1
|
Sun Z, Heacock-Kang Y, McMillan IA, Cabanas D, Zarzycki-Siek J, Hoang TT. A virulence activator of a surface attachment protein in Burkholderia pseudomallei acts as a global regulator of other membrane-associated virulence factors. Front Microbiol 2023; 13:1063287. [PMID: 36726566 PMCID: PMC9884982 DOI: 10.3389/fmicb.2022.1063287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Burkholderia pseudomallei (Bp), causing a highly fatal disease called melioidosis, is a facultative intracellular pathogen that attaches and invades a variety of cell types. We previously identified BP1026B_I0091 as a surface attachment protein (Sap1) and an essential virulence factor, contributing to Bp pathogenesis in vitro and in vivo. The expression of sap1 is regulated at different stages of Bp intracellular lifecycle by unidentified regulator(s). Here, we identified SapR (BP1026B_II1046) as a transcriptional regulator that activates sap1, using a high-throughput transposon mutagenesis screen in combination with Tn-Seq. Consistent with phenotypes of the Δsap1 mutant, the ΔsapR activator mutant exhibited a significant reduction in Bp attachment to the host cell, leading to subsequent decreased intracellular replication. RNA-Seq analysis further revealed that SapR regulates sap1. The regulation of sap1 by SapR was confirmed quantitatively by qRT-PCR, which also validated the RNA-Seq data. SapR globally regulates genes associated with the bacterial membrane in response to diverse environments, and some of the genes regulated by SapR are virulence factors that are required for Bp intracellular infection (e.g., type III and type VI secretion systems). This study has identified the complex SapR regulatory network and its importance as an activator of an essential Sap1 attachment factor.
Collapse
Affiliation(s)
- Zhenxin Sun
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Yun Heacock-Kang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Ian A McMillan
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Darlene Cabanas
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Tung T Hoang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
2
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Nathan S, Chieng S, Kingsley PV, Mohan A, Podin Y, Ooi MH, Mariappan V, Vellasamy KM, Vadivelu J, Daim S, How SH. Melioidosis in Malaysia: Incidence, Clinical Challenges, and Advances in Understanding Pathogenesis. Trop Med Infect Dis 2018; 3:E25. [PMID: 30274422 PMCID: PMC6136604 DOI: 10.3390/tropicalmed3010025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 12/12/2022] Open
Abstract
Malaysia is an endemic hot spot for melioidosis; however, a comprehensive picture of the burden of disease, clinical presentations, and challenges faced in diagnosis and treatment of melioidosis is not available. This review provides a nonexhaustive overview of epidemiological data, clinical studies, risk factors, and mortality rates from available literature and case reports. Clinical patterns of melioidosis are generally consistent with those from South and Southeast Asia in terms of common primary presentations with diabetes as a major risk factor. Early diagnosis and appropriate management of Malaysian patients is a key limiting factor, which needs to be addressed to reduce serious complications and high mortality and recurrence rates. Promoting awareness among the local healthcare personnel is crucial to improving diagnostics and early treatment, as well as educating the Malaysian public on disease symptoms and risk factors. A further matter of urgency is the need to make this a notifiable disease and the establishment of a national melioidosis registry. We also highlight local studies on the causative agent, Burkholderia pseudomallei, with regards to bacteriology and identification of virulence factors as well as findings from host⁻pathogen interaction studies. Collectively, these studies have uncovered new correlations and insights for further understanding of the disease.
Collapse
Affiliation(s)
- Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
| | - Sylvia Chieng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
| | | | - Anand Mohan
- Department of Paediatrics, Bintulu Hospital, Bintulu 97000, Malaysia.
| | - Yuwana Podin
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia.
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia.
- Department of Paediatrics, Sarawak General Hospital, Kuching 93586, Malaysia.
| | - Vanitha Mariappan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Sylvia Daim
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia.
| | - Soon-Hin How
- Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan 25200, Malaysia.
| |
Collapse
|
4
|
Vander Broek CW, Zainal Abidin N, Stevens JM. BipC, a Predicted Burkholderia pseudomallei Type 3 Secretion System Translocator Protein with Actin Binding Activity. Front Cell Infect Microbiol 2017; 7:333. [PMID: 28770177 PMCID: PMC5515863 DOI: 10.3389/fcimb.2017.00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei is an intracellular bacterial pathogen and the causative agent of melioidosis, a severe disease of humans and animals. Like other clinically important Gram-negative bacteria, fundamental to B. pseudomallei pathogenesis is the Bsa Type III Secretion System. The Bsa system injects bacterial effector proteins into the cytoplasm of target host cells subverting cellular pathways for the benefit of the bacteria. It is required for invasion of non-phagocytic host cells, escape from the endocytic compartment into the host cell cytoplasm, and for virulence in murine models of melioidosis. We have recently described the repertoire of effector proteins secreted by the B. pseudomallei Bsa system, however the functions of many of these effector proteins remain an enigma. One such protein is BipC, a homolog of the translocator/effector proteins SipC and IpaC from Salmonella spp. and Shigella flexneri respectively. SipC and IpaC each have separate and distinct roles acting both as translocators, involved in creating a pore in the eukaryotic cell membrane through which effector proteins can transit, and as effectors by interacting with and polymerizing host cell actin. In this study, pull-down assays demonstrate an interaction between BipC and actin. Furthermore, we show that BipC directly interacts with actin, preferentially with actin polymers (F-actin) and has the ability to polymerize actin in a similar manner as that described for SipC. Yet unlike SipC, BipC does not stabilize F-actin filaments, indicating a functionally distinct interaction with actin. Expression of Myc-tagged BipC in HeLa cells induces the formation of pseudopodia similar to that seen for IpaC. This study explores the effector function of BipC and reveals that actin interaction is conserved within the BipC/SipC/IpaC family of translocator/effector proteins.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| | - Nurhamimah Zainal Abidin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| |
Collapse
|
5
|
Vander Broek CW, Stevens JM. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 2017; 7:255. [PMID: 28664152 PMCID: PMC5471309 DOI: 10.3389/fcimb.2017.00255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular pathogen and the causative agent of melioidosis, a severe disease of both humans and animals. Melioidosis is an emerging disease which is predicted to be vastly under-reported. Type III Secretion Systems (T3SSs) are critical virulence factors in Gram negative pathogens of plants and animals. The genome of B. pseudomallei encodes three T3SSs. T3SS-1 and -2, of which little is known, are homologous to Hrp2 secretion systems of the plant pathogens Ralstonia and Xanthomonas. T3SS-3 is better characterized and is homologous to the Inv/Mxi-Spa secretion systems of Salmonella spp. and Shigella flexneri, respectively. Upon entry into the host cell, B. pseudomallei requires T3SS-3 for efficient escape from the endosome. T3SS-3 is also required for full virulence in both hamster and murine models of infection. The regulatory cascade which controls T3SS-3 expression and the secretome of T3SS-3 have been described, as well as the effect of mutations of some of the structural proteins. Yet only a few effector proteins have been functionally characterized to date and very little work has been carried out to understand the hierarchy of assembly, secretion and temporal regulation of T3SS-3. This review aims to frame current knowledge of B. pseudomallei T3SSs in the context of other well characterized model T3SSs, particularly those of Salmonella and Shigella.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| |
Collapse
|