1
|
Liang X, Luo J, Bi Q, Jiang Y, Yang L, Vatansever D, Jefferies E, Gong G. Functional divergence between the two cerebral hemispheres contributes to human fluid intelligence. Commun Biol 2025; 8:764. [PMID: 40382492 PMCID: PMC12085609 DOI: 10.1038/s42003-025-08151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Hemispheric lateralization is linked to potential cognitive advantages. It is considered a driving force behind the generation of human intelligence. However, establishing quantitative links between the degree of lateralization and intelligence in humans remains elusive. In this study, we propose a framework that utilizes the functional aligned multidimensional representation space derived from hemispheric functional gradients to compute between-hemisphere distances within this space. Applying this framework to a large cohort (N = 777), we identified high functional divergence across the two hemispheres within the frontoparietal network. We found that both global divergence between the cerebral hemispheres and regional divergence within the multiple demand network were positively associated with fluid composite score and partially mediated the relationship between brain size and individual differences in fluid intelligence. Together, these findings deepen our understanding of hemispheric lateralization as a fundamental organizational principle of the human brain, providing empirical evidence for its role in supporting fluid intelligence.
Collapse
Affiliation(s)
- Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- The Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| | - Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Shenzhen CyberAray Network Technology Co. Ltd, Shenzhen, China
- Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Qiuhui Bi
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Artificial Intelligence and Language Cognition Laboratory, Beijing International Studies University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Deniz Vatansever
- The Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | | | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| |
Collapse
|
2
|
Quiñones I, Gisbert-Muñoz S, Amoruso L, Manso-Ortega L, Mori U, Bermudez G, Robles SG, Pomposo I, Carreiras M. Unveiling the neuroplastic capacity of the bilingual brain: insights from healthy and pathological individuals. Brain Struct Funct 2024; 229:2187-2205. [PMID: 39289268 PMCID: PMC11612012 DOI: 10.1007/s00429-024-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
Research on the neural imprint of dual-language experience, crucial for understanding how the brain processes dominant and non-dominant languages, remains inconclusive. Conflicting evidence suggests either similarity or distinction in neural processing, with implications for bilingual patients with brain tumors. Preserving dual-language functions after surgery requires considering pre-diagnosis neuroplastic changes. Here, we combine univariate and multivariate fMRI methodologies to test a group of healthy Spanish-Basque bilinguals and a group of bilingual patients with gliomas affecting the language-dominant hemisphere while they overtly produced sentences in either their dominant or non-dominant language. Findings from healthy participants revealed the presence of a shared neural system for both languages, while also identifying regions with distinct language-dependent activation and lateralization patterns. Specifically, while the dominant language engaged a more left-lateralized network, speech production in the non-dominant language relied on the recruitment of a bilateral basal ganglia-thalamo-cortical circuit. Notably, based on language lateralization patterns, we were able to robustly decode (AUC: 0.80 ± 0.18) the language being used. Conversely, bilingual patients exhibited bilateral activation patterns for both languages. For the dominant language, regions such as the cerebellum, thalamus, and caudate acted in concert with the sparsely activated language-specific nodes. In the case of the non-dominant language, the recruitment of the default mode network was notably prominent. These results demonstrate the compensatory engagement of non-language-specific networks in the preservation of bilingual speech production, even in the face of pathological conditions. Overall, our findings underscore the pervasive impact of dual-language experience on brain functional (re)organization, both in health and disease.
Collapse
Affiliation(s)
- Ileana Quiñones
- Biogipuzkoa Health Research Institute, Basque Foundation for Science, San Sebastian, 20009, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain.
| | - Sandra Gisbert-Muñoz
- ESIC Business and Marketing School, Valencia, Spain.
- University of the Basque Country, UPV/EHU, Bilbao, 48940, Spain.
| | - Lucía Amoruso
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain.
- BCBL, Basque Center on Cognition, Brain, and Language, San Sebastian, 20009, Spain.
| | - Lucia Manso-Ortega
- University of the Basque Country, UPV/EHU, Bilbao, 48940, Spain
- BCBL, Basque Center on Cognition, Brain, and Language, San Sebastian, 20009, Spain
| | - Usue Mori
- University of the Basque Country, UPV/EHU, Bilbao, 48940, Spain
| | - Garazi Bermudez
- Biobizkaia Health Research Institute, Bilbao, 48015, Spain
- Department of Neurosurgery, Hospital Cruces, Bilbao, 48903, Spain
| | - Santiago Gil Robles
- Biobizkaia Health Research Institute, Bilbao, 48015, Spain
- Department of Neurosurgery, Hospital Quirón salud, Madrid, 28223, Spain
| | - Iñigo Pomposo
- Biobizkaia Health Research Institute, Bilbao, 48015, Spain
- Department of Neurosurgery, Hospital Cruces, Bilbao, 48903, Spain
| | - Manuel Carreiras
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
- University of the Basque Country, UPV/EHU, Bilbao, 48940, Spain
- BCBL, Basque Center on Cognition, Brain, and Language, San Sebastian, 20009, Spain
| |
Collapse
|
3
|
Dumitru ML, Johnsen E, Kroken RA, Løberg EM, Lilleskare L, Ersland L, Hugdahl K. Widespread asymmetries of amygdala nuclei predict auditory verbal hallucinations in schizophrenia. BMC Psychiatry 2024; 24:826. [PMID: 39563258 DOI: 10.1186/s12888-024-06301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Auditory verbal hallucinations, which frequently involve negative emotions, are reliable symptoms of schizophrenia. Brain asymmetries have also been linked to the condition, but the relevance of asymmetries within the amygdala, which coordinates all emotional signals, to the content of and response to auditory verbal hallucinations has not been explored. METHODS We evaluated the performance of two asymmetry biomarkers that were recently introduced in literature: the distance index, which captures global asymmetries, and a revised version of the laterality index, which captures left-right local asymmetries. We deployed random forest regression models over values computed with the distance index and with the laterality index over amygdala nuclei volumes (lateral, basal, accessory-basal, anterior amygdaloid area, central, medial, cortical, cortico-amygdaloid area, and paralaminar) for 71 patients and 71 age-matched controls. RESULTS Both biomarkers made successful predictions for the 35 items of the revised version of the Belief About Voices Questionnaire, such that hallucination severity increased with increasing local asymmetries and with decreasing global asymmetries of the amygdala. CONCLUSIONS Our findings highlight a global reorganization of the amygdala, where left and right nuclei volumes differ pairwise but become proportionally more similar as hallucinations increase in severity. Identifying asymmetries in particular brain structures relevant to specific symptoms could help monitor the evolution and outcome of psychopathological conditions.
Collapse
Affiliation(s)
- Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53 A/B, Postboks 5006, Bergen, Norway.
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Else-Marie Løberg
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Lin Lilleskare
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Prentice F, Chehabeddine L, Eriksson MH, Murphy J, Sepeta LN, Gaillard WD, Berl MM, Liégeois F, Baldeweg T. Is an earlier onset of focal epilepsy associated with atypical language lateralization? A systematic review, meta-analysis and new data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24315462. [PMID: 39606354 PMCID: PMC11601735 DOI: 10.1101/2024.11.13.24315462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Right and bilateral language representation is common in focal epilepsy, possibly reflecting the influence of epileptogenic lesions and/or seizure activity in the left hemisphere. Atypical language lateralization is assumed to be more likely in cases of early seizure onset, due to greater language plasticity in childhood. However, evidence for this association is mixed, with most research based on small samples and heterogenous cohorts. In this preregistered meta-analysis we examined the association between age at seizure onset and fMRI-derived language lateralization in individuals with focal epilepsy. The pooled effect size demonstrated a correlation between an earlier onset and rightward language lateralization in the total sample (r=0.1, p=.005, k=58, n=1240), with no difference in the correlation between left and right hemisphere epilepsy samples (Q=62.03, p=.302). In exploratory analyses of the individual participant data (n=1157), we demonstrated strong evidence that a logarithmic model fits the data better than a linear (BF=350) or categorical model with 6 years of age as a cut-off (BF=36). These findings indicate that there is a small but significant relationship between age at seizure onset and language lateralization. The relationship was consistent with theories of language plasticity proposing an exponential decline in plasticity over early childhood. However, given that this effect was subtle and only found in larger sample sizes, an early age at seizure onset would not serve as a good indicator of atypical language lateralization on the individual patient level.
Collapse
Affiliation(s)
- Freya Prentice
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neuropsychology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Lara Chehabeddine
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Clinical Research Institute, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
- Department of Epidemiology and Population Health, American University of Beirut, Beirut, Lebanon
| | - Maria Helena Eriksson
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neuropsychology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada
| | | | - Leigh N. Sepeta
- Center for Neuroscience Research, Children’s National Hospital, George Washington University, Washington, District of Columbia, USA
| | - William D. Gaillard
- Center for Neuroscience Research, Children’s National Hospital, George Washington University, Washington, District of Columbia, USA
| | - Madison M. Berl
- Center for Neuroscience Research, Children’s National Hospital, George Washington University, Washington, District of Columbia, USA
- Division of Neuropsychology, Children’s National Hospital, Washington, District of Columbia, USA
| | - Frédérique Liégeois
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Torsten Baldeweg
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neuropsychology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| |
Collapse
|
5
|
Bakhit M, Hiruta R, Kuromi Y, Maesawa S, Fujii M. Language Dominance in Left-Handers: Unveiling Left Hemisphere Global Dominance With Specific Right Hemisphere Regional Dominance. Cureus 2024; 16:e74691. [PMID: 39735149 PMCID: PMC11681990 DOI: 10.7759/cureus.74691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction The degree to which each human brain hemisphere governs specific cognitive processes, such as language and handedness (the preference or dominance of one hand over the other), varies across individuals. Research has explored the nature of language laterality in left-handed (LH) individuals, indicating that left-hemisphere dominance for language is commonly observed across both left- and right-handed populations. Advanced imaging techniques, including functional transcranial Doppler sonography and fMRI, have revealed subtle differences in language lateralization between LH and right-handed (RH) individuals, particularly in semantic processing tasks. These findings underscore the complex relationship between handedness and language lateralization. This study investigates the spatial patterns of language lateralization in LH and RH individuals using high-resolution fMRI data and the Human Connectome Project (HCP) multimodal parcellation (MMP). Method We utilized pre-processed MRI scans from the HCP database, comprising 140 healthy young adults, with 70 individuals in each of the RH and LH groups. The language task includes two contrasts: the STORY contrast, where participants listened to brief auditory stories compared to a baseline, and the STORY-MATH contrast, where participants listened to stories versus solving addition and subtraction problems. Data processing involved the HCP Pipelines and the MMP atlas was applied for analysis. The Edinburgh Handedness Inventory categorized participants as either LH or RH. For analysis, we focused on the number of brain surface elements (3D surface vertices) with positive elements (PEs) within each brain region, indicating blood-oxygen-level-dependent (BOLD) activity. The study's methodology aimed to quantify and compare PEs across the hemispheres (paired sample) and handedness groups (independent sample), providing insights into language lateralization. Statistical analysis involved Mann-Whitney U tests for differences across gender and handedness groups and robust t-tests for hemispheric dominance. Results were visualized by projecting mean and effect size values onto a 3D brain surface. Results The analysis of hemispheric mean differences in PEs revealed robust left hemisphere dominance in both the STORY and STORY-MATH contrasts among the RH group, while the LH group exhibited more balanced activity. Significant variations in PEs were observed across numerous MMP regions, with LH individuals showing pronounced asymmetry in 67 and 76 MMP regions (out of 180 regions) in the STORY and STORY-MATH contrasts, respectively, compared to 83 and 99 regions in RH individuals. Additionally, when comparing LH and RH groups, significant differences in PEs were identified within 14 MMP regions (out of 360 regions), all demonstrating significant asymmetry in LH individuals and primarily located in the right hemisphere (12 regions), notably in the inferior parietal lobule (Brodmann 39 and 40). No differences were found in the STORY-MATH contrast. Conclusion We identified hemispheric left-lateralization dominance in brain areas associated with language processing, irrespective of handedness. However, employing multimodal brain parcellation with fMRI language tasks unveiled notable differences in specific regions. Particularly striking was the heightened activity observed in certain right hemisphere regions among LH individuals.
