mandshurica, 75 in J. regia and J. microcarpa, 76 in J. regia and P. trichocarpa, and 33 in J. regia and Q. robur, indicating that the WRKY gene family may come from a common ancestor. GO and KEGG enrichment analysis showed that the WRKY gene family was involved in resistance traits and the plant-pathogen interaction pathway. In anthracnose-resistant F26 fruits (AR) and anthracnose-susceptible F423 fruits (AS), transcriptome and qPCR analysis results showed that JrWRKY83, JrWRKY73 and JrWRKY74 were expressed significantly more highly in resistant cultivars, indicating that these three genes may be important contributors to stress resistance in walnut trees. Furthermore, we investigate how these three genes potentially target miRNAs and interact with proteins. JrWRKY73 was target by the miR156 family, including 12 miRNAs; this miRNA family targets WRKY genes to enhance plant defense. JrWRKY73 also interacted with the resistance gene AtMPK6, showing that it may play a crucial role in walnut defense.
Collapse
|
16
|
Kan J, Gao G, He Q, Gao Q, Jiang C, Ahmar S, Liu J, Zhang J, Yang P. Genome-Wide Characterization of WRKY Transcription Factors Revealed Gene Duplication and Diversification in Populations of Wild to Domesticated Barley. Int J Mol Sci 2021; 22:5354. [PMID: 34069581 PMCID: PMC8160967 DOI: 10.3390/ijms22105354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The WRKY transcription factors (WRKYs) are known for their crucial roles in biotic and abiotic stress responses, and developmental and physiological processes. In barley, early studies revealed their importance, whereas their diversity at the population scale remains hardly estimated. In this study, 98 HsWRKYs and 103 HvWRKYs have been identified from the reference genome of wild and cultivated barley, respectively. The tandem duplication and segmental duplication events from the cultivated barley were observed. By taking advantage of early released exome-captured sequencing datasets in 90 wild barley accessions and 137 landraces, the diversity analysis uncovered synonymous and non-synonymous variants instead of loss-of-function mutations that had occurred at all WRKYs. For majority of WRKYs, the haplotype and nucleotide diversity both decreased in cultivated barley relative to the wild population. Five WRKYs were detected to have undergone selection, among which haplotypes of WRKY9 were enriched, correlating with the geographic collection sites. Collectively, profiting from the state-of-the-art barley genomic resources, this work represented the characterization and diversity of barley WRKY transcription factors, shedding light on future deciphering of their roles in barley domestication and adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (J.K.); (G.G.); (Q.H.); (Q.G.); (C.J.); (S.A.); (J.L.); (J.Z.)
| |
Collapse
|
17
|
Liu H, Wang L, Jing X, Chen Y, Hu F. Functional analysis of CgWRKY57 from Cymbidium goeringii in ABA response. PeerJ 2021; 9:e10982. [PMID: 33665039 PMCID: PMC7908890 DOI: 10.7717/peerj.10982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background The orchid is one of the top ten Chinese flowers and has high ornamental value and elegant color. However, orchids are vulnerable to abiotic stresses during their growth and development, and the molecular mechanism of the abiotic stress response in orchids is unclear. WRKY proteins belong to a transcription factor family that plays important roles in biotic stress, abiotic stress, growth and development in plants, but little is known about the WRKY family in Cymbidium goeringii. Methods The specific fragment of the CgWRKY57 gene of C. goeringii was analyzed by bioinformatics. The expression of the CgWRKY57 gene of C. goeringii under 4 °C, 42 °C water and ABA stress as well as different tissues was detected by real-time fluorescence quantitative PCR. CgWRKY57 gene was overexpressed in wild type Arabidopsis thaliana by inflorescence infection method, and the function of transgenic lines under ABA stress was analyzed. Results CgWRKY57 was cloned from C. goeringii and found to encode 303 amino acids. The CgWRKY57 protein is an acidic, nonsecreted hydrophilic protein without a signal peptide or transmembrane domain. The CgWRKY57 protein is located to the nucleus and may function intracellularly according to its predicted subcellular localization. A domain analysis and homology comparison showed that the CgWRKY57 protein has a "WRKYGQK" domain and belongs to Group III of the WRKY family, and a phylogenetic analysis demonstrated that CgWRKY57 is closely related to OsWRKY47. CgWRKY57 was expressed in the roots, stems, leaves and floral organs of C. goeringii, and its expression level was highest in the roots according to real-time qPCR analysis. There were significant differences in CgWRKY57 expression under 4 °C, 42 °C ABA and water stress treatments, and its expression changed greatly under ABA stress. The expression of CgWRKY57 in transgenic plants was significantly higher than that in wild type plants under ABA stress, and the root length and germination rate were reduced in transgenic plants compared to wild type plants. Conclusions These results indicate that CgWRKY57 overexpression is responsive to ABA stress, and they provide a foundation for future analyses of the biological functions of the WRKY family in C. goeringii.
