1
|
Hall JN, Bah SY, Khalid H, Brailey A, Coleman S, Kirk T, Hussain N, Tovey M, Chaudhuri RR, Davies S, Tilley L, de Silva T, Turner CE. Molecular characterization of Streptococcus pyogenes (StrepA) non-invasive isolates during the 2022-2023 UK upsurge. Microb Genom 2024; 10:001277. [PMID: 39133528 PMCID: PMC11318961 DOI: 10.1099/mgen.0.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
At the end of 2022 into early 2023, the UK Health Security Agency reported unusually high levels of scarlet fever and invasive disease caused by Streptococcus pyogenes (StrepA or group A Streptococcus). During this time, we collected and genome-sequenced 341 non-invasive throat and skin S. pyogenes isolates identified during routine clinical diagnostic testing in Sheffield, a large UK city. We compared the data with that obtained from a similar collection of 165 isolates from 2016 to 2017. Numbers of throat-associated isolates collected peaked in early December 2022, reflecting the national scarlet fever upsurge, while skin infections peaked later in December. The most common emm-types in 2022-2023 were emm1 (28.7 %), emm12 (24.9 %) and emm22 (7.7 %) in throat and emm1 (22 %), emm12 (10 %), emm76 (18 %) and emm49 (7 %) in skin. While all emm1 isolates were the M1UK lineage, the comparison with 2016-2017 revealed diverse lineages in other emm-types, including emm12, and emergent lineages within other types including a new acapsular emm75 lineage, demonstrating that the upsurge was not completely driven by a single genotype. The analysis of the capsule locus predicted that only 51 % of throat isolates would produce capsule compared with 78% of skin isolates. Ninety per cent of throat isolates were also predicted to have high NADase and streptolysin O (SLO) expression, based on the promoter sequence, compared with only 56% of skin isolates. Our study has highlighted the value in analysis of non-invasive isolates to characterize tissue tropisms, as well as changing strain diversity and emerging genomic features which may have implications for spillover into invasive disease and future S. pyogenes upsurges.
Collapse
Affiliation(s)
- Jennifer N. Hall
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Saikou Y. Bah
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Henna Khalid
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Alison Brailey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sarah Coleman
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tracey Kirk
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Naveed Hussain
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mark Tovey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Roy R. Chaudhuri
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Steve Davies
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Lisa Tilley
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thushan de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Vieira A, Wan Y, Ryan Y, Li HK, Guy RL, Papangeli M, Huse KK, Reeves LC, Soo VWC, Daniel R, Harley A, Broughton K, Dhami C, Ganner M, Ganner MA, Mumin Z, Razaei M, Rundberg E, Mammadov R, Mills EA, Sgro V, Mok KY, Didelot X, Croucher NJ, Jauneikaite E, Lamagni T, Brown CS, Coelho J, Sriskandan S. Rapid expansion and international spread of M1 UK in the post-pandemic UK upsurge of Streptococcus pyogenes. Nat Commun 2024; 15:3916. [PMID: 38729927 PMCID: PMC11087535 DOI: 10.1038/s41467-024-47929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
The UK observed a marked increase in scarlet fever and invasive group A streptococcal infection in 2022 with severe outcomes in children and similar trends worldwide. Here we report lineage M1UK to be the dominant source of invasive infections in this upsurge. Compared with ancestral M1global strains, invasive M1UK strains exhibit reduced genomic diversity and fewer mutations in two-component regulator genes covRS. The emergence of M1UK is dated to 2008. Following a bottleneck coinciding with the COVID-19 pandemic, three emergent M1UK clades underwent rapid nationwide expansion, despite lack of detection in previous years. All M1UK isolates thus-far sequenced globally have a phylogenetic origin in the UK, with dispersal of the new clades in Europe. While waning immunity may promote streptococcal epidemics, the genetic features of M1UK point to a fitness advantage in pathogenicity, and a striking ability to persist through population bottlenecks.
Collapse
Affiliation(s)
- Ana Vieira
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Healthcare-associated Infections and AMR, Imperial College London, London, UK
| | - Yu Wan
- Department of Infectious Disease, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Healthcare-associated Infections and AMR, Imperial College London, London, UK
- Healthcare-Associated Infections, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Yan Ryan
- Reference Services Division, UK Health Security Agency, London, UK
| | - Ho Kwong Li
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Rebecca L Guy
- Healthcare-Associated Infections, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Maria Papangeli
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Kristin K Huse
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Lucy C Reeves
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Valerie W C Soo
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Roger Daniel
- Reference Services Division, UK Health Security Agency, London, UK
| | | | - Karen Broughton
- Reference Services Division, UK Health Security Agency, London, UK
| | - Chenchal Dhami
- Reference Services Division, UK Health Security Agency, London, UK
| | - Mark Ganner
- Reference Services Division, UK Health Security Agency, London, UK
| | | | - Zaynab Mumin
- Reference Services Division, UK Health Security Agency, London, UK
| | - Maryam Razaei
- Reference Services Division, UK Health Security Agency, London, UK
| | - Emma Rundberg
- Reference Services Division, UK Health Security Agency, London, UK
| | - Rufat Mammadov
- Reference Services Division, UK Health Security Agency, London, UK
| | - Ewurabena A Mills
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Vincenzo Sgro
- Department of Infectious Disease, Imperial College London, London, UK
| | - Kai Yi Mok
- Department of Infectious Disease, Imperial College London, London, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Nicholas J Croucher
- School of Public Health, Imperial College London, London, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare-associated Infections and AMR, Imperial College London, London, UK
- School of Public Health, Imperial College London, London, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Theresa Lamagni
- NIHR Health Protection Research Unit in Healthcare-associated Infections and AMR, Imperial College London, London, UK
- Healthcare-Associated Infections, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Colin S Brown
- NIHR Health Protection Research Unit in Healthcare-associated Infections and AMR, Imperial College London, London, UK
- Healthcare-Associated Infections, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Juliana Coelho
- NIHR Health Protection Research Unit in Healthcare-associated Infections and AMR, Imperial College London, London, UK.
- Healthcare-Associated Infections, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK.
- Reference Services Division, UK Health Security Agency, London, UK.
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, UK.