Collapse
Affiliation(s)
- Mudathir Bakhit
- Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN
| | - Ryo Hiruta
- Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN
| | - Yousuke Kuromi
- Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN
| | - Satoshi Maesawa
- Department of Neurosurgery/Department of Operation, National Health Organization, Nagoya Medical Center, Nagoya, JPN
| | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN
| |
Collapse
|
6
|
Demirel B, Chesters J, Connally EL, Gough PM, Ward D, Howell P, Watkins KE. No evidence of altered language laterality in people who stutter across different brain imaging studies of speech and language. Brain Commun 2024; 6:fcae305. [PMID: 39346021 PMCID: PMC11430911 DOI: 10.1093/braincomms/fcae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/03/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
A long-standing neurobiological explanation of stuttering is the incomplete cerebral dominance theory, which refers to competition between two hemispheres for 'dominance' over handedness and speech, causing altered language lateralization. Renewed interest in these ideas came from brain imaging findings in people who stutter of increased activity in the right hemisphere during speech production or of shifts in activity from right to left when fluency increased. Here, we revisited this theory using functional MRI data from children and adults who stutter, and typically fluent speakers (119 participants in total) during four different speech and language tasks: overt sentence reading, overt picture description, covert sentence reading and covert auditory naming. Laterality indices were calculated for the frontal and temporal lobes using the laterality index toolbox running in Statistical Parametric Mapping. We also repeated the analyses with more specific language regions, namely the pars opercularis (Brodmann area 44) and pars triangularis (Brodmann area 45). Laterality indices in people who stutter and typically fluent speakers did not differ, and Bayesian analyses provided moderate to anecdotal levels of support for the null hypothesis (i.e. no differences in laterality in people who stutter compared with typically fluent speakers). The proportions of the people who stutter and typically fluent speakers who were left lateralized or had atypical rightward or bilateral lateralization did not differ. We found no support for the theory that language laterality is reduced or differs in people who stutter compared with typically fluent speakers.
Collapse
Affiliation(s)
- Birtan Demirel
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX2 6GG, UK
| | - Jennifer Chesters
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX2 6GG, UK
| | - Emily L Connally
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX2 6GG, UK
| | - Patricia M Gough
- School of Psychology, University College Dublin, Dublin DN720/PCS2, Ireland
| | - David Ward
- School of Psychology & Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK
| | - Peter Howell
- Experimental Psychology, Psychology & Language Sciences, University College London, London WC1E 6BT, UK
| | - Kate E Watkins
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
7
|
Bishop DVM, Woodhead ZVJ, Watkins KE. Approaches to Measuring Language Lateralisation: An Exploratory Study Comparing Two fMRI Methods and Functional Transcranial Doppler Ultrasound. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:409-431. [PMID: 38911461 PMCID: PMC11192441 DOI: 10.1162/nol_a_00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 06/25/2024]
Abstract
In this exploratory study we compare and contrast two methods for deriving a laterality index (LI) from functional magnetic resonance imaging (fMRI) data: the weighted bootstrapped mean from the LI Toolbox (toolbox method), and a novel method that uses subtraction of activations from homologous regions in left and right hemispheres to give an array of difference scores (mirror method). Data came from 31 individuals who had been selected to include a high proportion of people with atypical laterality when tested with functional transcranial Doppler ultrasound (fTCD). On two tasks, word generation and semantic matching, the mirror method generally gave better agreement with fTCD laterality than the toolbox method, both for individual regions of interest, and for a large region corresponding to the middle cerebral artery. LI estimates from this method had much smaller confidence intervals (CIs) than those from the toolbox method; with the mirror method, most participants were reliably lateralised to left or right, whereas with the toolbox method, a higher proportion were categorised as bilateral (i.e., the CI for the LI spanned zero). Reasons for discrepancies between fMRI methods are discussed: one issue is that the toolbox method averages the LI across a wide range of thresholds. Furthermore, examination of task-related t-statistic maps from the two hemispheres showed that language lateralisation is evident in regions characterised by deactivation, and so key information may be lost by ignoring voxel activations below zero, as is done with conventional estimates of the LI.
Collapse
Affiliation(s)
- Dorothy V. M. Bishop
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Zoe V. J. Woodhead
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Kate E. Watkins
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Gerrits R. Variability in Hemispheric Functional Segregation Phenotypes: A Review and General Mechanistic Model. Neuropsychol Rev 2024; 34:27-40. [PMID: 36576683 DOI: 10.1007/s11065-022-09575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022]
Abstract
Many functions of the human brain are organized asymmetrically and are subject to strong population biases. Some tasks, like speaking and making complex hand movements, exhibit left hemispheric dominance, whereas others, such as spatial processing and recognizing faces, favor the right hemisphere. While pattern of preference implies the existence of a stereotypical way of distributing functions between the hemispheres, an ever-increasing body of evidence indicates that not everyone follows this pattern of hemispheric functional segregation. On the contrary, the review conducted in this article shows that departures from the standard hemispheric division of labor are routinely observed and assume many distinct forms, each having a different prevalence rate. One of the key challenges in human neuroscience is to model this variability. By integrating well-established and recently emerged ideas about the mechanisms that underlie functional lateralization, the current article proposes a general mechanistic model that explains the observed distribution of segregation phenotypes and generates new testable hypotheses.
Collapse
Affiliation(s)
- Robin Gerrits
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Yeo DJ, Pollack C, Conrad BN, Price GR. Functional and representational differences between bilateral inferior temporal numeral areas. Cortex 2024; 171:113-135. [PMID: 37992508 DOI: 10.1016/j.cortex.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/15/2022] [Accepted: 08/09/2023] [Indexed: 11/24/2023]
Abstract
The processing of numerals as visual objects is supported by an "Inferior Temporal Numeral Area" (ITNA) in the bilateral inferior temporal gyri (ITG). Extant findings suggest some degree of hemispheric asymmetry in how the bilateral ITNAs process numerals. Pollack and Price (2019) reported such a hemispheric asymmetry by which a region in the left ITG was sensitive to digits during a visual search for a digit among letters, and a homologous region in the right ITG that showed greater digit sensitivity in individuals with higher calculation skills. However, the ITG regions were localized with separate analyses without directly contrasting their digit sensitivities and relation to calculation skills. So, the extent of and reasons for these functional asymmetries remain unclear. Here we probe whether the functional and representational properties of the ITNAs are asymmetric by applying both univariate and multivariate region-of-interest analyses to Pollack and Price's (2019) data. Contrary to the implications of the original findings, digit sensitivity did not differ between ITNAs, and digit sensitivity in both left and right ITNAs was associated with calculation skills. Representational similarity analyses revealed that the overall representational geometries of digits in the ITNAs were also correlated, albeit weakly, but the representational contents of the ITNAs were largely inconclusive. Nonetheless, we found a right lateralization in engagement in alphanumeric categorization, and that the right ITNA showed greater discriminability between digits and letters. Greater right lateralization of digit sensitivity and digit discriminability in the left ITNA were also related to higher calculation skills. Our findings thus suggest that the ITNAs may not be functionally identical and should be directly contrasted in future work. Our study also highlights the importance of within-individual comparisons for understanding hemispheric asymmetries, and analyses of individual differences and multivariate features to uncover effects that would otherwise be obscured by averages.
Collapse
Affiliation(s)
- Darren J Yeo
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA; Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Courtney Pollack
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Benjamin N Conrad
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Gavin R Price
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA; Department of Psychology, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
10
|
Quin-Conroy JE, Bayliss DM, Daniell SG, Badcock NA. Patterns of language and visuospatial functional lateralization and cognitive ability: a systematic review. Laterality 2024; 29:63-96. [PMID: 37771079 DOI: 10.1080/1357650x.2023.2263199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
For most individuals, language is predominately localized to the left hemisphere of the brain and visuospatial processing to the right. This is the typical pattern of functional lateralization. Evolutionary theories of lateralization suggest that the typical pattern is most common as it delivers a cognitive advantage. In contrast, deviations from the typical pattern may lead to poorer cognitive abilities. The aim of this systematic review was to assess the evidence for an association between patterns of language and visuospatial lateralization and measures of cognitive ability. We screened 9,122 studies, retrieved from PsycINFO, EMBASE, MEDLINE, PubMed, and Web of Science. The 17 studies that met our selection criteria revealed little evidence for an advantage of typical compared to atypical patterns of lateralization, although atypical lateralization patterns were related to worse language comprehension, spatial ability, and reading, but further research is needed to confirm this. We conclude with recommendations that future researchers recruit larger samples of atypical participants, and consider strength of lateraliation and bilaterality when analysing functional lateralization patterns.
Collapse
Affiliation(s)
| | - Donna M Bayliss
- School of Psychological Science, University of Western Australia, Crawley, Australia
| | - Sabrina G Daniell
- School of Psychological Science, University of Western Australia, Crawley, Australia
| | - Nicholas A Badcock
- School of Psychological Science, University of Western Australia, Crawley, Australia
| |
Collapse
|
11
|
Bajracharya A, Peelle JE. A systematic review of neuroimaging approaches to mapping language in individuals. JOURNAL OF NEUROLINGUISTICS 2023; 68:101163. [PMID: 37637379 PMCID: PMC10449384 DOI: 10.1016/j.jneuroling.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Although researchers often rely on group-level fMRI results to draw conclusions about the neurobiology of language, doing so without accounting for the complexities of individual brains may reduce the validity of our findings. Furthermore, understanding brain organization in individuals is critically important for both basic science and clinical translation. To assess the state of single-subject language localization in the functional neuroimaging literature, we carried out a systematic review of studies published through April 2020. Out of 977 papers identified through our search, 121 met our inclusion criteria for reporting single-subject fMRI results (fMRI studies of language in adults that report task-based single-subject statistics). Of these, 20 papers reported using a single-subject test-retest analysis to assess reliability. Thus, we found that a relatively modest number of papers reporting single-subject results quantified single-subject reliability. These varied substantially in acquisition parameters, task design, and reliability measures, creating significant challenges for making comparisons across studies. Future endeavors to optimize the localization of language networks in individuals will benefit from the standardization and broader reporting of reliability metrics for different tasks and acquisition parameters.