Collapse
Affiliation(s)
- Huanhuan Liu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lianping Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xijun Jing
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Fengrong Hu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Genome-wide study of flowering-related MADS-box genes family in Cardamine hirsuta. 3 Biotech 2020; 10:518. [PMID: 33194522 DOI: 10.1007/s13205-020-02521-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022] Open
Abstract
MADS-box genes take part in diverse biological functions especially in development of reproductive structures and control of flowering time. Recently, Cardamine hirsuta has emerged as an exclusively powerful genetic system in comparative studies of development. Although the C. hirsuta genome sequence is available but a comprehensive analysis of its MADS-box family genes is still lacking. Here, we determined 50 Cardamine MADS-box genes through bioinformatics tools and classified them into 2 Mβ, 6 Mα and 2 Mγ and 40 MIKC-type (35 MIKCc and 5MIKC*) genes based on a phylogenetic analysis. The C. hirsuta MIKC subfamily could be further classified into 14 subgroups as Arabidopsis. However the number of MADS-box proteins was not equal among these subgroups. Based on the structural diversity among 50 MADS-box genes, 2 lineages were obtained, type I and type II. The lowest number of introns (0 or 1) was found in the Mα, Mβ, and Mγ groups of the type I genes. The most Cardamine MADS-box genes were randomly distributed on only three chromosomes. C. hirsuta had a relatively lower number of flowering MADS-box genes than A. thaliana and probably tandem duplication event resulted in the expansion of FLC, SQUA and TM3 family members in Arabidopsis. Moreover among the conserved motifs, ChMADS5 of SQUA, ChMADS34 of TM3 and ChMADS51 of AGL15 families had no K-domain. This study provides a basis for further functional investigation of MADS-box genes in C. hirsuta.
Collapse
|
19
|
You H, Liu Y, Minh TN, Lu H, Zhang P, Li W, Xiao J, Ding X, Li Q. Genome-wide identification and expression analyses of nitrate transporter family genes in wild soybean (Glycine soja). J Appl Genet 2020; 61:489-501. [PMID: 32779148 DOI: 10.1007/s13353-020-00571-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023]
Abstract
Nitrate transporters (NRTs) are important channel proteins facilitating cross-membrane movement of small molecules like NO3- which is a critical nutrient for all life. However, the classification and evolution of nitrate transporters in the legume plants are still elusive. In this study, we surveyed the wild soybean (G. soja) genomic databases and identified 120 GsNRT1 and 5 GsNRT2 encoding genes. Phylogenetic analyses show that GsNRT1 subfamily is consisted of eight clades (NPF1 to NPF8), while GsNRT2 subfamily has only one clade. Gene chromosomal location and evolutionary historic analyses indicate that GsNRT genes are unevenly distributed on 19 out of 20 G. soja chromosomes and segmental duplications may take a major part in the expansion of GsNRT family. Investigations of gene structure and protein motif compositions suggest that GsNRT family members are highly conserved in structures of both gene and protein levels. In addition, we analyzed the spatial expression patterns of representative GsNRT genes and their responses to exogenous nitrogen and carbon supplies and different abiotic stresses. The qRT-PCR data indicated that 16 selected GsNRT genes showed various expression levels in the roots, stems, leaves, and pods of young G. soja plants, and these genes were regulated by not only nitrogen and carbohydrate nutrients but also NaCl, NaHCO3, abscisic acid (ABA), and salicylic acid (SA). These results suggest that GsNRT genes may be involved in the regulation of plant growth, development, and adaptation to environmental stresses, and the study will shed light on functional dissection of plant nitrate transporter proteins in the future.