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
- NIHR Health Protection Research Unit in Healthcare-associated Infections and AMR, Imperial College London, London, UK.
| |
Collapse
|
3
|
Li HK, Zhi X, Vieira A, Whitwell HJ, Schricker A, Jauneikaite E, Li H, Yosef A, Andrew I, Game L, Turner CE, Lamagni T, Coelho J, Sriskandan S. Characterization of emergent toxigenic M1 UK Streptococcus pyogenes and associated sublineages. Microb Genom 2023; 9:mgen000994. [PMID: 37093716 PMCID: PMC10210942 DOI: 10.1099/mgen.0.000994] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 04/25/2023] Open
Abstract
Streptococcus pyogenes genotype emm1 is a successful, globally distributed epidemic clone that is regarded as inherently virulent. An emm1 sublineage, M1UK, that produces increased levels of SpeA toxin was associated with increased scarlet fever and invasive infections in England in 2015/2016. Defined by 27 SNPs in the core genome, M1UK is now dominant in England. To more fully characterize M1UK, we undertook comparative transcriptomic and proteomic analyses of M1UK and contemporary non-M1UK emm1 strains (M1global). Just seven genes were differentially expressed by M1UK compared with contemporary M1global strains. In addition to speA, five genes in the operon that includes glycerol dehydrogenase were upregulated in M1UK (gldA, mipB/talC, pflD, and phosphotransferase system IIC and IIB components), while aquaporin (glpF2) was downregulated. M1UK strains have a stop codon in gldA. Deletion of gldA in M1global abrogated glycerol dehydrogenase activity, and recapitulated upregulation of gene expression within the operon that includes gldA, consistent with a feedback effect. Phylogenetic analysis identified two intermediate emm1 sublineages in England comprising 13/27 (M113SNPs) and 23/27 SNPs (M123SNPs), respectively, that had failed to expand in the population. Proteomic analysis of invasive strains from the four phylogenetic emm1 groups highlighted sublineage-specific changes in carbohydrate metabolism, protein synthesis and protein processing; upregulation of SpeA was not observed in chemically defined medium. In rich broth, however, expression of SpeA was upregulated ~10-fold in both M123SNPs and M1UK sublineages, compared with M113SNPs and M1global. We conclude that stepwise accumulation of SNPs led to the emergence of M1UK. While increased expression of SpeA is a key indicator of M1UK and undoubtedly important, M1UK strains have outcompeted M123SNPs and other emm types that produce similar or more superantigen toxin. We speculate that an accumulation of adaptive SNPs has contributed to a wider fitness advantage in M1UK on an inherently successful emm1 streptococcal background.
Collapse
Affiliation(s)
- Ho Kwong Li
- Department of Infectious Disease, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology & Infection (CMBI), Imperial College London, London, UK
| | - Xiangyun Zhi
- Department of Infectious Disease, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology & Infection (CMBI), Imperial College London, London, UK
| | - Ana Vieira
- Department of Infectious Disease, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology & Infection (CMBI), Imperial College London, London, UK
| | - Harry J. Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amelia Schricker
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, UK
| | - Elita Jauneikaite
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- School of Public Health, Imperial College London, London, UK
| | - Hanqi Li
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ahmed Yosef
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ivan Andrew
- Genomics Facility, UKRI-MRC London Institute for Medical Sciences (LMS), Imperial College London, London, UK
| | - Laurence Game
- Genomics Facility, UKRI-MRC London Institute for Medical Sciences (LMS), Imperial College London, London, UK
| | - Claire E. Turner
- The Florey Institute, School of Biosciences, University of Sheffield, South Yorkshire, UK
| | - Theresa Lamagni
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Centre for Infections, UK Health Security Agency, London, UK
| | - Juliana Coelho
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Centre for Infections, UK Health Security Agency, London, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology & Infection (CMBI), Imperial College London, London, UK
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
| |
Collapse
|
4
|
Yu D, Guo D, Zheng Y, Yang Y. A review of penicillin binding protein and group A Streptococcus with reduced-β-lactam susceptibility. Front Cell Infect Microbiol 2023; 13:1117160. [PMID: 37065204 PMCID: PMC10102528 DOI: 10.3389/fcimb.2023.1117160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
With the widespread use of antibiotics, antimicrobial resistance (AMR) has become a global problem that endangers public health. Despite the global high prevalence of group A Streptococcus (GAS) infections and the global widespread use of β-lactams, β-lactams remain the first-line treatment option for GAS infection. β-hemolytic streptococci maintain a persistent susceptibility to β-lactams, which is an extremely special phenomenon in the genus Streptococci, while the exact current mechanism is not known. In recent years, several studies have found that the gene encoding penicillin binding protein 2X (pbp2x) is associated with GAS with reduced-β-lactam susceptibility. The purpose of this review is to summarize the current published data on GAS penicillin binding proteins and β-lactam susceptibility, to explore the relationship between them, and to be alert to the emergence of GAS with reduced susceptibility to β-lactams.