Collapse
Affiliation(s)
| | - Jonathan E Peelle
- Center for Cognitive and Brain Health, Department of Communication Sciences and Disorders, and Department of Psychology, Northeastern University
| |
Collapse
|
12
|
Zhang J, Zamoscik VE, Kirsch P, Gerchen MF. No evidence from a negative mood induction fMRI task for frontal functional asymmetry as a suitable neurofeedback target. Sci Rep 2023; 13:17557. [PMID: 37845332 PMCID: PMC10579342 DOI: 10.1038/s41598-023-44694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
Frontal functional asymmetry (FA) has been proposed as a potential target for neurofeedback (NFB) training for mental disorders but most FA NFB studies used electroencephalography while the investigations of FA NFB in functional magnetic resonance imaging (fMRI) are rather limited. In this study, we aimed at identifying functional asymmetry effects in fMRI and exploring its potential as a target for fMRI NFB studies by re-analyzing an existing data set containing a resting state measurement and a sad mood induction task of n = 30 participants with remitted major depressive disorder and n = 30 matched healthy controls. We applied low-frequency fluctuations (ALFF), fractional ALFF, and regional homogeneity and estimated functional asymmetry in both a voxel-wise and regional manner. We assessed functional asymmetry during rest and negative mood induction as well as functional asymmetry changes between the phases, and associated the induced mood change with the change in functional asymmetry. Analyses were conducted within as well as between groups. Despite extensive analyses, we identified only very limited effects. While some tests showed nominal significance, our results did not contain any clear identifiable patterns of effects that would be expected if a true underlying effect would be present. In conclusion, we do not find evidence for FA effects related to negative mood in fMRI, which questions the usefulness of FA measures for real-time fMRI neurofeedback as a treatment approach for affective disorders.
Collapse
Affiliation(s)
- Jingying Zhang
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany.
| | - Vera Eva Zamoscik
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- Department of Psychology, University of Heidelberg, Heidelberg, Germany
- Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany
| | - Martin Fungisai Gerchen
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- Department of Psychology, University of Heidelberg, Heidelberg, Germany
- Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
13
|
Ahmed SR, Jenabi M, Gene M, Moreno R, Peck KK, Holodny A. Power spectral analysis can determine language laterality from resting-state functional MRI data in healthy controls. J Neuroimaging 2023; 33:661-670. [PMID: 37032593 PMCID: PMC10523910 DOI: 10.1111/jon.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Resting-state functional magnetic resonance imaging (rsfMRI) has been proposed as an alternative to task-based fMRI including clinical situations such as preoperative brain tumor planning, due to advantages including ease of performance and time savings. However, one of its drawbacks is the limited ability to accurately lateralize language function. METHODS Using the rsfMRI data of healthy controls, we carried out a power spectra analysis on three regions of interest (ROIs): Broca's area (BA) in the frontal cortex for language, hand motor (HM) area in the primary motor cortex, and the primary visual cortex (V1). Spike removal, motion correction, linear trend removal, and spatial smoothing were applied. Spontaneous low-frequency fluctuations (0.01-0.1 Hz) were filtered to enable functional integration. RESULTS BA showed greater power on the left hemisphere relative to the right (p = .0055), while HM (p = .1563) and V1 (p = .4681) were not statistically significant. A novel index, termed the power laterality index (PLI), computed to estimate the degree of power lateralization for each brain region, revealed a statistically significant difference between BA and V1 (p < .00001), where V1 was used as a control since the primary visual cortex does not lateralize. Validation studies used to compare PLI to a laterality index computed using phonemic fluency, a task-based, language fMRI paradigm, demonstrated good correlation. CONCLUSIONS The power spectra for BA revealed left language lateralization, which was not replicated in HM or V1. This work demonstrates the feasibility and validity of an ROI-based power spectra analysis on rsfMRI data for language lateralization.
Collapse
Affiliation(s)
- Syed Rakin Ahmed
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
- Harvard Graduate Program in Biophysics, Harvard Medical School, Harvard University, Cambridge, MA, US
- Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, US
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, US
- Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Madeleine Gene
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Raquel Moreno
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Kyung K. Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, US
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, US
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, US
| |
Collapse
|
14
|
Lawrence A, Carvajal M, Ormsby J. Beyond Broca's and Wernicke's: Functional Mapping of Ancillary Language Centers Prior to Brain Tumor Surgery. Tomography 2023; 9:1254-1275. [PMID: 37489468 PMCID: PMC10366753 DOI: 10.3390/tomography9040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Functional MRI is a well-established tool used for pre-surgical planning to help the neurosurgeon have a roadmap of critical functional areas that should be avoided, if possible, during surgery to minimize morbidity for patients with brain tumors (though this also has applications for surgical resection of epileptogenic tissue and vascular lesions). This article reviews the locations of secondary language centers within the brain along with imaging findings to help improve our confidence in our knowledge on language lateralization. Brief overviews of these language centers and their contributions to the language networks will be discussed. These language centers include primary language centers of "Broca's Area" and "Wernicke's Area". However, there are multiple secondary language centers such as the dorsal lateral prefrontal cortex (DLPFC), frontal eye fields, pre- supplemental motor area (pre-SMA), Basal Temporal Language Area (BTLA), along with other areas of activation. Knowing these foci helps to increase self-assurance when discussing the nature of laterality with the neurosurgeon. By knowing secondary language centers for language lateralization, via fMRI, one can feel confident on providing neurosurgeon colleagues with appropriate information on the laterality of language in preparation for surgery.
Collapse
Affiliation(s)
- Ashley Lawrence
- Center for Neuropsychological Services, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| | - Michael Carvajal
- Center for Neuropsychological Services, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| | - Jacob Ormsby
- Department of Radiology, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| |
Collapse
|
15
|
Karlsson EM, Hugdahl K, Hirnstein M, Carey DP. Analysis of distributions reveals real differences on dichotic listening scores between left- and right-handers. Cereb Cortex Commun 2023; 4:tgad009. [PMID: 37342803 PMCID: PMC10262840 DOI: 10.1093/texcom/tgad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
About 95% of right-handers and 70% of left-handers have a left-hemispheric specialization for language. Dichotic listening is often used as an indirect measure of this language asymmetry. However, while it reliably produces a right-ear advantage (REA), corresponding to the left-hemispheric specialization of language, it paradoxically often fails to obtain statistical evidence of mean differences between left- and right-handers. We hypothesized that non-normality of the underlying distributions might be in part responsible for the similarities in means. Here, we compare the mean ear advantage scores, and also contrast the distributions at multiple quantiles, in two large independent samples (Ns = 1,358 and 1,042) of right-handers and left-handers. Right-handers had an increased mean REA, and a larger proportion had an REA than in the left-handers. We also found that more left-handers are represented in the left-eared end of the distribution. These data suggest that subtle shifts in the distributions of DL scores for right- and left-handers may be at least partially responsible for the unreliability of significantly reduced mean REA in left-handers.
Collapse
Affiliation(s)
- Emma M Karlsson
- Institute of Cognitive Neuroscience, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Marco Hirnstein
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - David P Carey
- Corresponding author: David P. Carey, School of Human and Behavioural Sciences, Bangor University, Bangor LL57 2AS, UK.
| |
Collapse
|
16
|
Wu H, Peng D, Yan H, Yang Y, Xu M, Zeng W, Chang C, Wang N. Occupation-modulated language networks and its lateralization: A resting-state fMRI study of seafarers. Front Hum Neurosci 2023; 17:1095413. [PMID: 36992794 PMCID: PMC10040660 DOI: 10.3389/fnhum.2023.1095413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionStudies have revealed that the language network of Broca’s area and Wernicke’s area is modulated by factors such as disease, gender, aging, and handedness. However, how occupational factors modulate the language network remains unclear.MethodsIn this study, taking professional seafarers as an example, we explored the resting-state functional connectivity (RSFC) of the language network with seeds (the original and flipped Broca’s area and Wernicke’s area).ResultsThe results showed seafarers had weakened RSFC of Broca’s area with the left superior/middle frontal gyrus and left precentral gyrus, and enhanced RSFC of Wernicke’s area with the cingulate and precuneus. Further, seafarers had a less right-lateralized RSFC with Broca’s area in the left inferior frontal gyrus, while the controls showed a left-lateralized RSFC pattern in Broca’s area and a right-lateralized one in Wernicke’s area. Moreover, seafarers displayed stronger RSFC with the left seeds of Broca’s area and Wernicke’s area.DiscussionThese findings suggest that years of working experience significantly modulates the RSFC of language networks and their lateralization, providing rich insights into language networks and occupational neuroplasticity.
Collapse
Affiliation(s)
- Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Deyuan Peng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
- Hongjie Yan,
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Chunqi Chang,
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- *Correspondence: Nizhuan Wang,
| |
Collapse
|
17
|
Concordance of Lateralization Index for Brain Asymmetry Applied to Identify a Reliable Language Task. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
How can we determine which language task is relevant for examining functional hemispheric asymmetry? A problem in measuring brain asymmetry using functional magnetic resonance imaging lies in the uncertain reliability of the computed index regarding the “true” asymmetry degree. Strictly speaking, the results from the Wada test or direct cortical stimulation cannot be an exact “ground truth”, specifically for the degree of asymmetry. Therefore, we developed a method to evaluate task performance using reproducibility independent of the phenomenon of functional lateralization. Kendall’s coefficient of concordance (W) was used as the statistical measure. The underlying idea was that although various algorithms to compute the lateralization index show considerably different index values for the same data, a superior language task would reproduce similar individual ranking sequences across the algorithms; the high reproducibility of rankings across various index types would indicate a reliable task to investigate functional asymmetry regardless of index computation algorithms. Consequently, we found specificity for brain locations; a verb-generation task demonstrated the highest concordance across index types along with sufficiently high index values in the inferior frontal gyrus, whereas a narration–listening task demonstrated the highest concordance in the posterior temporo-parietal junction area.