Collapse
Affiliation(s)
- Hongguang You
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Thuy Nguyen Minh
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Lu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfeng Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Fu Y, Cheng M, Li M, Guo X, Wu Y, Wang J. Identification and Characterization of PLATZ Transcription Factors in Wheat. Int J Mol Sci 2020; 21:E8934. [PMID: 33255649 PMCID: PMC7728089 DOI: 10.3390/ijms21238934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The PLATZ (plant AT-rich protein and zinc-binding protein) transcription factor family is a class of plant-specific zinc-dependent DNA-binding proteins. PLATZ has essential roles in seed endosperm development, as well as promoting cell proliferation duration in the earlier stages of the crops. In the present study, 62 TaPLATZ genes were identified from the wheat genome, and they were unequally distributed on 15 chromosomes. According to the phylogenetic analysis, 62 TaPLATZ genes were classified into six groups, including two groups that were unique in wheat. Members in the same groups shared similar exon-intron structures. The polyploidization, together with genome duplication of wheat, plays a crucial role in the expansion of the TaPLATZs family. Transcriptome data indicated a distinct divergence expression pattern of TaPLATZ genes that could be clustered into four modules. The TaPLATZs in Module b possessed a seed-specific expression pattern and displayed obvious high expression in the earlier development stage of seeds. Subcellular localization data of TaPLATZs suggesting that they likely perform a function as a conventional transcription factor. This study provides insight into understanding the structure divergence, evolutionary features, expression profiles, and potential function of PLATZ in wheat.
Collapse
Affiliation(s)
- Yuxin Fu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Mengping Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
| | - Maolian Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
| | - Xiaojiang Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Use in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
21
|
Baillo EH, Hanif MS, Guo Y, Zhang Z, Xu P, Algam SA. Genome-wide Identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench). PLoS One 2020; 15:e0236651. [PMID: 32804948 PMCID: PMC7430707 DOI: 10.1371/journal.pone.0236651] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
WRKY transcription factors regulate diverse biological processes in plants, including abiotic and biotic stress responses, and constitute one of the largest transcription factor families in higher plants. Although the past decade has seen significant progress towards identifying and functionally characterizing WRKY genes in diverse species, little is known about the WRKY family in sorghum (Sorghum bicolor (L.) moench). Here we report the comprehensive identification of 94 putative WRKY transcription factors (SbWRKYs). The SbWRKYs were divided into three groups (I, II, and III), with those in group II further classified into five subgroups (IIa–IIe), based on their conserved domains and zinc finger motif types. WRKYs from the model plant Arabidopsis (Arabidopsis thaliana) were used for the phylogenetic analysis of all SbWRKY genes. Motif analysis showed that all SbWRKYs contained either one or two WRKY domains and that SbWRKYs within the same group had similar motif compositions. SbWRKY genes were located on all 10 sorghum chromosomes, and some gene clusters and two tandem duplications were detected. SbWRKY gene structure analysis showed that they contained 0–7 introns, with most SbWRKY genes consisting of two introns and three exons. Gene ontology (GO) annotation functionally categorized SbWRKYs under cellular components, molecular functions and biological processes. A cis-element analysis showed that all SbWRKYs contain at least one stress response-related cis-element. We exploited publicly available microarray datasets to analyze the expression profiles of 78 SbWRKY genes at different growth stages and in different tissues. The induction of SbWRKYs by different abiotic stresses hinted at their potential involvement in stress responses. qRT-PCR analysis revealed different expression patterns for SbWRKYs during drought stress. Functionally characterized WRKY genes in Arabidopsis and other species will provide clues for the functional characterization of putative orthologs in sorghum. Thus, the present study delivers a solid foundation for future functional studies of SbWRKY genes and their roles in the response to critical stresses such as drought.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Wad Madani, Gezira, Sudan