Collapse
Affiliation(s)
- Dingle Yu
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Danchun Guo
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuejie Zheng
- Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Yuejie Zheng, ; Yonghong Yang,
| | - Yonghong Yang
- Shenzhen Children’s Hospital, Shenzhen, China
- Microbiology Laboratory, National Center for Children’s Health, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuejie Zheng, ; Yonghong Yang,
| |
Collapse
|
5
|
Genomic Characterization of Skin and Soft Tissue Streptococcus pyogenes Isolates from a Low-Income and a High-Income Setting. mSphere 2023; 8:e0046922. [PMID: 36507654 PMCID: PMC9942559 DOI: 10.1128/msphere.00469-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pyogenes is a leading cause of human morbidity and mortality, especially in resource-limited settings. The development of a vaccine against S. pyogenes is a global health priority to reduce the burden of postinfection rheumatic heart disease. To support this, molecular characterization of circulating S. pyogenes isolates is needed. We performed whole-genome analyses of S. pyogenes isolates from skin and soft tissue infections in Sukuta, The Gambia, a low-income country (LIC) in West Africa where there is a high burden of such infections. To act as a comparator to these LIC isolates, skin infection isolates from Sheffield, United Kingdom (a high-income country [HIC]), were also sequenced. The LIC isolates from The Gambia were genetically more diverse (46 emm types in 107 isolates) than the HIC isolates from Sheffield (23 emm types in 142 isolates), with only 7 overlapping emm types. Other molecular markers were shared, including a high prevalence of the skin infection-associated emm pattern D and the variable fibronectin-collagen-T antigen (FCT) types FCT-3 and FCT-4. Fewer of the Gambian LIC isolates carried prophage-associated superantigens (64%) and DNases (26%) than did the Sheffield HIC isolates (99% and 95%, respectively). We also identified streptococcin genes unique to 36% of the Gambian LIC isolates and a higher prevalence (48%) of glucuronic acid utilization pathway genes in the Gambian LIC isolates than in the Sheffield HIC isolates (26%). Comparison to a wider collection of HIC and LIC isolate genomes supported our findings of differing emm diversity and prevalence of bacterial factors. Our study provides insight into the genetics of LIC isolates and how they compare to HIC isolates. IMPORTANCE The global burden of rheumatic heart disease (RHD) has triggered a World Health Organization response to drive forward development of a vaccine against the causative human pathogen Streptococcus pyogenes. This burden stems primarily from low- and middle-income settings where there are high levels of S. pyogenes skin and soft tissue infections, which can lead to RHD. Our study provides much needed whole-genome-based molecular characterization of isolates causing skin infections in Sukuta, The Gambia, a low-income country (LIC) in West Africa where infection and RHD rates are high. Although we identified a greater level of diversity in these LIC isolates than in isolates from Sheffield, United Kingdom (a high-income country), there were some shared features. There were also some features that differed by geographical region, warranting further investigation into their contribution to infection. Our study has also contributed data essential for the development of a vaccine that would target geographically relevant strains.
Collapse
|
6
|
Miller KM, Carapetis JR, Cherian T, Hay R, Marks M, Pickering J, Cannon JW, Lamagni T, Romani L, Moore HC, Van Beneden CA, Barth DD, Bowen AC, Carapetis J, Van Beneden C, Kaslow D, Cherian T, Lamagni T, Engel M, Cannon J, Moore H, Bowen A, Seale A, Kang G, Watkins D, Kariuki S. Standardization of Epidemiological Surveillance of Group A Streptococcal Impetigo. Open Forum Infect Dis 2022; 9:S15-S24. [PMID: 36128409 PMCID: PMC9474945 DOI: 10.1093/ofid/ofac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Impetigo is a highly contagious bacterial infection of the superficial layer of skin. Impetigo is caused by group A Streptococcus (Strep A) and Staphylococcus aureus, alone or in combination, with the former predominating in many tropical climates. Strep A impetigo occurs mainly in early childhood, and the burden varies worldwide. It is an acute, self-limited disease, but many children experience frequent recurrences that make it a chronic illness in some endemic settings. We present a standardized surveillance protocol including case definitions for impetigo including both active (purulent, crusted) and resolving (flat, dry) phases and discuss the current tests used to detect Strep A among persons with impetigo. Case classifications that can be applied are detailed, including differentiating between incident (new) and prevalent (existing) cases of Strep A impetigo. The type of surveillance methodology depends on the burden of impetigo in the community. Active surveillance and laboratory confirmation is the preferred method for case detection, particularly in endemic settings. Participant eligibility, surveillance population and additional considerations for surveillance of impetigo, including examination of lesions, use of photographs to document lesions, and staff training requirements (including cultural awareness), are addressed. Finally, the core elements of case report forms for impetigo are presented and guidance for recording the course and severity of impetigo provided.
Collapse
Affiliation(s)
- Kate M Miller
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Perth, Western Australia , Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Perth, Western Australia , Australia
- Perth Children’s Hospital , Perth, Western Australia , Australia
| | | | - Roderick Hay
- St John’s Institute of Dermatology, King’s College London , United Kingdom
| | - Michael Marks
- Clinical Research Department, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine , London , United Kingdom
- Hospital for Tropical Diseases, University College , London , United Kingdom
- Division of Infection and Immunity, University College London , London , United Kingdom
| | - Janessa Pickering
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Perth, Western Australia , Australia
| | - Jeffrey W Cannon
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Perth, Western Australia , Australia
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health , Boston, Massachusetts , USA
| | - Theresa Lamagni
- United Kingdom Health Security Agency , London , United Kingdom
| | - Lucia Romani
- The Kirby Institute, University of New South Wales Sydney , Sydney , Australia
- Murdoch Children’s Research Group , Melbourne , Australia
| | - Hannah C Moore
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Perth, Western Australia , Australia
| | - Chris A Van Beneden
- CDC Foundation, Centers for Disease Control and Prevention , Atlanta, Georgia , USA
| | - Dylan D Barth
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Perth, Western Australia , Australia
| | - Asha C Bowen
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Perth, Western Australia , Australia
- Perth Children’s Hospital , Perth, Western Australia , Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Miller KM, Lamagni T, Cherian T, Cannon JW, Parks T, Adegbola RA, Pickering J, Barnett T, Engel ME, Manning L, Bowen AC, Carapetis JR, Moore HC, Barth DD, Kaslow DC, Van Beneden CA. Standardization of Epidemiological Surveillance of Invasive Group A Streptococcal Infections. Open Forum Infect Dis 2022; 9:S31-S40. [PMID: 36128405 PMCID: PMC9474937 DOI: 10.1093/ofid/ofac281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Invasive group A streptococcal (Strep A) infections occur when Streptococcus pyogenes, also known as beta-hemolytic group A Streptococcus, invades a normally sterile site in the body. This article provides guidelines for establishing surveillance for invasive Strep A infections. The primary objective of invasive Strep A surveillance is to monitor trends in rates of infection and determine the demographic and clinical characteristics of patients with laboratory-confirmed invasive Strep A infection, the age- and sex-specific incidence in the population of a defined geographic area, trends in risk factors, and the mortality rates and rates of nonfatal sequelae caused by invasive Strep A infections.
This article includes clinical descriptions followed by case definitions, based on clinical and laboratory evidence, and case classifications (confirmed or probable, if applicable) for invasive Strep A infections and for 3 Strep A syndromes: streptococcal toxic shock syndrome, necrotizing fasciitis, and pregnancy-associated Strep A infection.