Collapse
|
18
|
Parker AJ, Woodhead ZV, Carey DP, Groen MA, Gutierrez-Sigut E, Hodgson J, Hudson J, Karlsson EM, MacSweeney M, Payne H, Simpson N, Thompson PA, Watkins KE, Egan C, Grant JH, Harte S, Hudson BT, Sablik M, Badcock NA, Bishop DV. Inconsistent language lateralisation – Testing the dissociable language laterality hypothesis using behaviour and lateralised cerebral blood flow. Cortex 2022; 154:105-134. [DOI: 10.1016/j.cortex.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
|
19
|
Matsuo K, Kono K, Yasui-Furukori N, Shimoda K, Kaji Y, Akiyama K. HomotopicLI: Rationale, characteristics, and implications of a new threshold-free lateralization index of functional magnetic resonance imaging. Laterality 2022; 27:513-543. [PMID: 35948519 DOI: 10.1080/1357650x.2022.2109655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The reliable preoperative estimation of brain hemispheric asymmetry may be achieved through multiple lateralization indices using functional magnetic resonance imaging. Adding to our previously developed AveLI, we devised a novel threshold-free lateralization index, HomotopicLI, which computes a basic formula, (Left - Right) / (Left + Right), using voxel values of pairs located symmetrically in relation to the midsagittal line as the terms Left and Right, and averages them within the regions-of-interest. The study aimed to evaluate HomotopicLI before clinical applications. Data were collected from 56 healthy participants who performed four language tasks. We compared seven index types, including HomotopicLI, AveLI, and BaseLI; BaseLI was calculated using the sums of voxel values as the terms. Contrary to our expectations, HomotopicLI performed similarly to AveLI but better than BaseLI in detecting right dominance. A detailed analysis of unilaterally activated voxels of the homotopic pairs revealed that unilateral activation occurred more frequently on the right than on the left when HomotopicLI indicated right dominance. The voxel values during right unilateral activation were smaller than those in the left, causing right dominances in the homotopic pairs by HomotopicLI. These unique features provide an advantage in detecting residual, compensative functions spreading weakly in the non-dominant hemisphere.
Collapse
Affiliation(s)
- Kayako Matsuo
- Center for Research Collaboration and Support, Dokkyo Medical University School of Medicine, Tochigi, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Kenta Kono
- Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Norio Yasui-Furukori
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yasushi Kaji
- Department of Radiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Tochigi, Japan.,Kawada Hospital, Okayama, Japan
| |
Collapse
|
20
|
Thome I, García Alanis JC, Volk J, Vogelbacher C, Steinsträter O, Jansen A. Let's face it: The lateralization of the face perception network as measured with fMRI is not clearly right dominant. Neuroimage 2022; 263:119587. [PMID: 36031183 DOI: 10.1016/j.neuroimage.2022.119587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The neural face perception network is distributed across both hemispheres. However, the dominant role in humans is virtually unanimously attributed to the right hemisphere. Interestingly, there are, to our knowledge, no imaging studies that systematically describe the distribution of hemispheric lateralization in the core system of face perception across subjects in large cohorts so far. To address this, we determined the hemispheric lateralization of all core system regions (i.e., occipital face area (OFA), fusiform face area (FFA), posterior superior temporal sulcus (pSTS)) in 108 healthy subjects using functional magnetic resonance imaging (fMRI). We were particularly interested in the variability of hemispheric lateralization across subjects and explored how many subjects can be classified as right-dominant based on the fMRI activation pattern. We further assessed lateralization differences between different regions of the core system and analyzed the influence of handedness and sex on the lateralization with a generalized mixed effects regression model. As expected, brain activity was on average stronger in right-hemispheric brain regions than in their left-hemispheric homologues. This asymmetry was, however, only weakly pronounced in comparison to other lateralized brain functions (such as language and spatial attention) and strongly varied between individuals. Only half of the subjects in the present study could be classified as right-hemispheric dominant. Additionally, we did not detect significant lateralization differences between core system regions. Our data did also not support a general leftward shift of hemispheric lateralization in left-handers. Only the interaction of handedness and sex in the FFA revealed that specifically left-handed men were significantly more left-lateralized compared to right-handed males. In essence, our fMRI data did not support a clear right-hemispheric dominance of the face perception network. Our findings thus ultimately question the dogma that the face perception network - as measured with fMRI - can be characterized as "typically right lateralized".
Collapse
Affiliation(s)
- Ina Thome
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.
| | - José C García Alanis
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Clinical Child and Adolescent Psychology, Department of Psychology, University of Marburg, Marburg, Germany; Analysis and Modeling of Complex Data Lab, Institute of Psychology, University of Mainz, Mainz, Germany
| | - Jannika Volk
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Christoph Vogelbacher
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Olaf Steinsträter
- Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany.
| |
Collapse
|
21
|
Gerchen MF, Kirsch P, Feld GB. Brain-wide inferiority and equivalence tests in fMRI group analyses: Selected applications. Hum Brain Mapp 2021; 42:5803-5813. [PMID: 34529303 PMCID: PMC8596945 DOI: 10.1002/hbm.25664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022] Open
Abstract
Null hypothesis significance testing is the major statistical procedure in fMRI, but provides only a rather limited picture of the effects in a data set. When sample size and power is low relying only on strict significance testing may lead to a host of false negative findings. In contrast, with very large data sets virtually every voxel might become significant. It is thus desirable to complement significance testing with procedures like inferiority and equivalence tests that allow to formally compare effect sizes within and between data sets and offer novel approaches to obtain insight into fMRI data. The major component of these tests are estimates of standardized effect sizes and their confidence intervals. Here, we show how Hedges' g, the bias corrected version of Cohen's d, and its confidence interval can be obtained from SPM t maps. We then demonstrate how these values can be used to evaluate whether nonsignificant effects are really statistically smaller than significant effects to obtain “regions of undecidability” within a data set, and to test for the replicability and lateralization of effects. This method allows the analysis of fMRI data beyond point estimates enabling researchers to take measurement uncertainty into account when interpreting their findings.
Collapse
Affiliation(s)
- Martin Fungisai Gerchen
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany.,Department of Psychology, Heidelberg University, Heidelberg, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Bernstein Center for Computational Neuroscience Heidelberg/Mannheim, Mannheim, Germany.,Department of Psychology, Heidelberg University, Heidelberg, Germany
| | - Gordon Benedikt Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychology, Heidelberg University, Heidelberg, Germany.,Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
22
|
Berro DH, Lemée JM, Leiber LM, Emery E, Menei P, Ter Minassian A. Overt speech critically changes lateralization index and did not allow determination of hemispheric dominance for language: an fMRI study. BMC Neurosci 2021; 22:74. [PMID: 34852787 PMCID: PMC8638205 DOI: 10.1186/s12868-021-00671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Pre-surgical mapping of language using functional MRI aimed principally to determine the dominant hemisphere. This mapping is currently performed using covert linguistic task in way to avoid motion artefacts potentially biasing the results. However, overt task is closer to natural speaking, allows a control on the performance of the task, and may be easier to perform for stressed patients and children. However, overt task, by activating phonological areas on both hemispheres and areas involved in pitch prosody control in the non-dominant hemisphere, is expected to modify the determination of the dominant hemisphere by the calculation of the lateralization index (LI). Objective Here, we analyzed the modifications in the LI and the interactions between cognitive networks during covert and overt speech task. Methods Thirty-three volunteers participated in this study, all but four were right-handed. They performed three functional sessions consisting of (1) covert and (2) overt generation of a short sentence semantically linked with an audibly presented word, from which we estimated the “Covert” and “Overt” contrasts, and a (3) resting-state session. The resting-state session was submitted to spatial independent component analysis to identify language network at rest (LANG), cingulo-opercular network (CO), and ventral attention network (VAN). The LI was calculated using the bootstrapping method. Results The LI of the LANG was the most left-lateralized (0.66 ± 0.38). The LI shifted from a moderate leftward lateralization for the Covert contrast (0.32 ± 0.38) to a right lateralization for the Overt contrast (− 0.13 ± 0.30). The LI significantly differed from each other. This rightward shift was due to the recruitment of right hemispheric temporal areas together with the nodes of the CO. Conclusion Analyzing the overt speech by fMRI allowed improvement in the physiological knowledge regarding the coordinated activity of the intrinsic connectivity networks. However, the rightward shift of the LI in this condition did not provide the basic information on the hemispheric language dominance. Overt linguistic task cannot be recommended for clinical purpose when determining hemispheric dominance for language. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00671-y.
Collapse
Affiliation(s)
- David Hassanein Berro
- Department of Neurosurgery, University Hospital of Caen Normandy, Avenue de la Côte de Nacre, 14000, Caen, France. .,Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France. .,INSERM, CRCINA, Team 17, IRIS building, Angers, France.
| | - Jean-Michel Lemée
- INSERM, CRCINA, Team 17, IRIS building, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | | | - Evelyne Emery
- Department of Neurosurgery, University Hospital of Caen Normandy, Avenue de la Côte de Nacre, 14000, Caen, France.,INSERM, UMR-S U1237, PhIND group, GIP Cyceron, Caen, France
| | - Philippe Menei
- INSERM, CRCINA, Team 17, IRIS building, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | - Aram Ter Minassian
- Department of Anesthesiology, University Hospital of Angers, Angers, France.,LARIS, ISISV team, University of Angers, Angers, France
| |
Collapse
|
23
|
Richards SE, Hughes ME, Woodward TS, Rossell SL, Carruthers SP. External speech processing and auditory verbal hallucinations: A systematic review of functional neuroimaging studies. Neurosci Biobehav Rev 2021; 131:663-687. [PMID: 34517037 DOI: 10.1016/j.neubiorev.2021.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
It has been documented that individuals who hear auditory verbal hallucinations (AVH) exhibit diminished capabilities in processing external speech. While functional neuroimaging studies have attempted to characterise the cortical regions and networks facilitating these deficits in a bid to understand AVH, considerable methodological heterogeneity has prevented a consensus being reached. The current systematic review investigated the neurobiological underpinnings of external speech processing deficits in voice-hearers in 38 studies published between January 1990 to June 2020. AVH-specific deviations in the activity and lateralisation of the temporal auditory regions were apparent when processing speech sounds, words and sentences. During active or affective listening tasks, functional connectivity changes arose within the language, limbic and default mode networks. However, poor study quality and lack of replicable results plague the field. A detailed list of recommendations has been provided to improve the quality of future research on this topic.
Collapse
Affiliation(s)
- Sophie E Richards
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, VIC, 3122, Australia.
| | - Matthew E Hughes
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, VIC, 3122, Australia
| | - Todd S Woodward
- Department of Psychiatry, University of British Colombia, Vancouver, BC, Canada; BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, VIC, 3122, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, VIC, 3122, Australia
| |
Collapse
|
24
|
Gerrits R, Verhelst H, Dhollander T, Xiang L, Vingerhoets G. Structural perisylvian asymmetry in naturally occurring atypical language dominance. Brain Struct Funct 2021; 227:573-586. [PMID: 34173870 DOI: 10.1007/s00429-021-02323-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023]
Abstract
Functional and anatomical hemispheric asymmetries abound in the neural language system, yet the relationship between them remains elusive. One attractive proposal is that structural interhemispheric differences reflect or even drive functional language laterality. However, studies on structure-function couplings either find that left and right language dominant individuals display similar leftward structural asymmetry or yield inconsistent results. The current study aimed to replicate and extend prior work by comparing structural asymmetries between neurologically healthy left-handers with right hemispheric language dominance (N = 24) and typically lateralized left-handed controls (N = 39). Based on structural MRI data, anatomical measures of six 'language-related' perisylvian structures were derived, including the surface area of five gray matter regions with known language functions and the FDC (combined fiber density and fiber-bundle cross-sectional area) of the arcuate fasciculus. Only the surface area of the pars triangularis and the anterior insula differed significantly between participant groups, being on average leftward asymmetric in those with typical dominance, but right lateralized in volunteers with atypical language specialization. However, these findings did not survive multiple testing correction and the asymmetry of these structures demonstrated much inter-individual variability in either subgroup. By integrating our findings with those reported previously we conclude that while some perisylvian anatomical asymmetries may differ subtly between typical and atypical speech dominants at the group level, they serve as poor participant-specific predictors of hemispheric language specialization.