- * E-mail: ,
| | - Muhammad Sajid Hanif
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinghui Guo
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- * E-mail: ,
| | - Ping Xu
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Soad Ali Algam
- Faculty of Agriculture, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
22
|
Transcriptomic Profiling of Cryptomeria fortunei Hooibrenk Vascular Cambium Identifies Candidate Genes Involved in Phenylpropanoid Metabolism. FORESTS 2020. [DOI: 10.3390/f11070766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cryptomeria fortunei Hooibrenk (Chinese cedar) is a coniferous tree from southern China that has an important function in landscaping and timber production. Lignin is one of the key components of secondary cell walls, which have a crucial role in conducting water and providing mechanical support for the upward growth of plants. It is mainly biosynthesized via the phenylpropanoid metabolic pathway, of which the molecular mechanism remains so far unresolved in C. fortunei. In order to obtain further insight into this pathway, we performed transcriptome sequencing of the C. fortunei cambial zone at 5 successive growth stages. We generated 78,673 unigenes from transcriptome data, of which 45,214 (57.47%) were successfully annotated in the non-redundant protein database (NR). A total of 8975 unigenes were identified to be significantly differentially expressed between Sample_B and Sample_A after analyzing their expression profiles. Of the differentially expressed genes (DEGs), 6817 (75.96%) and 2158 (24.04%) were up- and down-regulated, respectively. 83 DEGs were involved in phenylpropanoid metabolism, 37 DEGs that encoded v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF), and many candidates that encoded lignin synthesizing enzymes. These findings contribute to understanding the expression pattern of C. fortunei cambial zone transcriptome. Furthermore, our results provide additional insight towards understanding the molecular mechanisms of wood formation in C. fortunei.
Collapse
|
23
|
Li H, Guan H, Zhuo Q, Wang Z, Li S, Si J, Zhang B, Feng B, Kong LA, Wang F, Wang Z, Zhang L. Genome-wide characterization of the abscisic acid-, stress- and ripening-induced (ASR) gene family in wheat (Triticum aestivum L.). Biol Res 2020; 53:23. [PMID: 32448297 PMCID: PMC7247183 DOI: 10.1186/s40659-020-00291-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abscisic acid-, stress-, and ripening-induced (ASR) genes are a class of plant specific transcription factors (TFs), which play important roles in plant development, growth and abiotic stress responses. The wheat ASRs have not been described in genome-wide yet. METHODS We predicted the transmembrane regions and subcellular localization using the TMHMM server, and Plant-mPLoc server and CELLO v2.5, respectively. Then the phylogeny tree was built by MEGA7. The exon-intron structures, conserved motifs and TFs binding sites were analyzed by GSDS, MEME program and PlantRegMap, respectively. RESULTS In wheat, 33ASR genes were identified through a genome-wide survey and classified into six groups. Phylogenetic analyses revealed that the TaASR proteins in the same group tightly clustered together, compared with those from other species. Duplication analysis indicated that the TaASR gene family has expanded mainly through tandem and segmental duplication events. Similar gene structures and conserved protein motifs of TaASRs in wheat were identified in the same groups. ASR genes contained various TF binding cites associated with the stress responses in the promoter region. Gene expression was generally associated with the expected group-specific expression pattern in five tissues, including grain, leaf, root, spike and stem, indicating the broad conservation of ASR genes function during wheat evolution. The qRT-PCR analysis revealed that several ASRs were up-regulated in response to NaCl and PEG stress. CONCLUSION We identified ASR genes in wheat and found that gene duplication events are the main driving force for ASR gene evolution in wheat. The expression of wheat ASR genes was modulated in responses to multiple abiotic stresses, including drought/osmotic and salt stress. The results provided important information for further identifications of the functions of wheat ASR genes and candidate genes for high abiotic stress tolerant wheat breeding.