Considerations of the type of surveillance are also presented, noting that most people who have invasive Strep A infections will present to hospital and that invasive Strep A is a notifiable disease in some countries. Minimal surveillance necessary for invasive Strep A infection is facility-based, passive surveillance. A resource-intensive but more informative approach is active case finding of laboratory-confirmed Strep A invasive infections among a large (eg, state-wide) and well defined population.
Participant eligibility, surveillance population, and additional surveillance components such as the use of International Classification of Disease diagnosis codes, follow-up, period of surveillance, seasonality, and sample size are discussed. Finally, the core data elements to be collected on case report forms are presented.
Collapse
Affiliation(s)
- Kate M Miller
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
| | | | | | - Jeffrey W Cannon
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health , Boston, Massachusetts , USA
| | - Tom Parks
- Department of Infectious Disease, Imperial College London, Hammersmith Hospital , London , United Kingdom
| | | | - Janessa Pickering
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
| | - Tim Barnett
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
| | - Mark E Engel
- AFROStrep Research Initiative, Department of Medicine, University of Cape Town , Cape Town , South Africa
| | - Laurens Manning
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
- Infectious Diseases Department, Fiona Stanley Hospital , Perth, Western Australia , Australia
- Medical School, University of Western Australia , Perth, Western Australia , Australia
| | - Asha C Bowen
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
- Perth Children’s Hospital , Nedlands, Western Australia
- Faculty of Health and Medicine, University of Western Australia , Nedlands, Western Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
- Faculty of Health and Medicine, University of Western Australia , Nedlands, Western Australia
| | - Hannah C Moore
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
| | - Dylan D Barth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia , Nedlands, Western Australia
- Faculty of Health and Medicine, University of Western Australia , Nedlands, Western Australia
| | | | | |
Collapse
|
8
|
Abstract
Group B Streptococcus (GBS; Streptococcus agalactiae) is the most common cause of neonatal meningitis and a rising cause of sepsis in adults. Recently, it has also been shown to cause foodborne disease. As with many other bacteria, the polysaccharide capsule of GBS is antigenic, enabling its use for strain serotyping. Recent advances in DNA sequencing have made sequence-based typing attractive (as has been implemented for several other bacteria, including Escherichia coli, Klebsiella pneumoniae species complex, Streptococcus pyogenes, and others). For GBS, existing WGS-based serotyping systems do not provide complete coverage of all known GBS serotypes (specifically including subtypes of serotype III), and none are simultaneously compatible with the two most common data types, raw short reads and assembled sequences. Here, we create a serotyping database (GBS-SBG, GBS Serotyping by Genome Sequencing), with associated scripts and running instructions, that can be used to call all currently described GBS serotypes, including subtypes of serotype III, using both direct short-read- and assembly-based typing. We achieved higher concordance using GBS-SBG on a previously reported data set of 790 strains. We further validated GBS-SBG on a new set of 572 strains, achieving 99.8% concordance with PCR-based molecular serotyping using either short-read- or assembly-based typing. The GBS-SBG package is publicly available and will hopefully accelerate and simplify serotyping by sequencing for GBS.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Ying Tang
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| | | | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Laboratory of Bacterial Genomics, Genome Institute of Singapore, 60 Biopolis Street, Genome #02-01, Singapore 138672,*Correspondence: Swaine L. Chen,
| |
Collapse
|
9
|
The Place of Group A Streptococci in Moroccan Children with Pharyngitis and Emm Type Distribution. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.111172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Streptococcus pyogenes is responsible for a wide variety of diseases, including noninvasive and severe invasive infections. The emm gene encodes the M protein that is the virulence factor and immunological determinant of group A streptococci. Emm typing is the group A Streptococci (GAS) standard molecular typing method based on the amplification of the N terminal hypervariable region of the emm gene. Objectives: The aim of the present study was to determine the prevalence of GAS in children with pharyngitis and determine different types of emm gene in the GAS isolates using emm typing. Methods: The study was carried out over a period of 14 months (from February 2017 to March 2018). Throat samples were collected from cases aged ≤ 18 years with pharyngitis referring to a primary health care center in Fez, Morocco. GAS isolates were subjected to conventional tests to confirm species identification. Antimicrobial susceptibility testing was performed using the standard disk diffusion method. We researched emm gene by a polymerase chain reaction (PCR). Emm types were determined by a sequence-based protocol. Demographic and clinical data were recorded from each patient. Results: From a total of 177 throat samples, 11 isolates (6.2%) were identified as GAS in children with pharyngitis. Antibiotic sensitivity testing revealed that all the GAS isolates were sensitive to penicillin. The sequencing of the PCR products of the emm gene revealed that emm90 was the most obtained emm type (30,77%); while emm75 was the least type observed (7.7%). Conclusions: The emm90 is the most prevalent type detected from patients with tonsillitis. Penicillin and erythromycin are still the foremost effective antibiotics to treat GAS pharyngitis.
Collapse
|
10
|
Remmington A, Haywood S, Edgar J, Green LR, de Silva T, Turner CE. Cryptic prophages within a Streptococcus pyogenes genotype emm4 lineage. Microb Genom 2021; 7:mgen000482. [PMID: 33245690 PMCID: PMC8115907 DOI: 10.1099/mgen.0.000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
The major human pathogen Streptococcus pyogenes shares an intimate evolutionary history with mobile genetic elements, which in many cases carry genes encoding bacterial virulence factors. During recent whole-genome sequencing of a longitudinal sample of S. pyogenes isolates in England, we identified a lineage within emm4 that clustered with the reference genome MEW427. Like MEW427, this lineage was characterized by substantial gene loss within all three prophage regions, compared to MGAS10750 and isolates outside of the MEW427-like lineage. Gene loss primarily affected lysogeny, replicative and regulatory modules, and to a lesser and more variable extent, structural genes. Importantly, prophage-encoded superantigen and DNase genes were retained in all isolates. In isolates where the prophage elements were complete, like MGAS10750, they could be induced experimentally, but not in MEW427-like isolates with degraded prophages. We also found gene loss within the chromosomal island SpyCIM4 of MEW427-like isolates, although surprisingly, the SpyCIM4 element could not be experimentally induced in either MGAS10750-like or MEW427-like isolates. This did not, however, appear to abolish expression of the mismatch repair operon, within which this element resides. The inclusion of further emm4 genomes in our analyses ratified our observations and revealed an international emm4 lineage characterized by prophage degradation. Intriguingly, the USA population of emm4 S. pyogenes appeared to constitute predominantly MEW427-like isolates, whereas the UK population comprised both MEW427-like and MGAS10750-like isolates. The degraded and cryptic nature of these elements may have important phenotypic and fitness ramifications for emm4 S. pyogenes, and the geographical distribution of this lineage raises interesting questions on the population dynamics of the genotype.