Collapse
Affiliation(s)
- Robin Gerrits
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| | - Helena Verhelst
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Li Xiang
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Guy Vingerhoets
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The author presents his perspective on the character of science, development, and handedness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemispheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined.
Collapse
|
26
|
Quiñones I, Amoruso L, Pomposo Gastelu IC, Gil-Robles S, Carreiras M. What Can Glioma Patients Teach Us about Language (Re)Organization in the Bilingual Brain: Evidence from fMRI and MEG. Cancers (Basel) 2021; 13:2593. [PMID: 34070619 PMCID: PMC8198785 DOI: 10.3390/cancers13112593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Recent evidence suggests that the presence of brain tumors (e.g., low-grade gliomas) triggers language reorganization. Neuroplasticity mechanisms called into play can transfer linguistic functions from damaged to healthy areas unaffected by the tumor. This phenomenon has been reported in monolingual patients, but much less is known about the neuroplasticity of language in the bilingual brain. A central question is whether processing a first or second language involves the same or different cortical territories and whether damage results in diverse recovery patterns depending on the language involved. This question becomes critical for preserving language areas in bilingual brain-tumor patients to prevent involuntary pathological symptoms following resection. While most studies have focused on intraoperative mapping, here, we go further, reporting clinical cases for five bilingual patients tested before and after tumor resection, using a novel multimethod approach merging neuroimaging information from fMRI and MEG to map the longitudinal reshaping of the language system. Here, we present four main findings. First, all patients preserved linguistic function in both languages after surgery, suggesting that the surgical intervention with intraoperative language mapping was successful in preserving cortical and subcortical structures necessary for brain plasticity at the functional level. Second, we found reorganization of the language network after tumor resection in both languages, mainly reflected by a shift of activity to right hemisphere nodes and the recruitment of ipsilesional left nodes. Third, we found that this reorganization varied according to the language involved, indicating that L1 and L2 follow different reshaping patterns after surgery. Fourth, oscillatory longitudinal effects were correlated with BOLD laterality changes in superior parietal and middle frontal areas. These findings may reflect that neuroplasticity impacts on the compensatory involvement of executive control regions, supporting the allocation of cognitive resources as a consequence of increased attentional demands. Furthermore, these results hint at the complementary role of this neuroimaging approach in language mapping, with fMRI offering excellent spatial localization and MEG providing optimal spectrotemporal resolution.
Collapse
Affiliation(s)
- Ileana Quiñones
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
| | - Lucia Amoruso
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | | | - Santiago Gil-Robles
- BioCruces Research Institute, 48015 Bilbao, Spain;
- Department of Neurosurgery, Hospital Quironsalud, 28223 Madrid, Spain
| | - Manuel Carreiras
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Basque Language and Communication, University of the Basque Country, UPV/EHU, 48940 Bilbao, Spain
| |
Collapse
|
27
|
Połczyńska MM. Organizing Variables Affecting fMRI Estimates of Language Dominance in Patients with Brain Tumors. Brain Sci 2021; 11:brainsci11060694. [PMID: 34070413 PMCID: PMC8226970 DOI: 10.3390/brainsci11060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous variables can affect the assessment of language dominance using presurgical functional magnetic resonance (fMRI) in patients with brain tumors. This work organizes the variables into confounding and modulating factors. Confounding factors give the appearance of changed language dominance. Most confounding factors are fMRI-specific and they can substantially disrupt the evaluation of language dominance. Confounding factors can be divided into two categories: tumor-related and fMRI analysis. The tumor-related confounds further subdivide into tumor characteristics (e.g., tumor grade) and tumor-induced conditions (aphasia). The fMRI analysis confounds represent technical aspects of fMRI methods (e.g., a fixed versus an individual threshold). Modulating factors can modify language dominance without confounding it. They are not fMRI-specific, and they can impact language dominance both in healthy individuals and neurosurgical patients. The effect of most modulating factors on fMRI language dominance is smaller than that of confounding factors. Modulating factors include demographics (e.g., age) and linguistic variables (e.g., early bilingualism). Three cases of brain tumors in the left hemisphere are presented to illustrate how modulating confounding and modulating factors can impact fMRI estimates of language dominance. Distinguishing between confounding and modulating factors can help interpret the results of presurgical language mapping with fMRI.
Collapse
Affiliation(s)
- Monika M Połczyńska
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
28
|
Olaru M, Nillo RM, Mukherjee P, Sugrue LP. A quantitative approach for measuring laterality in clinical fMRI for preoperative language mapping. Neuroradiology 2021; 63:1489-1500. [PMID: 33772347 PMCID: PMC8376727 DOI: 10.1007/s00234-021-02685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Purpose fMRI is increasingly used for presurgical language mapping, but lack of standard methodology has made it difficult to combine/compare data across institutions or determine the relative efficacy of different approaches. Here, we describe a quantitative analytic framework for determining language laterality in clinical fMRI that addresses these concerns. Methods We retrospectively analyzed fMRI data from 59 patients who underwent presurgical language mapping at our institution with identical imaging and behavioral protocols. First, we compared the efficacy of different regional masks in capturing language activations. Then, we systematically explored how laterality indices (LIs) computed from these masks vary as a function of task and activation threshold. Finally, we determined the percentile threshold that maximized the correlation between the results of our LI approach and the laterality assessments from the original clinical radiology reports. Results First, we found that a regional mask derived from a meta-analysis of the fMRI literature better captured language task activations than masks based on anatomically defined language areas. Then, we showed that an LI approach based on this functional mask and percentile thresholding of subject activation can quantify the relative ability of different language tasks to lateralize language function at the population level. Finally, we determined that the 92nd percentile of subject-level activation provides the optimal LI threshold with which to reproduce the original clinical reports. Conclusion A quantitative framework for determining language laterality that uses a functionally-derived language mask and percentile thresholding of subject activation can combine/compare results across tasks and patients and reproduce clinical assessments of language laterality. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02685-z.
Collapse
Affiliation(s)
- Maria Olaru
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Nillo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Leo P Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Gurunandan K, Arnaez-Telleria J, Carreiras M, Paz-Alonso PM. Converging Evidence for Differential Specialization and Plasticity of Language Systems. J Neurosci 2020. [PMID: 33168623 DOI: 10.1523/jneur0sci.0851-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Functional specialization and plasticity are fundamental organizing principles of the brain. Since the mid-1800s, certain cognitive functions have been known to be lateralized, but the provenance and flexibility of hemispheric specialization remain open questions. Language is a uniquely human phenomenon that requires a delicate balance between neural specialization and plasticity, and language learning offers the perfect window to study these principles in the human brain. In the current study, we conducted two separate functional MRI experiments with language learners (male and female), one cross-sectional and one longitudinal, involving distinct populations and languages, and examined hemispheric lateralization and learning-dependent plasticity of the following three language systems: reading, speech comprehension, and verbal production. A multipronged analytic approach revealed a highly consistent pattern of results across the two experiments, showing (1) that in both native and non-native languages, while language production was left lateralized, lateralization for language comprehension was highly variable across individuals; and (2) that with increasing non-native language proficiency, reading and speech comprehension displayed substantial changes in hemispheric dominance, with languages tending to lateralize to opposite hemispheres, while production showed negligible change and remained left lateralized. These convergent results shed light on the long-standing debate of neural organization of language by establishing robust principles of lateralization and plasticity of the main language systems. Findings further suggest involvement of the sensorimotor systems in language lateralization and its plasticity.SIGNIFICANCE STATEMENT The human brain exhibits a remarkable ability to support a vast variety of languages that may be acquired at different points in the life span. Language is a complex construct involving linguistic as well as visual, auditory, and motor processes. Using functional MRI, we examined hemispheric specialization and learning-dependent plasticity of three language systems-reading, speech comprehension, and verbal production-in cross-sectional and longitudinal experiments in language learners. A multipronged analytic approach revealed converging evidence for striking differences in hemispheric specialization and plasticity among the language systems. The results have major theoretical and practical implications for our understanding of fundamental principles of neural organization of language, language testing and recovery in patients, and language learning in healthy populations.
Collapse
Affiliation(s)
- Kshipra Gurunandan
- BCBL. Basque Center on Cognition, Brain and Language, 20009 Donostia-San Sebastian, Spain
| | - Jaione Arnaez-Telleria
- BCBL. Basque Center on Cognition, Brain and Language, 20009 Donostia-San Sebastian, Spain
| | - Manuel Carreiras
- BCBL. Basque Center on Cognition, Brain and Language, 20009 Donostia-San Sebastian, Spain
- Basque Foundation for Science, 48013 Bilbao, Spain
- Department of Basque Language and Communication, University of the Basque Country, 48015 Bilbao, Spain
| | - Pedro M Paz-Alonso
- BCBL. Basque Center on Cognition, Brain and Language, 20009 Donostia-San Sebastian, Spain
- Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
30
|
Krishnan S, Asaridou SS, Cler GJ, Smith HJ, Willis HE, Healy MP, Thompson PA, Bishop DVM, Watkins KE. Functional organisation for verb generation in children with developmental language disorder. Neuroimage 2020; 226:117599. [PMID: 33285329 PMCID: PMC7836232 DOI: 10.1016/j.neuroimage.2020.117599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Developmental language disorder (DLD) is characterised by difficulties in learning one's native language for no apparent reason. These language difficulties occur in 7% of children and are known to limit future academic and social achievement. Our understanding of the brain abnormalities associated with DLD is limited. Here, we used a simple four-minute verb generation task (children saw a picture of an object and were instructed to say an action that goes with that object) to test children between the ages of 10-15 years (DLD N = 50, typically developing N = 67). We also tested 26 children with poor language ability who did not meet our criteria for DLD. Contrary to our registered predictions, we found that children with DLD did not have (i) reduced activity in language relevant regions such as the left inferior frontal cortex; (ii) dysfunctional striatal activity during overt production; or (iii) a reduction in left-lateralised activity in frontal cortex. Indeed, performance of this simple language task evoked activity in children with DLD in the same regions and to a similar level as in typically developing children. Consistent with previous reports, we found sub-threshold group differences in the left inferior frontal gyrus and caudate nuclei, but only when analysis was limited to a subsample of the DLD group (N = 14) who had the poorest performance on the task. Additionally, we used a two-factor model to capture variation in all children studied (N = 143) on a range of neuropsychological tests and found that these language and verbal memory factors correlated with activity in different brain regions. Our findings indicate a lack of support for some neurological models of atypical language learning, such as the procedural deficit hypothesis or the atypical lateralization hypothesis, at least when using simple language tasks that children can perform. These results also emphasise the importance of controlling for and monitoring task performance.