Collapse
Affiliation(s)
- Huawei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Haiying Guan
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Jinan, 250100 Shandong China
| | - Qicui Zhuo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Shengdong Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Jisheng Si
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Bo Feng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Ling-an Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Fahong Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Zheng Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Lishun Zhang
- Jinan Yongfeng Seed Industry Co., Ltd, 3620 Pingannan Road, Jinan, 250100 China
| |
Collapse
|
24
|
Nan H, Li W, Lin YL, Gao LZ. Genome-Wide Analysis of WRKY Genes and Their Response to Salt Stress in the Wild Progenitor of Asian Cultivated Rice, Oryza rufipogon. Front Genet 2020. [DOI: 10.3389/fgene.2020.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
In-silico analysis of cucumber (Cucumis sativus L.) Genome for WRKY transcription factors and cis-acting elements. Comput Biol Chem 2020; 85:107212. [PMID: 32058944 DOI: 10.1016/j.compbiolchem.2020.107212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
WRKY genes, comprises one among a large clan of transcription factor (TFs) genes in the plant kingdom, playing a fundamental role in the vegetative and reproductive growth, development and stress responses of a plant. In spite of several studies on cucumber (Cucumis sativus L.), WRKY genes and their interaction with stress response is limited. The present study, on the whole genome of cucumber was analyzed for WRKY genes which recognized 62 CsWRKY genes associated with the proteins obtained from lineages of supplementary plants. The physicochemical properties reveal the CsWRKY gene is ser-rich TF (6.70-18.40 %). The chromosomal distribution showed that all putative CsWRKY genes were distributed in seven chromosomes, enriched on chromosome 3 and 6 and least on chromosome 5. Based on phylogenetic analysis, along with motif determination and gene structure analysis, CsWRKYs are categorized as a Group I, II and III. The Group II further subdivided as Groups IIa-e. In the present study, it was observed that Group II WRKY-TFs was the largest group containing 43 WRKY genes containing a single WD (WRKY domain - WRKYGQK/WRKYGKK) and C2H2 type zinc finger structure (C-X4-5-C-X23-H-X1-H). The data also revealed that chromosome 3 and 5 contained all the three major groups and chromosome 6 contained I and II WRKY genes with uneven distribution. STRING analysis of selected CsWRKY proteins expressed in response to abiotic stress interacts with the CsMAPK proteins. Analysis of cis-acting elements and results suggest that CSWRKY genes play important role in response to biotic and abiotic stress. Response also predicted the candidate gene expression in cucumber during its development under different cellular condition.
Collapse
|
26
|
Genome-Wide Identification of WOX Gene Family and Expression Analysis during Rejuvenational Rhizogenesis in Walnut (Juglans regia L.). FORESTS 2019. [DOI: 10.3390/f11010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rejuvenation is an efficient approach used in the cuttings of trees and horticultural crops, to improve their rooting ability, especially in difficult-to-root trees. WOX gene family members are involved in cell-fate transformation through balancing the maintenance and proliferation of the stem cells. However, there are no reports about the WOX gene family in Walnut (Juglans regia L.) and its relationship between rejuvenation and adventitious roots formation (ARF). Here, a genome-wide identification of JrWOX genes and their physical and chemical properties, phylogeny, and expression profiles in different organs and during rejuvenation-induced ARF is reported. The phenotype and histology characteristics of mature and rejuvenated cuttings (Mc and Rc) are also observed. In this study, 12 genes were identified and clustered into three groups based on phylogenetics, special domains, and conserved motifs. The gene structures and conserved motifs were relatively conserved, while the 12 sequences of the JrWOXs domain were diversified. Gene expression in root, stem, leaf, female flower, immature fruit, and zygotic embryo revealed that the expression levels of JrWOX4a, JrWOX4b, JrWOX5, JrWOX11, and JrWOX13 in the root were significantly higher than those of other JrWOXs, while only the expression of JrWOX11 was exclusive to the root organ. Additionally, rejuvenation treatment significantly induced almost all JrWOX genes, except JrWOX4a, JrWOX4b, and JrWOX13 (Rc 0 vs. Mc 0). During the ARF process, the transcripts of JrWOX11 and JrWOX5 were consecutively increased on a significance level; in contrast, the transcription levels of the other JrWOXs decreased or changed insignificantly. The phenotype and histology observation indicate that rejuvenation treatment made the base of the stem expand and reduced the thickness and density of sclerenchyma between the cortex and phloem. This might provide the conditions for the formation of new meristem niches. The results provided insight into the JrWOX genes’ general characteristics and their roles in rejuvenation-induced ARF.