Collapse
Affiliation(s)
- Alex Remmington
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Samuel Haywood
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Julia Edgar
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Abstract
β-Lactam antibiotics are the first-line therapeutic option for Streptococcus pyogenes infections. Despite the global high prevalence of S. pyogenes infections and widespread use of β-lactams worldwide, reports of resistance to β-lactam antibiotics, such as penicillin, have been incredibly rare. Recently, β-lactam resistance, as defined by clinical breakpoints, was detected in two clinical S. pyogenes isolates with accompanying mutations in the active site of the penicillin binding protein PBP2x, raising concerns that β-lactam resistance will become more widespread. We screened a global database of S. pyogenes genome sequences to investigate the frequency of PBP mutations, identifying that PBP mutations are uncommon relative to those of Streptococcus pneumoniae. These findings support clinical observations that β-lactam resistance is rare in S. pyogenes and suggest that there are considerable constraints on S. pyogenes PBP sequence variation. A recent clinical report has linked Streptococcus pyogenes β-lactam antibiotic resistance to mutation in the penicillin binding protein (PBP) PBP2x. To determine whether this is an isolated case or reflects a broader prevalence of mutations that might confer reduced β-lactam susceptibility, we investigated the relative frequency of PBP sequence variation within a global database of 9,667 S. pyogenes isolates. We found that mutations in S. pyogenes PBPs (PBP2x, PBP1a, PBP1b, and PBP2a) occur infrequently across this global database, with fewer than 3 amino acid changes differing between >99% of the global population. Only 4 of the 9,667 strains contained mutations near transpeptidase active sites of PBP2x or PBP1a. The reported PBP2x T553K substitution was not identified. These findings are in contrast to those of 2,520 S. pneumococcus sequences where PBP mutations are relatively frequent and are often located in key β-lactam binding pockets. These data, combined with the general lack of penicillin resistance reported in S. pyogenes worldwide, suggests that extensive, unknown constraints restrict S. pyogenes PBP sequence plasticity. Our findings imply that while heavy antibiotic pressure may select for mutations in the PBPs, there is currently no evidence of such mutations becoming fixed in the S. pyogenes population or that mutations are being sequentially acquired in the PBPs. IMPORTANCE β-Lactam antibiotics are the first-line therapeutic option for Streptococcus pyogenes infections. Despite the global high prevalence of S. pyogenes infections and widespread use of β-lactams worldwide, reports of resistance to β-lactam antibiotics, such as penicillin, have been incredibly rare. Recently, β-lactam resistance, as defined by clinical breakpoints, was detected in two clinical S. pyogenes isolates with accompanying mutations in the active site of the penicillin binding protein PBP2x, raising concerns that β-lactam resistance will become more widespread. We screened a global database of S. pyogenes genome sequences to investigate the frequency of PBP mutations, identifying that PBP mutations are uncommon relative to those of Streptococcus pneumoniae. These findings support clinical observations that β-lactam resistance is rare in S. pyogenes and suggest that there are considerable constraints on S. pyogenes PBP sequence variation.
Collapse
|
12
|
Lacey JA, James TB, Tong SYC, Davies MR. Whole Genome Sequence Analysis and Population Genomics of Group A Streptococci. Methods Mol Biol 2020; 2136:81-111. [PMID: 32430815 DOI: 10.1007/978-1-0716-0467-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Whole-genome sequencing (WGS) is used to determine the genetic composition of an organism. This fast-moving field is continually evolving through technical advancements and the development of new bioinformatic tools for analyzing genomic data; however, the basic principles and processes for defining and processing high-quality genome sequence information remain unchanged. Here, we introduce some considerations and describe some commonly used bioinformatic steps for processing raw genome sequence data to generate genome assemblies through to understanding basic population genomics.
Collapse
Affiliation(s)
- Jake A Lacey
- Doherty Department, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Taylah B James
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Division of Global and Tropical Health, Menzies School of Health Research, Division of Global and Tropical Health, Darwin, NT, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Turner CE, Holden MTG, Blane B, Horner C, Peacock SJ, Sriskandan S. The Emergence of Successful Streptococcus pyogenes Lineages through Convergent Pathways of Capsule Loss and Recombination Directing High Toxin Expression. mBio 2019; 10:e02521-19. [PMID: 31822586 PMCID: PMC6904876 DOI: 10.1128/mbio.02521-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Gene transfer and homologous recombination in Streptococcus pyogenes has the potential to trigger the emergence of pandemic lineages, as exemplified by lineages of emm1 and emm89 that emerged in the 1980s and 2000s, respectively. Although near-identical replacement gene transfer events in the nga (NADase) and slo (streptolysin O) loci conferring high expression of these toxins underpinned the success of these lineages, extension to other emm genotype lineages is unreported. The emergent emm89 lineage was characterized by five regions of homologous recombination additional to nga-slo, including complete loss of the hyaluronic acid capsule synthesis locus hasABC, a genetic trait replicated in two other leading emm types and recapitulated by other emm types by inactivating mutations. We hypothesized that other leading genotypes may have undergone similar recombination events. We analyzed a longitudinal data set of genomes from 344 clinical invasive disease isolates representative of locations across England, dating from 2001 to 2011, and an international collection of S. pyogenes genomes representing 54 different genotypes and found frequent evidence of recombination events at the nga-slo locus predicted to confer higher toxin genotype. We identified multiple associations between recombination at this locus and inactivating mutations within hasAB, suggesting convergent evolutionary pathways in successful genotypes. This included common genotypes emm28 and emm87. The combination of no or low capsule and high expression of nga and slo may underpin the success of many emergent S. pyogenes lineages of different genotypes, triggering new pandemics, and could change the way S. pyogenes causes disease.IMPORTANCEStreptococcus pyogenes is a genetically diverse pathogen, with over 200 different genotypes defined by emm typing, but only a minority of these genotypes are responsible for the majority of human infection in high-income countries. Two prevalent genotypes associated with disease rose to international dominance following recombination of a toxin locus that conferred increased expression. Here, we found that recombination of this locus and promoter has occurred in other diverse genotypes, events that may allow these genotypes to expand in the population. We identified an association between the loss of hyaluronic acid capsule synthesis and high toxin expression, which we propose may be associated with an adaptive advantage. As S. pyogenes pathogenesis depends both on capsule and toxin production, new variants with altered expression may result in abrupt changes in the molecular epidemiology of this pathogen in the human population over time.