Collapse
Affiliation(s)
- Saloni Krishnan
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; Department of Psychology, Royal Holloway, University of London, Egham Hill, Surrey TW20 0EX, UK.
| | - Salomi S Asaridou
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Gabriel J Cler
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Harriet J Smith
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Hannah E Willis
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Máiréad P Healy
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK; Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Paul A Thompson
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Dorothy V M Bishop
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Kate E Watkins
- Department of Experimental Psychology & Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
31
|
Converging Evidence for Differential Specialization and Plasticity of Language Systems. J Neurosci 2020; 40:9715-9724. [PMID: 33168623 PMCID: PMC7726546 DOI: 10.1523/jneurosci.0851-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Functional specialization and plasticity are fundamental organizing principles of the brain. Since the mid-1800s, certain cognitive functions have been known to be lateralized, but the provenance and flexibility of hemispheric specialization remain open questions. Language is a uniquely human phenomenon that requires a delicate balance between neural specialization and plasticity, and language learning offers the perfect window to study these principles in the human brain. In the current study, we conducted two separate functional MRI experiments with language learners (male and female), one cross-sectional and one longitudinal, involving distinct populations and languages, and examined hemispheric lateralization and learning-dependent plasticity of the following three language systems: reading, speech comprehension, and verbal production. A multipronged analytic approach revealed a highly consistent pattern of results across the two experiments, showing (1) that in both native and non-native languages, while language production was left lateralized, lateralization for language comprehension was highly variable across individuals; and (2) that with increasing non-native language proficiency, reading and speech comprehension displayed substantial changes in hemispheric dominance, with languages tending to lateralize to opposite hemispheres, while production showed negligible change and remained left lateralized. These convergent results shed light on the long-standing debate of neural organization of language by establishing robust principles of lateralization and plasticity of the main language systems. Findings further suggest involvement of the sensorimotor systems in language lateralization and its plasticity. SIGNIFICANCE STATEMENT The human brain exhibits a remarkable ability to support a vast variety of languages that may be acquired at different points in the life span. Language is a complex construct involving linguistic as well as visual, auditory, and motor processes. Using functional MRI, we examined hemispheric specialization and learning-dependent plasticity of three language systems—reading, speech comprehension, and verbal production—in cross-sectional and longitudinal experiments in language learners. A multipronged analytic approach revealed converging evidence for striking differences in hemispheric specialization and plasticity among the language systems. The results have major theoretical and practical implications for our understanding of fundamental principles of neural organization of language, language testing and recovery in patients, and language learning in healthy populations.
Collapse
|
32
|
Abstract
Knowledge of functional neuroanatomy is essential to design the most appropriate clinical functional MR imaging (fMR imaging) paradigms and to properly interpret fMR imaging study results. The correlation between neuroanatomy and brain function is also useful in general radiologic practice, as it improves the radiologist's ability to read routine brain examinations. Functional MR imaging is used primarily to determine the areas involved in functioning of movements, speech, and vision. Preoperative fMR imaging findings also play a key role in the neurosurgeon's decision to perform a biopsy, a subtotal resection, or a maximal resection using awake craniotomy.
Collapse
Affiliation(s)
- Raquel A Moreno
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Instituto do Câncer do Estado de São Paulo (ICESP), Rua Vergueiro, 5400, ap 232 torre 01 Vila Firminiano Pinto, São Paulo-SP 04272-000, Brazil.
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
33
|
Villar-Rodríguez E, Palomar-García MÁ, Hernández M, Adrián-Ventura J, Olcina-Sempere G, Parcet MA, Ávila C. Left-handed musicians show a higher probability of atypical cerebral dominance for language. Hum Brain Mapp 2020; 41:2048-2058. [PMID: 32034834 PMCID: PMC7268010 DOI: 10.1002/hbm.24929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
Music processing and right hemispheric language lateralization share a common network in the right auditory cortex and its frontal connections. Given that the development of hemispheric language dominance takes place over several years, this study tested whether musicianship could increase the probability of observing right language dominance in left-handers. Using a classic fMRI language paradigm, results showed that atypical lateralization was more predominant in musicians (40%) than in nonmusicians (5%). Comparison of left-handers with typical left and atypical right lateralization revealed that: (a) atypical cases presented a thicker right pars triangularis and more gyrified left Heschl's gyrus; and (b) the right pars triangularis of atypical cases showed a stronger intra-hemispheric functional connectivity with the right angular gyrus, but a weaker interhemispheric functional connectivity with part of the left Broca's area. Thus, musicianship is the first known factor related to a higher prevalence of atypical language dominance in healthy left-handed individuals. We suggest that differences in the frontal and temporal cortex might act as shared predisposing factors to both musicianship and atypical language lateralization.
Collapse
Affiliation(s)
- Esteban Villar-Rodríguez
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - María-Ángeles Palomar-García
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - Mireia Hernández
- Cognition and Brain Plasticity Group, Department of Cognition, Development and Educational Psychology, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - Gustau Olcina-Sempere
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - María-Antònia Parcet
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Jaume I University, Edificio de Investigación II, Castellón de la Plana, Spain
| |
Collapse
|
34
|
Brumer I, De Vita E, Ashmore J, Jarosz J, Borri M. Implementation of clinically relevant and robust fMRI-based language lateralization: Choosing the laterality index calculation method. PLoS One 2020; 15:e0230129. [PMID: 32163517 PMCID: PMC7067428 DOI: 10.1371/journal.pone.0230129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/23/2020] [Indexed: 11/19/2022] Open
Abstract
The assessment of language lateralization has become widely used when planning neurosurgery close to language areas, due to individual specificities and potential influence of brain pathology. Functional magnetic resonance imaging (fMRI) allows non-invasive and quantitative assessment of language lateralization for presurgical planning using a laterality index (LI). However, the conventional method is limited by the dependence of the LI on the chosen activation threshold. To overcome this limitation, different threshold-independent LI calculations have been reported. The purpose of this study was to propose a simplified approach to threshold-independent LI calculation and compare it with three previously reported methods on the same cohort of subjects. Fifteen healthy subjects, who performed picture naming, verb generation, and word fluency tasks, were scanned. LI values were calculated for all subjects using four methods, and considering either the whole hemisphere or an atlas-defined language area. For each method, the subjects were ranked according to the calculated LI values, and the obtained rankings were compared. All LI calculation methods agreed in differentiating strong from weak lateralization on both hemispheric and regional scales (Spearman's correlation coefficients 0.59-1.00). In general, a more lateralized activation was found in the language area than in the whole hemisphere. The new method is well suited for application in the clinical practice as it is simple to implement, fast, and robust. The good agreement between LI calculation methods suggests that the choice of method is not key. Nevertheless, it should be consistent to allow a relative comparison of language lateralization between subjects.
Collapse
Affiliation(s)
- Irène Brumer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital, London, United Kingdom
| | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan Ashmore
- Department of Neuroradiology, King’s College Hospital, London, United Kingdom
- Department of Medical Physics and Bioengineering, NHS Highland, Inverness, United Kingdom
| | - Jozef Jarosz
- Department of Neuroradiology, King’s College Hospital, London, United Kingdom
| | - Marco Borri
- Department of Neuroradiology, King’s College Hospital, London, United Kingdom
| |
Collapse
|
35
|
Kaur A, Chinnadurai V, Chaujar R. Microstates-based resting frontal alpha asymmetry approach for understanding affect and approach/withdrawal behavior. Sci Rep 2020; 10:4228. [PMID: 32144318 PMCID: PMC7060213 DOI: 10.1038/s41598-020-61119-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/12/2020] [Indexed: 11/18/2022] Open
Abstract
The role of resting frontal alpha-asymmetry in explaining neural-mechanisms of affect and approach/withdrawal behavior is still debatable. The present study explores the ability of the quasi-stable resting EEG asymmetry information and the associated neurovascular synchronization/desynchronization in bringing more insight into the understanding of neural-mechanisms of affect and approach/withdrawal behavior. For this purpose, a novel frontal alpha-asymmetry based on microstates, that assess quasi-stable EEG scalp topography information, is proposed and compared against standard frontal-asymmetry. Both proposed and standard frontal alpha-asymmetries were estimated from thirty-nine healthy volunteers resting-EEG simultaneously acquired with resting-fMRI. Further, neurovascular mechanisms of these asymmetry measures were estimated through EEG-informed fMRI. Subsequently, the Hemodynamic Lateralization Index (HLI) of the neural-underpinnings of both asymmetry measures was assessed. Finally, the robust correlation of both asymmetry-measures and their HLI’s with PANAS, BIS/BAS was carried out. The standard resting frontal-asymmetry and its HLI yielded no significant correlation with any psychological-measures. However, the microstate resting frontal-asymmetry correlated significantly with negative affect and its neural underpinning’s HLI significantly correlated with Positive/Negative affect and BIS/BAS measures. Finally, alpha-BOLD desynchronization was observed in neural-underpinning whose HLI correlated significantly with negative affect and BIS. Hence, the proposed resting microstate-frontal asymmetry better assesses the neural-mechanisms of affect, approach/withdrawal behavior.
Collapse
Affiliation(s)
- Ardaman Kaur
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.,Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Vijayakumar Chinnadurai
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Rishu Chaujar
- Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| |
Collapse
|
36
|
Wood AG, Foley E, Virk P, Ruddock H, Joshee P, Murphy K, Seri S. Establishing a Developmentally Appropriate fMRI Paradigm Relevant to Presurgical Mapping of Memory in Children. Brain Topogr 2020; 33:267-274. [PMID: 31865488 PMCID: PMC7066272 DOI: 10.1007/s10548-019-00751-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is an established eloquent cortex mapping technique that is now an integral part of the pre-operative work-up in candidates for epilepsy surgery. Emerging evidence in adults with epilepsy suggests that material-specific fMRI paradigms can predict postoperative memory outcomes, however these paradigms are not suitable for children. In pediatric age, the use of memory fMRI paradigms designed for adults is complicated by the effect of developmental stages in cognitive maturation, the impairment experienced by some people with temporal lobe epilepsy (TLE) and the normal representation of memory function during development, which may differ from adults. We present a memory fMRI paradigm designed to activate mesial temporal lobe structures that is brief, independent of reading ability, and therefore a novel candidate for use in children. Data from 33 adults and 19 children (all healthy controls) show that the paradigm captures the expected leftward asymmetry of mesial temporal activation in adults. A more symmetrical pattern was observed in children, consistent with the progressive emergence of hemispheric specialisation across childhood. These data have important implications for the interpretation of presurgical memory fMRI in the pediatric setting. They also highlight the need to carefully consider the impact of cognitive development on fMRI tools used in clinical practice.