Collapse
|
27
|
Qu Y, Bi C, He B, Ye N, Yin T, Xu LA. Genome-wide identification and characterization of the MADS-box gene family in Salix suchowensis. PeerJ 2019; 7:e8019. [PMID: 31720123 PMCID: PMC6842560 DOI: 10.7717/peerj.8019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/09/2019] [Indexed: 01/19/2023] Open
Abstract
MADS-box genes encode transcription factors that participate in various plant growth and development processes, particularly floral organogenesis. To date, MADS-box genes have been reported in many species, the completion of the sequence of the willow genome provides us with the opportunity to conduct a comprehensive analysis of the willow MADS-box gene family. Here, we identified 60 willow MADS-box genes using bioinformatics-based methods and classified them into 22 M-type (11 Mα, seven Mβ and four Mγ) and 38 MIKC-type (32 MIKCc and six MIKC*) genes based on a phylogenetic analysis. Fifty-six of the 60 SsMADS genes were randomly distributed on 19 putative willow chromosomes. By combining gene structure analysis with evolutionary analysis, we found that the MIKC-type genes were more conserved and played a more important role in willow growth. Further study showed that the MIKC* type was a transition between the M-type and MIKC-type. Additionally, the number of MADS-box genes in gymnosperms was notably lower than that in angiosperms. Finally, the expression profiles of these willow MADS-box genes were analysed in five different tissues (root, stem, leave, bud and bark) and validated by RT-qPCR experiments. This study is the first genome-wide analysis of the willow MADS-box gene family, and the results establish a basis for further functional studies of willow MADS-box genes and serve as a reference for related studies of other woody plants.
Collapse
Affiliation(s)
- Yanshu Qu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changwei Bi
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bing He
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
28
|
Nan H, Gao LZ. Genome-Wide Analysis of WRKY Genes and Their Response to Hormone and Mechanic Stresses in Carrot. Front Genet 2019; 10:363. [PMID: 31191596 PMCID: PMC6504813 DOI: 10.3389/fgene.2019.00363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
The WRKY gene family plays a vital role in plant development and environment response. Although previous studies suggested that the WRKY genes in carrot (Kuroda type) involved in biotic and abiotic stress responses, the information of WRKY genes in the latest version of the carrot genome (Daucus carota v2.0, Nantes type carrot) and their response to hormone and injury stresses have not been reported. In this study, we performed a genome-wide analysis of WRKYs using a chromosome-scale genome assembly of carrot (Daucus carota subsp. sativus L.). We identified a total of 67 WRKY genes, which were further classified into the three groups. These WRKY genes are unevenly distributed on carrot chromosomes. We found that more than half of them were derived from whole-genome duplication (WGD) events, suggesting that WGDs have played a major role during the evolution of the WRKY gene family. We experimentally ascertained the expression divergence existed between WGD-derived WRKY duplicated gene pairs, which is indicative of functional differentiation between duplicated genes. Our analysis of cis-acting elements indicated that WRKY genes were transcriptionally regulated upon hormone and mechanic injury stresses. Gene expression analyses by qRT-PCR further presented that WRKY genes were involved in hormone and mechanic injury stresses.
Collapse
Affiliation(s)
- Hong Nan
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Zhi Gao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Yue H, Chang X, Zhi Y, Wang L, Xing G, Song W, Nie X. Evolution and Identification of the WRKY Gene Family in Quinoa ( Chenopodium quinoa). Genes (Basel) 2019; 10:genes10020131. [PMID: 30754717 PMCID: PMC6409747 DOI: 10.3390/genes10020131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/02/2022] Open
Abstract
The WRKY gene family plays a unique role in plant stress tolerance. Quinoa is a cultivated crop worldwide that is known for its high stress tolerance. The WRKY gene family in quinoa has not yet been studied. Using a genome-wide search method, we identified 1226 WRKY genes in 15 plant species, seven animal species, and seven fungi species. WRKY proteins were not found in animal species and five fungi species, but were, however, widespread in land plants. A total of 92 CqWRKY genes were identified in quinoa. Based on the phylogenetic analysis, these CqWRKY genes were classified into three groups. The CqWRKY proteins have a highly conserved heptapeptide WRKYGQK with 15 conserved elements. Furthermore, a total of 25 CqWRKY genes were involved in the co-expression pathway of organ development and osmotic stress. The expression level of more than half of these CqWRKY genes showed significant variation under salt or drought stress. This study reports, for the first time, the findings of the CqWRKY gene family in quinoa at the genome-wide level. This information will be beneficial for our understanding of the molecular mechanisms of stress tolerance in crops, such as quinoa.