Collapse
Affiliation(s)
- Claire E Turner
- Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Matthew T G Holden
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Carolyne Horner
- British Society for Antimicrobial Chemotherapy, Birmingham, United Kingdom
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Lynskey NN, Jauneikaite E, Li HK, Zhi X, Turner CE, Mosavie M, Pearson M, Asai M, Lobkowicz L, Chow JY, Parkhill J, Lamagni T, Chalker VJ, Sriskandan S. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. THE LANCET. INFECTIOUS DISEASES 2019; 19:1209-1218. [PMID: 31519541 PMCID: PMC6838661 DOI: 10.1016/s1473-3099(19)30446-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/19/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Since 2014, England has seen increased scarlet fever activity unprecedented in modern times. In 2016, England's scarlet fever seasonal rise coincided with an unexpected elevation in invasive Streptococcus pyogenes infections. We describe the molecular epidemiological investigation of these events. METHODS We analysed changes in S pyogenes emm genotypes, and notifications of scarlet fever and invasive disease in 2014-16 using regional (northwest London) and national (England and Wales) data. Genomes of 135 non-invasive and 552 invasive emm1 isolates from 2009-16 were analysed and compared with 2800 global emm1 sequences. Transcript and protein expression of streptococcal pyrogenic exotoxin A (SpeA; also known as scarlet fever or erythrogenic toxin A) in sequenced, non-invasive emm1 isolates was quantified by real-time PCR and western blot analyses. FINDINGS Coincident with national increases in scarlet fever and invasive disease notifications, emm1 S pyogenes upper respiratory tract isolates increased significantly in northwest London in the March to May period, from five (5%) of 96 isolates in 2014, to 28 (19%) of 147 isolates in 2015 (p=0·0021 vs 2014 values), to 47 (33%) of 144 in 2016 (p=0·0080 vs 2015 values). Similarly, invasive emm1 isolates collected nationally in the same period increased from 183 (31%) of 587 in 2015 to 267 (42%) of 637 in 2016 (p<0·0001). Sequences of emm1 isolates from 2009-16 showed emergence of a new emm1 lineage (designated M1UK)-with overlap of pharyngitis, scarlet fever, and invasive M1UK strains-which could be genotypically distinguished from pandemic emm1 isolates (M1global) by 27 single-nucleotide polymorphisms. Median SpeA protein concentration in supernatant was nine-times higher among M1UK isolates (190·2 ng/mL [IQR 168·9-200·4]; n=10) than M1global isolates (20·9 ng/mL [0·0-27·3]; n=10; p<0·0001). M1UK expanded nationally to represent 252 (84%) of all 299 emm1 genomes in 2016. Phylogenetic analysis of published datasets identified single M1UK isolates in Denmark and the USA. INTERPRETATION A dominant new emm1 S pyogenes lineage characterised by increased SpeA production has emerged during increased S pyogenes activity in England. The expanded reservoir of M1UK and recognised invasive potential of emm1 S pyogenes provide plausible explanation for the increased incidence of invasive disease, and rationale for global surveillance. FUNDING UK Medical Research Council, UK National Institute for Health Research, Wellcome Trust, Rosetrees Trust, Stoneygate Trust.
Collapse
Affiliation(s)
- Nicola N Lynskey
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Elita Jauneikaite
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK; Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK
| | - Ho Kwong Li
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Xiangyun Zhi
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Claire E Turner
- Molecular Biology & Biotechnology, University of Sheffield, Sheffield, UK
| | - Mia Mosavie
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK
| | - Max Pearson
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK
| | - Masanori Asai
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Ludmila Lobkowicz
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - J Yimmy Chow
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK; North-West London Health Protection Team, London Public Health England Centre, Public Health England, London, UK
| | - Julian Parkhill
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK; Wellcome Sanger Institute, Cambridge, UK
| | - Theresa Lamagni
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK; National Infection Service, Public Health England, London, UK
| | - Victoria J Chalker
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK; National Infection Service, Public Health England, London, UK
| | - Shiranee Sriskandan
- Department of Infectious Diseases and Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK.
| |
Collapse
|
15
|
Sharma H, Ong MR, Ready D, Coelho J, Groves N, Chalker V, Warren S. Real-time whole genome sequencing to control a Streptococcus pyogenes outbreak at a national orthopaedic hospital. J Hosp Infect 2019; 103:21-26. [PMID: 31283948 DOI: 10.1016/j.jhin.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Whole genome sequencing (WGS) of Streptococcus pyogenes linked to invasive disease has been used to identify and investigate outbreaks. The clinical application of WGS in real-time for outbreak control is seldom employed. AIMS A fatal case of bacteraemia at a national orthopaedic hospital prompted an outbreak investigation to identify carriers and halt transmission using real-time WGS. METHODS Retrospective surveillance was conducted to identify patients with Streptococcus pyogenes infections in the last year. Upon contact tracing, four patients and 179 staff were screened for Streptococcus pyogenes carriage. All isolates identified were emm-typed. WGS was performed in real-time on a subset of isolates. FINDINGS Twelve isolates of Streptococcus pyogenes from the index case, two patients and eight staff were identified. Six isolates were emm 1.0, including the index case and five staff isolates. The remaining isolates belonged to distinct emm types. WGS analysis was undertaken on the six emm 1.0 isolates. Five were indistinguishable by single nucleotide polymorphism (SNP) analysis, with 0 SNP distance, and one had one SNP difference, supporting the hypothesis of recent local transmission. All screen-positive healthcare workers were offered treatment with penicillin or clindamycin. No further cases were identified. CONCLUSION The increased molecular discrimination of WGS confirmed the clustering of these cases and the outbreak was contained. This demonstrates the clinical utility of WGS in managing outbreaks of invasive Streptococcus pyogenes in real-time and we recommend its implementation as a routine clinical service.