Collapse
Affiliation(s)
- Amanda G Wood
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
- School of Psychology, Faculty of Health, Deakin University, Burwood Campus, Deakin, VIC, Australia.
| | - Elaine Foley
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Parnpreet Virk
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Helen Ruddock
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Paras Joshee
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Kelly Murphy
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Stefano Seri
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| |
Collapse
|
37
|
Woodhead ZV, Rutherford HA, Bishop DV. Measurement of language laterality using functional transcranial Doppler ultrasound: a comparison of different tasks. Wellcome Open Res 2020; 3:104. [PMID: 30345386 PMCID: PMC6171558 DOI: 10.12688/wellcomeopenres.14720.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Relative blood flow in the two middle cerebral arteries can be measured using functional transcranial Doppler sonography (fTCD) to give an index of lateralisation as participants perform a specific task. Language laterality has mostly been studied with fTCD using a word generation task, but it is not clear whether this is optimal. Methods: Using fTCD, we evaluated a sentence generation task that has shown good reliability and strong left lateralisation in fMRI. We interleaved trials of word generation, sentence generation and list generation and assessed agreement of these tasks in 31 participants (29 right-handers). Results: Although word generation and sentence generation both gave robust left-lateralisation, lateralisation was significantly stronger for sentence generation. Bland-Altman analysis showed that these two methods were not equivalent. The comparison list generation task was not systematically lateralised, but nevertheless laterality indices (LIs) from this task were significantly correlated with the other two tasks. Subtracting list generation LI from sentence generation LI did not affect the strength of the laterality index. Conclusions: This was a pre-registered methodological study designed to explore novel approaches to optimising measurement of language lateralisation using fTCD. It confirmed that sentence generation gives robust left lateralisation in most people, but is not equivalent to the classic word generation task. Although list generation does not show left-lateralisation at the group level, the LI on this task was correlated with left-lateralised tasks. This suggests that word and sentence generation involve adding a constant directional bias to an underlying continuum of laterality that is reliable in individuals but not biased in either direction. In future research we suggest that consistency of laterality across tasks might have more functional significance than strength or direction of laterality on any one task.
Collapse
Affiliation(s)
- Zoe V.J. Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
38
|
Woodhead ZVJ, Rutherford HA, Bishop DVM. Measurement of language laterality using functional transcranial Doppler ultrasound: a comparison of different tasks. Wellcome Open Res 2020. [PMID: 30345386 DOI: 10.12688/wellcomeopenres.14720.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Relative blood flow in the two middle cerebral arteries can be measured using functional transcranial Doppler sonography (fTCD) to give an index of lateralisation as participants perform a specific task. Language laterality has mostly been studied with fTCD using a word generation task, but it is not clear whether this is optimal. Methods: Using fTCD, we evaluated a sentence generation task that has shown good reliability and strong left lateralisation in fMRI. We interleaved trials of word generation, sentence generation and list generation and assessed agreement of these tasks in 31 participants (29 right-handers). Results: Although word generation and sentence generation both gave robust left-lateralisation, lateralisation was significantly stronger for sentence generation. Bland-Altman analysis showed that these two methods were not equivalent. The comparison list generation task was not systematically lateralised, but nevertheless laterality indices (LIs) from this task were significantly correlated with the other two tasks. Subtracting list generation LI from sentence generation LI did not affect the strength of the laterality index. Conclusions: This was a pre-registered methodological study designed to explore novel approaches to optimising measurement of language lateralisation using fTCD. It confirmed that sentence generation gives robust left lateralisation in most people, but is not equivalent to the classic word generation task. Although list generation does not show left-lateralisation at the group level, the LI on this task was correlated with left-lateralised tasks. This suggests that word and sentence generation involve adding a constant directional bias to an underlying continuum of laterality that is reliable in individuals but not biased in either direction. In future research we suggest that consistency of laterality across tasks might have more functional significance than strength or direction of laterality on any one task.
Collapse
Affiliation(s)
- Zoe V J Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
39
|
Johnstone LT, Karlsson EM, Carey DP. The validity and reliability of quantifying hemispheric specialisation using fMRI: Evidence from left and right handers on three different cerebral asymmetries. Neuropsychologia 2020; 138:107331. [DOI: 10.1016/j.neuropsychologia.2020.107331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
|
40
|
Specht K. Current Challenges in Translational and Clinical fMRI and Future Directions. Front Psychiatry 2020; 10:924. [PMID: 31969840 PMCID: PMC6960120 DOI: 10.3389/fpsyt.2019.00924] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Translational neuroscience is an important field that brings together clinical praxis with neuroscience methods. In this review article, the focus will be on functional neuroimaging (fMRI) and its applicability in clinical fMRI studies. In the light of the "replication crisis," three aspects will be critically discussed: First, the fMRI signal itself, second, current fMRI praxis, and, third, the next generation of analysis strategies. Current attempts such as resting-state fMRI, meta-analyses, and machine learning will be discussed with their advantages and potential pitfalls and disadvantages. One major concern is that the fMRI signal shows substantial within- and between-subject variability, which affects the reliability of both task-related, but in particularly resting-state fMRI studies. Furthermore, the lack of standardized acquisition and analysis methods hinders the further development of clinical relevant approaches. However, meta-analyses and machine-learning approaches may help to overcome current shortcomings in the methods by identifying new, and yet hidden relationships, and may help to build new models on disorder mechanisms. Furthermore, better control of parameters that may have an influence on the fMRI signal and that can easily be controlled for, like blood pressure, heart rate, diet, time of day, might improve reliability substantially.
Collapse
Affiliation(s)
- Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
41
|
Nakai T, Okanoya K. Cortical collateralization induced by language and arithmetic in non-right-handers. Cortex 2019; 124:154-166. [PMID: 31901561 DOI: 10.1016/j.cortex.2019.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022]
Abstract
The functional overlap of language and arithmetic is debatable. Although some studies have reported independent representations of arithmetic and language in the brain, other studies have reported shared activity of the two cognitive domains in the inferior frontal gyrus. Although most previous studies have evaluated right-handed individuals, variability of hemispheric dominance in non-right-handed individuals should provide important information on the functional collateralization of these two cognitive domains. The present study evaluated the cortical lateralization patterns of the two cognitive domains using functional magnetic resonance imaging in 30 non-right-handed participants who performed language and arithmetic tasks. We found that language and arithmetic tasks demonstrated shared activity in the bilateral inferior frontal gyrus (IFG). Furthermore, the lateralization patterns of language and arithmetic tasks were correlated with each other. Most participants with language dominance in the left hemisphere also exhibited dominance of arithmetic tasks in the left hemisphere; similarly, most participants with language dominance in the right hemisphere exhibited dominance of arithmetic tasks in the right hemisphere. Among all the brain regions, the precentral gyrus, which is located slightly posterior to the IFG, exhibited the highest correlation coefficient between laterality indices of language and arithmetic tasks. These results suggest a shared functional property between language and arithmetic in the brain.
Collapse
Affiliation(s)
- Tomoya Nakai
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communication Technology, Osaka University, Osaka, Japan; The University of Tokyo, Graduate School of Arts and Sciences, Tokyo, Japan; National Rehabilitation Center For Persons with Disabilities, Saitama, Japan
| | - Kazuo Okanoya
- The University of Tokyo, Graduate School of Arts and Sciences, Tokyo, Japan; Center for Evolutionary Cognitive Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
Bradshaw AR, Woodhead ZVJ, Thompson PA, Bishop DVM. Investigation into inconsistent lateralisation of language functions as a potential risk factor for language impairment. Eur J Neurosci 2019; 51:1106-1121. [PMID: 31738452 PMCID: PMC7078955 DOI: 10.1111/ejn.14623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Disruption to language lateralisation has been proposed as a cause of developmental language impairments. In this study, we tested the idea that consistency of lateralisation across different language functions is associated with language ability. A large sample of adults with variable language abilities (N = 67 with a developmental disorder affecting language and N = 37 controls) were recruited. Lateralisation was measured using functional transcranial Doppler sonography (fTCD) for three language tasks that engage different language subprocesses (phonological decision, semantic decision and sentence generation). The whole sample was divided into those with consistent versus inconsistent lateralisation across the three tasks. Language ability (using a battery of standardised tests) was compared between the consistent and inconsistent groups. The results did not show a significant effect of lateralisation consistency on language skills. However, of the 31 individuals showing inconsistent lateralisation, the vast majority (84%) were in the disorder group with only five controls showing such a pattern, a difference that was higher than would be expected by chance. The developmental disorder group also demonstrated weaker correlations between laterality indices across pairs of tasks. In summary, although the data did not support the hypothesis that inconsistent language lateralisation is a major cause of poor language skills, the results suggested that some subtypes of language disorder are associated with inefficient distribution of language functions between hemispheres. Inconsistent lateralisation could be a causal factor in the aetiology of language disorder or may arise in some cases as the consequence of developmental disorder, possibly reflective of compensatory reorganisation.
Collapse
Affiliation(s)
- Abigail R Bradshaw
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Zoe V J Woodhead
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Paul A Thompson
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Dorothy V M Bishop
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Agarwal S, Sair HI, Gujar S, Pillai JJ. Language Mapping With fMRI: Current Standards and Reproducibility. Top Magn Reson Imaging 2019; 28:225-233. [PMID: 31385902 DOI: 10.1097/rmr.0000000000000216] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical use of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a relatively new phenomenon, with only about 3 decades of collective experience. Nevertheless, task-based BOLD fMRI has been widely accepted for presurgical planning, over traditional methods, which are invasive and at times perilous. Many studies have demonstrated the ability of BOLD fMRI to make substantial clinical impact with respect to surgical planning and preoperative risk assessment, especially to localize the eloquent motor and visual areas. Reproducibility and repeatability of language fMRI are important in the assessment of its clinical usefulness. There are national efforts currently underway to standardize language fMRI. The American Society of Functional Neuroradiology (ASFNR) has recently provided guidelines on fMRI paradigm algorithms for presurgical language assessment for language lateralization and localization. In this review article, we provide a comprehensive overview of current standards of language fMRI mapping and its reproducibility.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haris I Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sachin Gujar
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jay J Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
44
|
Gurunandan K, Carreiras M, Paz-Alonso PM. Functional plasticity associated with language learning in adults. Neuroimage 2019; 201:116040. [PMID: 31336190 DOI: 10.1016/j.neuroimage.2019.116040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/25/2023] Open
Abstract
Learning a new language in adulthood is increasingly common and among the most difficult tasks attempted by adults. Adult language learners thus offer an excellent window into the nature of learning-dependent plasticity. The present functional magnetic resonance imaging (fMRI) study was aimed at characterising functional neuroplasticity in adults at different stages of learning a second language (L2). To this end, a total of 34 adults, either intermediate or advanced L2 learners, underwent MRI scanning while performing a semantic judgement task with print and speech stimuli. Three separate analytical approaches were used to comprehensively map neural differences: print-speech convergence, L1-L2 similarity, and functional connectivity with language control regions. Results revealed that (i) print-speech convergence was not affected by L2 proficiency level, (ii) L1-L2 similarity was significantly higher in intermediate than in advanced L2 learners, and (iii) functional coupling of language and language control areas was higher in the advanced relative to the intermediate group during reading comprehension. The results point to significant functional differences between intermediate and advanced language learners, indicating that, even well into adulthood, increasing L2 proficiency modulates the functional similarity between L1 and L2 and the connectivity between language comprehension and language control regions, particularly in reading comprehension.