Collapse
Affiliation(s)
- Hong Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xi Chang
- Xizang Agriculture and Animal Husbandry College, Linzhi 860000, Xizang, China.
| | - Yongqiang Zhi
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Guangwei Xing
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Cui Q, Yan X, Gao X, Zhang DM, He HB, Jia GX. Analysis of WRKY transcription factors and characterization of two Botrytis cinerea-responsive LrWRKY genes from Lilium regale. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:525-536. [PMID: 29723824 DOI: 10.1016/j.plaphy.2018.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 05/27/2023]
Abstract
A major constraint in producing lilies is gray mold caused by Botrytis elliptica and B. cinerea. WRKY transcription factors play important roles in plant immune responses. However, limited information is available about the WRKY gene family in lily plants. In this study, 23 LrWRKY genes with complete WRKY domains were identified from the Botrytis-resistant species Lilium regale. The putative WRKY genes were divided into seven subgroups (Group I, IIa-e, and III) according to their structural features. Sequence alignment revealed that LrWRKY proteins have a highly conserved WRKYGQK domain and a variant, the WRKYGKK domain, and these proteins generally contained similar motif compositions throughout the same subgroup. Functional annotation predicted they might be involved in biological processes related to abiotic and biotic stresses. A qRT-PCR analysis confirmed that expression of six LrWRKY genes in L. regale or the susceptible Asian hybrid 'Yale' was induced by B. cinerea infection. Among these genes, LrWRKY4, LrWRKY8 and LrWRKY10 were expressed at a higher level in L. regale than 'Yale', while the expression of LrWRKY6 and LrWRKY12 was lower in L. regale. Furthermore, LrWRKY4 and LrWRKY12 genes, which also respond to salicylic acid (SA) and methyl jasmonate (MeJA) treatments, were isolated from L. regale. Subcellular localization analysis determined that they were targeted to the nucleus. Constitutive expression of LrWRKY4 and LrWRKY12 in Arabidopsis resulted in plants that were more resistant to B. cinerea than wild-type plants. This resistance was coupled with the transcriptional changes of SA and JA-responsive genes. Overall, our study provides valuable information about the structural and functional characterization of LrWRKY genes that will not only deepen our understanding of the molecular mechanisms underlying the defense of lily against B. cinerea but also offer potential targets for cultivar improvement via biotechnology.
Collapse
Affiliation(s)
- Qi Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiao Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xue Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dong-Mei Zhang
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, 200230, China
| | - Heng-Bin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
31
|
Ning P, Liu C, Kang J, Lv J. Genome-wide analysis of WRKY transcription factors in wheat ( Triticum aestivum L.) and differential expression under water deficit condition. PeerJ 2017; 5:e3232. [PMID: 28484671 PMCID: PMC5420200 DOI: 10.7717/peerj.3232] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND WRKY proteins, which comprise one of the largest transcription factor (TF) families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L.), functional annotation information about wheat WRKYs is limited. RESULTS Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa-e, and III). Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7%) genes were either tandem (5) or segmental duplication (80), which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. CONCLUSION Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.
Collapse
Affiliation(s)
- Pan Ning
- College of Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Congcong Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingquan Kang
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
32
|
Sheshadri SA, Nishanth MJ, Simon B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta. FRONTIERS IN PLANT SCIENCE 2016; 7:1725. [PMID: 27933071 PMCID: PMC5122738 DOI: 10.3389/fpls.2016.01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 05/07/2023]
Abstract
Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.