Collapse
Affiliation(s)
- H Sharma
- Bone Infection Unit, The Royal National Orthopaedic Hospital, Stanmore, UK.
| | - M R Ong
- Bone Infection Unit, The Royal National Orthopaedic Hospital, Stanmore, UK
| | - D Ready
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - J Coelho
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - N Groves
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - V Chalker
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - S Warren
- Bone Infection Unit, The Royal National Orthopaedic Hospital, Stanmore, UK
| |
Collapse
|
16
|
Davies MR, McIntyre L, Mutreja A, Lacey JA, Lees JA, Towers RJ, Duchêne S, Smeesters PR, Frost HR, Price DJ, Holden MTG, David S, Giffard PM, Worthing KA, Seale AC, Berkley JA, Harris SR, Rivera-Hernandez T, Berking O, Cork AJ, Torres RSLA, Lithgow T, Strugnell RA, Bergmann R, Nitsche-Schmitz P, Chhatwal GS, Bentley SD, Fraser JD, Moreland NJ, Carapetis JR, Steer AC, Parkhill J, Saul A, Williamson DA, Currie BJ, Tong SYC, Dougan G, Walker MJ. Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nat Genet 2019; 51:1035-1043. [PMID: 31133745 DOI: 10.1038/s41588-019-0417-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 04/10/2019] [Indexed: 11/09/2022]
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies.
Collapse
Affiliation(s)
- Mark R Davies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia. .,The Wellcome Trust Sanger Institute, Hinxton, UK. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
| | - Liam McIntyre
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ankur Mutreja
- The Wellcome Trust Sanger Institute, Hinxton, UK.,GSK Vaccines Institute for Global Health, Siena, Italy
| | - Jake A Lacey
- Doherty Department, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - John A Lees
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Rebecca J Towers
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Sebastián Duchêne
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium.,Department of Pediatrics, Queen Fabiola Childrens University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Hannah R Frost
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium.,Department of Pediatrics, Queen Fabiola Childrens University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - David J Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Reference Laboratory Epidemiology Unit, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Matthew T G Holden
- The Wellcome Trust Sanger Institute, Hinxton, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Sophia David
- The Wellcome Trust Sanger Institute, Hinxton, UK
| | - Philip M Giffard
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Kate A Worthing
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | - James A Berkley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Olga Berking
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda J Cork
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Rosângela S L A Torres
- Laboratory of Bacteriology, Epidemiology Laboratory and Disease Control Division, Laboratório Central do Estado do Paraná, Curitiba, Brazil.,Department of Medicine, Universidade Positivo, Curitiba, Brazil
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Rene Bergmann
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | - John D Fraser
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nicole J Moreland
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan R Carapetis
- Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, Western Australia, Australia
| | - Andrew C Steer
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | | | - Allan Saul
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Bart J Currie
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Steven Y C Tong
- Doherty Department, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Menzies School of Health Research, Darwin, Northern Territory, Australia.,Victorian Infectious Disease Service, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Hinxton, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
17
|
Reglinski M, Sriskandan S, Turner CE. Identification of two new core chromosome-encoded superantigens in Streptococcus pyogenes; speQ and speR. J Infect 2019; 78:358-363. [PMID: 30796950 DOI: 10.1016/j.jinf.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/25/2019] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
Superantigens are ubiquitous within the Streptococcus pyogenes genome, which suggests that superantigen-mediated T-cell activation provides a significant selective advantage. S. pyogenes can carry a variable complement of the 11 known superantigens. We have identified two novel S. pyogenes superantigens, denoted speQ and speR, adjacent to each other in the core-chromosome of isolates belonging to eleven different emm-types. Although distinct from other superantigens, speQ and speR were most closely related to speK and speJ, respectively. Recombinant SPEQ and SPER were mitogenic towards human peripheral blood mononuclear cells at ng/ml concentrations, and SPER was found to be more mitogenic than SPEQ.
Collapse
Affiliation(s)
- Mark Reglinski
- Department of Infectious Diseases, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Diseases, Imperial College London, London W12 0NN, UK
| | - Claire E Turner
- Department of Infectious Diseases, Imperial College London, London W12 0NN, UK; Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
18
|
Osowicki J, Azzopardi KI, McIntyre L, Rivera-Hernandez T, Ong CLY, Baker C, Gillen CM, Walker MJ, Smeesters PR, Davies MR, Steer AC. A Controlled Human Infection Model of Group A Streptococcus Pharyngitis: Which Strain and Why? mSphere 2019; 4:e00647-18. [PMID: 30760615 PMCID: PMC6374595 DOI: 10.1128/msphere.00647-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/16/2019] [Indexed: 01/23/2023] Open
Abstract
Group A Streptococcus (GAS) is a major cause of global infection-related morbidity and mortality. A modern controlled human infection model (CHIM) of GAS pharyngitis can accelerate vaccine development and pathogenesis research. A robust rationale for strain selection is central to meeting ethical, scientific, and regulatory requirements. Multifaceted characterization studies were done to compare a preferred candidate emm75 (M75) GAS strain to three other strains: an alternative candidate emm12 (M12) strain, an M1 strain used in 1970s pharyngitis CHIM studies (SS-496), and a representative (5448) of the globally disseminated M1T1 clone. A range of approaches were used to explore strain growth, adherence, invasion, delivery characteristics, short- and long-term viability, phylogeny, virulence factors, vaccine antigens, resistance to killing by human neutrophils, and lethality in a murine invasive model. The strains grew reliably in a medium without animal-derived components, were consistently transferred using a swab method simulating the CHIM protocol, remained viable at -80°C, and carried genes for most candidate vaccine antigens. Considering GAS molecular epidemiology, virulence factors, in vitro assays, and results from the murine model, the contemporary strains show a spectrum of virulence, with M75 appearing the least virulent and 5448 the most. The virulence profile of SS-496, used safely in 1970s CHIM studies, was similar to that of 5448 in the animal model and virulence gene carriage. The results of this multifaceted characterization confirm the M75 strain as an appropriate choice for initial deployment in the CHIM, with the aim of safely and successfully causing pharyngitis in healthy adult volunteers.IMPORTANCE GAS (Streptococcus pyogenes) is a leading global cause of infection-related morbidity and mortality. A modern CHIM of GAS pharyngitis could help to accelerate vaccine development and drive pathogenesis research. Challenge strain selection is critical to the safety and success of any CHIM and especially so for an organism such as GAS, with its wide strain diversity and potential to cause severe life-threatening acute infections (e.g., toxic shock syndrome and necrotizing fasciitis) and postinfectious complications (e.g., acute rheumatic fever, rheumatic heart disease, and acute poststreptococcal glomerulonephritis). In this paper, we outline the rationale for selecting an emm75 strain for initial use in a GAS pharyngitis CHIM in healthy adult volunteers, drawing on the findings of a broad characterization effort spanning molecular epidemiology, in vitro assays, whole-genome sequencing, and animal model studies.