Collapse
Affiliation(s)
- Kshipra Gurunandan
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain.
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Basque Language and Communication, EHU/UPV, Bilbao, Spain
| | - Pedro M Paz-Alonso
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain.
| |
Collapse
|
45
|
Seghier ML. Categorical laterality indices in fMRI: a parallel with classic similarity indices. Brain Struct Funct 2019; 224:1377-1383. [DOI: 10.1007/s00429-019-01833-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022]
|
46
|
Agarwal S, Hua J, Sair HI, Gujar S, Bettegowda C, Lu H, Pillai JJ. Repeatability of language fMRI lateralization and localization metrics in brain tumor patients. Hum Brain Mapp 2018; 39:4733-4742. [PMID: 30076768 PMCID: PMC6218318 DOI: 10.1002/hbm.24318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 11/12/2022] Open
Abstract
To assess the within-subject intra-scan session repeatability of language functional MRI (fMRI) activation maps in patients with brain tumors who were undergoing presurgical fMRI as part of their preoperative clinical workup. Sentence completion (SC) and silent word generation (SWG) tasks were used for language localization and hemispheric lateralization for identifying the primary language cortex. Within-subject repeatability for each of these paradigms was assessed in right-handed patients-37 for SC and 78 for SWG. Repeatability of activation maps between consecutive runs of the same task within the same scan session was evaluated by comparing lateralization indexes in holohemispheric and regional language areas. Displacement of center of activation between consecutive runs was also used to assess the repeatability of activation maps. Holohemispheric and regional language lateralization results demonstrated high intra-subject intra-scan repeatability when lateralization indices were calculated using threshold-dependent and threshold-independent approaches. The high repeatability is demonstrated both when centers of mass of activation are considered within key eloquent regions of the brain, such as Broca's area and Wernicke's area, as well as in larger more inclusive expressive and receptive language regions. We examined two well-known and widely accepted language tasks that are known to activate eloquent language cortex. We have demonstrated very high degree of repeatability at a single-subject level within single scan sessions of language mapping in a large cohort of brain tumor patients undergoing presurgical fMRI across several years at our institution.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Jun Hua
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F. M. Kirby Research Center For Functional Brain ImagingKennedy Krieger InstituteBaltimoreMaryland
| | - Haris I. Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Sachin Gujar
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Chetan Bettegowda
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Hanzhang Lu
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F. M. Kirby Research Center For Functional Brain ImagingKennedy Krieger InstituteBaltimoreMaryland
| | - Jay J. Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
47
|
Woodhead ZV, Rutherford HA, Bishop DV. Measurement of language laterality using functional transcranial Doppler ultrasound: a comparison of different tasks. Wellcome Open Res 2018; 3:104. [PMID: 30345386 PMCID: PMC6171558 DOI: 10.12688/wellcomeopenres.14720.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 11/14/2023] Open
Abstract
Background: Relative blood flow in the two middle cerebral arteries can be measured using functional transcranial Doppler sonography (fTCD) to give an index of lateralisation as participants perform a specific task. Language laterality has mostly been studied with fTCD using a word generation task, but it is not clear whether this is optimal. Methods: Using fTCD, we evaluated a sentence generation task that has shown good reliability and strong left lateralisation in fMRI. We interleaved trials of word generation, sentence generation and list generation and assessed agreement of these tasks in 31 participants (29 right-handers). Results: Although word generation and sentence generation both gave robust left-lateralisation, Bland-Altman analysis showed that these two methods were not equivalent. The comparison list generation task was not systematically lateralised, but nevertheless laterality indices (LIs) from this task were significantly correlated with the other two tasks. Subtracting list generation LI from sentence generation LI did not affect the strength of the laterality index. Conclusions: This was a pre-registered methodological study designed to explore novel approaches to optimising measurement of language lateralisation using fTCD. It confirmed that sentence generation gives robust left lateralisation in most people, but is not equivalent to the classic word generation task. Although list generation does not show left-lateralisation at the group level, the LI on this task was correlated with left-lateralised tasks. This suggests that word and sentence generation involve adding a constant directional bias to an underlying continuum of laterality that is reliable in individuals but not biased in either direction. In future research we suggest that consistency of laterality across tasks might have more functional significance than strength or direction of laterality on any one task.
Collapse
Affiliation(s)
- Zoe V.J. Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
48
|
Wilenius J, Lehtinen H, Paetau R, Salmelin R, Kirveskari E. A simple magnetoencephalographic auditory paradigm may aid in confirming left-hemispheric language dominance in epilepsy patients. PLoS One 2018; 13:e0200073. [PMID: 29966017 PMCID: PMC6028140 DOI: 10.1371/journal.pone.0200073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/19/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The intracarotid amobarbital procedure (IAP) is the current "gold standard" in the preoperative assessment of language lateralization in epilepsy surgery candidates. It is, however, invasive and has several limitations. Here we tested a simple noninvasive language lateralization test performed with magnetoencephalography (MEG). METHODS We recorded auditory MEG responses to pairs of vowels and pure tones in 16 epilepsy surgery candidates who had undergone IAP. For each individual, we selected the pair of planar gradiometer sensors with the strongest N100m response to vowels in each hemisphere and-from the vector sum of signals of this gradiometer pair-calculated the vowel/tone amplitude ratio in the left (L) and right (R) hemisphere and, subsequently, the laterality index: LI = (L-R)/(L+R). In addition to the analysis using a single sensor pair, an alternative analysis was performed using averaged responses over 18 temporal sensor pairs in both hemispheres. RESULTS The laterality index did not correlate significantly with the lateralization data obtained from the IAP. However, an MEG pattern of stronger responses to vowels than tones in the left hemisphere and stronger responses to tones than vowels in the right hemisphere was associated with left-hemispheric language dominance in the IAP in all the six patients who showed this pattern. This results in a specificity of 100% and a sensitivity of 67% of this MEG pattern in predicting left-hemispheric language dominance (p = 0.01, Fisher's exact test). In the analysis using averaged responses over temporal channels, one additional patient who was left-dominant in IAP showed this particular MEG pattern, increasing the sensitivity to 78% (p = 0.003). SIGNIFICANCE This simple MEG paradigm shows promise in feasibly and noninvasively confirming left-hemispheric language dominance in epilepsy surgery candidates. It may aid in reducing the need for the IAP, if the results are confirmed in larger patient samples.
Collapse
Affiliation(s)
- Juha Wilenius
- Clinical Neurosciences, Department of Clinical Neurophysiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henri Lehtinen
- Epilepsy Unit, Department of Pediatric Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ritva Paetau
- Clinical Neurosciences, Department of Clinical Neurophysiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Epilepsy Unit, Department of Pediatric Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Erika Kirveskari
- Clinical Neurosciences, Department of Clinical Neurophysiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
49
|
Bradshaw AR, Thompson PA, Wilson AC, Bishop DV, Woodhead ZV. Measuring language lateralisation with different language tasks: a systematic review. PeerJ 2017; 5:e3929. [PMID: 29085748 PMCID: PMC5659218 DOI: 10.7717/peerj.3929] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022] Open
Abstract
Language lateralisation refers to the phenomenon in which one hemisphere (typically the left) shows greater involvement in language functions than the other. Measurement of laterality is of interest both to researchers investigating the neural organisation of the language system and to clinicians needing to establish an individual's hemispheric dominance for language prior to surgery, as in patients with intractable epilepsy. Recently, there has been increasing awareness of the possibility that different language processes may develop hemispheric lateralisation independently, and to varying degrees. However, it is not always clear whether differences in laterality across language tasks with fMRI are reflective of meaningful variation in hemispheric lateralisation, or simply of trivial methodological differences between paradigms. This systematic review aims to assess different language tasks in terms of the strength, reliability and robustness of the laterality measurements they yield with fMRI, to look at variability that is both dependent and independent of aspects of study design, such as the baseline task, region of interest, and modality of the stimuli. Recommendations are made that can be used to guide task design; however, this review predominantly highlights that the current high level of methodological variability in language paradigms prevents conclusions as to how different language functions may lateralise independently. We conclude with suggestions for future research using tasks that engage distinct aspects of language functioning, whilst being closely matched on non-linguistic aspects of task design (e.g., stimuli, task timings etc); such research could produce more reliable and conclusive insights into language lateralisation. This systematic review was registered as a protocol on Open Science Framework: https://osf.io/5vmpt/.
Collapse
Affiliation(s)
- Abigail R. Bradshaw
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Alexander C. Wilson
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Dorothy V.M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Zoe V.J. Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
How Auditory Experience Differentially Influences the Function of Left and Right Superior Temporal Cortices. J Neurosci 2017; 37:9564-9573. [PMID: 28821674 PMCID: PMC5618270 DOI: 10.1523/jneurosci.0846-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
To investigate how hearing status, sign language experience, and task demands influence functional responses in the human superior temporal cortices (STC) we collected fMRI data from deaf and hearing participants (male and female), who either acquired sign language early or late in life. Our stimuli in all tasks were pictures of objects. We varied the linguistic and visuospatial processing demands in three different tasks that involved decisions about (1) the sublexical (phonological) structure of the British Sign Language (BSL) signs for the objects, (2) the semantic category of the objects, and (3) the physical features of the objects. Neuroimaging data revealed that in participants who were deaf from birth, STC showed increased activation during visual processing tasks. Importantly, this differed across hemispheres. Right STC was consistently activated regardless of the task whereas left STC was sensitive to task demands. Significant activation was detected in the left STC only for the BSL phonological task. This task, we argue, placed greater demands on visuospatial processing than the other two tasks. In hearing signers, enhanced activation was absent in both left and right STC during all three tasks. Lateralization analyses demonstrated that the effect of deafness was more task-dependent in the left than the right STC whereas it was more task-independent in the right than the left STC. These findings indicate how the absence of auditory input from birth leads to dissociable and altered functions of left and right STC in deaf participants. SIGNIFICANCE STATEMENT Those born deaf can offer unique insights into neuroplasticity, in particular in regions of superior temporal cortex (STC) that primarily respond to auditory input in hearing people. Here we demonstrate that in those deaf from birth the left and the right STC have altered and dissociable functions. The right STC was activated regardless of demands on visual processing. In contrast, the left STC was sensitive to the demands of visuospatial processing. Furthermore, hearing signers, with the same sign language experience as the deaf participants, did not activate the STCs. Our data advance current understanding of neural plasticity by determining the differential effects that hearing status and task demands can have on left and right STC function.
Collapse
|