Collapse
Affiliation(s)
| | | | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
33
|
Yousfi FE, Makhloufi E, Marande W, Ghorbel AW, Bouzayen M, Bergès H. Comparative Analysis of WRKY Genes Potentially Involved in Salt Stress Responses in Triticum turgidum L. ssp. durum. FRONTIERS IN PLANT SCIENCE 2016; 7:2034. [PMID: 28197152 PMCID: PMC5281569 DOI: 10.3389/fpls.2016.02034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/20/2016] [Indexed: 05/06/2023]
Abstract
WRKY transcription factors are involved in multiple aspects of plant growth, development and responses to biotic stresses. Although they have been found to play roles in regulating plant responses to environmental stresses, these roles still need to be explored, especially those pertaining to crops. Durum wheat is the second most widely produced cereal in the world. Complex, large and unsequenced genomes, in addition to a lack of genomic resources, hinder the molecular characterization of tolerance mechanisms. This paper describes the isolation and characterization of five TdWRKY genes from durum wheat (Triticum turgidum L. ssp. durum). A PCR-based screening of a T. turgidum BAC genomic library using primers within the conserved region of WRKY genes resulted in the isolation of five BAC clones. Following sequencing fully the five BACs, fine annotation through Triannot pipeline revealed 74.6% of the entire sequences as transposable elements and a 3.2% gene content with genes organized as islands within oceans of TEs. Each BAC clone harbored a TdWRKY gene. The study showed a very extensive conservation of genomic structure between TdWRKYs and their orthologs from Brachypodium, barley, and T. aestivum. The structural features of TdWRKY proteins suggested that they are novel members of the WRKY family in durum wheat. TdWRKY1/2/4, TdWRKY3, and TdWRKY5 belong to the group Ia, IIa, and IIc, respectively. Enrichment of cis-regulatory elements related to stress responses in the promoters of some TdWRKY genes indicated their potential roles in mediating plant responses to a wide variety of environmental stresses. TdWRKY genes displayed different expression patterns in response to salt stress that distinguishes two durum wheat genotypes with contrasting salt stress tolerance phenotypes. TdWRKY genes tended to react earlier with a down-regulation in sensitive genotype leaves and with an up-regulation in tolerant genotype leaves. The TdWRKY transcripts levels in roots increased in tolerant genotype compared to sensitive genotype. The present results indicate that these genes might play some functional role in the salt tolerance in durum wheat.
Collapse
Affiliation(s)
- Fatma-Ezzahra Yousfi
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Borj Cedria Science and Technology ParkHammam-lif, Tunisia
- Centre National de Ressources Genomiques Vegetales, French Plant Genomic Center, INRA–CNRGVCastanet-Tolosan, France
- INRA, UMR990 Genomique et Biotechnologie des FruitsCastanet-Tolosan, France
| | - Emna Makhloufi
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Borj Cedria Science and Technology ParkHammam-lif, Tunisia
- Centre National de Ressources Genomiques Vegetales, French Plant Genomic Center, INRA–CNRGVCastanet-Tolosan, France
- INRA, UMR990 Genomique et Biotechnologie des FruitsCastanet-Tolosan, France
- INPT, Laboratoire de Genomique et Biotechnologie des Fruits, University of ToulouseCastanet-Tolosan, France
| | - William Marande
- Centre National de Ressources Genomiques Vegetales, French Plant Genomic Center, INRA–CNRGVCastanet-Tolosan, France
| | - Abdel W. Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Borj Cedria Science and Technology ParkHammam-lif, Tunisia
| | - Mondher Bouzayen
- INRA, UMR990 Genomique et Biotechnologie des FruitsCastanet-Tolosan, France
- INPT, Laboratoire de Genomique et Biotechnologie des Fruits, University of ToulouseCastanet-Tolosan, France
| | - Hélène Bergès
- Centre National de Ressources Genomiques Vegetales, French Plant Genomic Center, INRA–CNRGVCastanet-Tolosan, France
- *Correspondence: Hélène Bergès
| |
Collapse
|