Collapse
Affiliation(s)
- Joshua Osowicki
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Kristy I Azzopardi
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ciara Baker
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christine M Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Pierre R Smeesters
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Paediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Bessen DE, Smeesters PR, Beall BW. Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci. Microbiol Spectr 2018; 6:10.1128/microbiolspec.cpp3-0009-2018. [PMID: 30191802 PMCID: PMC11633622 DOI: 10.1128/microbiolspec.cpp3-0009-2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/27/2022] Open
Abstract
The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels-short, intermediate, and long term-sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Pierre R Smeesters
- Department of Pediatrics, Queen Fabiola Children's University Hospital, and Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, 1020, Belgium
| | - Bernard W Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
| |
Collapse
|
20
|
WHO/IVI global stakeholder consultation on group A Streptococcus vaccine development: Report from a meeting held on 12–13 December 2016. Vaccine 2018; 36:3397-3405. [DOI: 10.1016/j.vaccine.2018.02.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
|
21
|
An Outbreak of Streptococcus pyogenes in a Mental Health Facility: Advantage of Well-Timed Whole-Genome Sequencing Over emm Typing. Infect Control Hosp Epidemiol 2018; 39:852-860. [PMID: 29739475 DOI: 10.1017/ice.2018.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEWe report the utility of whole-genome sequencing (WGS) conducted in a clinically relevant time frame (ie, sufficient for guiding management decision), in managing a Streptococcus pyogenes outbreak, and present a comparison of its performance with emm typing.SETTINGA 2,000-bed tertiary-care psychiatric hospital.METHODSActive surveillance was conducted to identify new cases of S. pyogenes. WGS guided targeted epidemiological investigations, and infection control measures were implemented. Single-nucleotide polymorphism (SNP)-based genome phylogeny, emm typing, and multilocus sequence typing (MLST) were performed. We compared the ability of WGS and emm typing to correctly identify person-to-person transmission and to guide the management of the outbreak.RESULTSThe study included 204 patients and 152 staff. We identified 35 patients and 2 staff members with S. pyogenes. WGS revealed polyclonal S. pyogenes infections with 3 genetically distinct phylogenetic clusters (C1-C3). Cluster C1 isolates were all emm type 4, sequence type 915 and had pairwise SNP differences of 0-5, which suggested recent person-to-person transmissions. Epidemiological investigation revealed that cluster C1 was mediated by dermal colonization and transmission of S. pyogenes in a male residential ward. Clusters C2 and C3 were genomically diverse, with pairwise SNP differences of 21-45 and 26-58, and emm 11 and mostly emm120, respectively. Clusters C2 and C3, which may have been considered person-to-person transmissions by emm typing, were shown by WGS to be unlikely by integrating pairwise SNP differences with epidemiology.CONCLUSIONSWGS had higher resolution than emm typing in identifying clusters with recent and ongoing person-to-person transmissions, which allowed implementation of targeted intervention to control the outbreak.Infect Control Hosp Epidemiol 2018;852-860.
Collapse
|
22
|
Gherardi G, Vitali LA, Creti R. Prevalent emm Types among Invasive GAS in Europe and North America since Year 2000. Front Public Health 2018; 6:59. [PMID: 29662874 PMCID: PMC5890186 DOI: 10.3389/fpubh.2018.00059] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Streptococcus pyogenes or group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections, from uncomplicated to more severe and invasive diseases with high mortality and morbidity. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern; for this purpose the M protein gene (emm) gene typing is the most widely used genotyping method, with more than 200 emm types recognized. Molecular epidemiological data have been also used for the development of GAS M protein-based vaccines. METHODS The aim of this paper was to provide an updated scenario of the most prevalent GAS emm types responsible for invasive infections in developed countries as Europe and North America (US and Canada), from 1st January 2000 to 31st May 2017. The search, performed in PubMed by the combined use of the terms ("emm") and ("invasive") retrieved 264 articles, of which 38 articles (31 from Europe and 7 from North America) met the inclusion criteria and were selected for this study. Additional five papers cited in the European articles but not retrieved by the search were included. RESULTS emm1 represented the dominant type in both Europe and North America, replaced by other emm types in only few occasions. The seven major emm types identified (emm1, emm28, emm89, emm3, emm12, emm4, and emm6) accounted for approximately 50-70% of the total isolates; less common emm types accounted for the remaining 30-50% of the cases. Most of the common emm types are included in either one or both the 26-valent and 30-valent vaccines, though some well-represented emm types found in Europe are not. CONCLUSION This study provided a picture of the prevalent emm types among invasive GAS (iGAS) in Europe and North America since the year 2000 onward. Continuous surveillance on the emm-type distribution among iGAS infections is strongly encouraged also to determine the potential coverage of the developing multivalent vaccines.
Collapse
Affiliation(s)
- Giovanni Gherardi
- Microbiology Unit, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | | | - Roberta Creti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|