1
|
Tan X, Xi H, Xue P, Cao J, Yarmolenko MA, Liu X, Jiang X. The gelatin sponge loaded with curcumin coating exhibits a synergistic effect of hemostasis, anti-inflammatory, and anti-scarring. BIOMATERIALS ADVANCES 2025; 169:214155. [PMID: 39709690 DOI: 10.1016/j.bioadv.2024.214155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Postoperative wound healing has been extensively studied and well-documented. Gelatin sponges are commonly used in surgeries for blood absorption. If these sponges can also release drugs with anti-scarring and anti-inflammatory effects, they would significantly enhance wound healing. In this study, we investigated for the first time the application of curcumin films on the surface of gelatin sponges with high hemostatic efficiency using the Electron Beam Deposition (EBD) method. The structure of curcumin was analyzed using 1H NMR, FT-IR and XPS techniques. We examined the influence of the film on the sponge's absorption capacity and the impact of the sponge on drug release kinetics. Results showed that the presence of the curcumin film did not compromise the sponge's hemostatic ability. Additionally, compared to a flat substrate, the curcumin film on this highly porous substrate facilitated better curcumin release. Further experiments, including cytotoxicity tests, live/dead double staining, western blotting, and a scar model in mice, demonstrated that gelatin sponges with curcumin films exhibit a synergistic effect, combining anti-scarring, anti-inflammatory, and hemostatic properties.
Collapse
Affiliation(s)
- Xiaoxue Tan
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China
| | - Hongzhong Xi
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Orthopedics, Nanjing 210029, China
| | - Peng Xue
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Orthopedics, Nanjing 210029, China
| | - Jinxin Cao
- Nanjing Xiaozhuang University, Nanjing 211171, China
| | - M A Yarmolenko
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China; Francisk Skorina Gomel State University, 104, Sovetskaya street, Gomel 246019, Belarus
| | - Xin Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Orthopedics, Nanjing 210029, China.
| | - Xiaohong Jiang
- International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China.
| |
Collapse
|
2
|
Heitzer M, Winnand P, Katz MS, Grottke O, Magnuska Z, Kiessling F, Hölzle F, Modabber A. Hemostasis and Gingival Healing-Polyurethane Adhesive Postextraction Under Rivaroxaban Therapy in a Rodent Model. Int J Dent 2025; 2025:3384210. [PMID: 40115622 PMCID: PMC11925630 DOI: 10.1155/ijod/3384210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 02/06/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025] Open
Abstract
Objectives: At 31%, the risk of postoperative bleeding after tooth extraction is particularly high in patients who receive rivaroxaban therapy. The aim of this rodent study was to compare the hemostyptic properties and gingival healing between novel polyurethane-based adhesive VIVO and gelatin sponge (GESP) under ongoing rivaroxaban therapy over a period of 10 days. Materials: In total, 120 extractions of the first upper molar were proceeded in rodents treated with rivaroxaban. Of these, 60 postextraction sites were treated with VIVO and 60 with GESP. The duration of the surgical procedure and the clinical parameters of postoperative bleeding and wound evaluation score were recorded. In vivo fluorescence imaging and laser Doppler flowmetry and tissue spectrophotometry (LDF-TS) were performed. Results: GESP provided a faster procedure at 1:06 ± 0:17 min, but postoperative bleeding time was significantly shorter in VIVO sockets at 1:39 ± 0:03 min. Nonsignificant mild bleeding events and comparable wound evaluation scores were recorded in both treatments. LDF-TS showed a significant increase in mean oxygen saturation SO2 (%) and mean blood flow (AU) for both treatments. Only GESP showed a significant increase in relative hemoglobin (rHb). Conclusion: In the context of a rodent study, VIVO showed favorable hemostasis and promising gingival healing properties postextraction under ongoing rivaroxaban therapy.
Collapse
Affiliation(s)
- Marius Heitzer
- Department of Oral and Cranio-Maxillofacial Surgery, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Philipp Winnand
- Department of Oral and Cranio-Maxillofacial Surgery, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Marie Sophie Katz
- Department of Oral and Cranio-Maxillofacial Surgery, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Oliver Grottke
- Clinic for Anaesthesiology/Operative Intensive Care Medicine, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Zuzanna Magnuska
- Institute for Experimental Molecular Imaging, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Cranio-Maxillofacial Surgery, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Cranio-Maxillofacial Surgery, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
3
|
Kaddah M, Alkhouri I, Karkoutly M. Efficacy of topical tranexamic acid soaked absorbable gelfoam in relieving post-extraction pain in warfarin patients: a randomized, triple-blinded, split-mouth, active-controlled clinical trial. BMC Oral Health 2024; 24:905. [PMID: 39112998 PMCID: PMC11305017 DOI: 10.1186/s12903-024-04694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Warfarin patients who need dental extraction face the problem of bleeding and no sufficient hemostasis results in dry socket and postoperative pain. This study aimed to evaluate and compare the efficacy of the topical application of tranexamic acid-soaked absorbable Gelfoam (TXA-Gel) and saline-soaked absorbable Gelfoam (saline-Gel) in relieving postoperative pain following bilateral simple extraction of permanent mandibular molars in warfarin patients. METHODS This was a randomized, triple-blinded, split-mouth, active-controlled clinical trial. It was performed at the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Damascus University, between November 2021 and October 2023. 60 bilateral permanent mandibular molars, which were indicated for simple extraction in 30 warfarin patients randomly assigned into two groups according to the topical hemostatic agents after extraction used: Group 1: control group, saline-Gel (n = 30). Group 2: TXA-Gel (n = 30). A simple randomization method was performed by flipping a coin. The primary outcome measure was the visual analogue scale (VAS). The intensity of pain was evaluated at the baseline (t0), and on the 1st (t1), 2nd (t2), 3rd (t3), 4th (t4), 5th (t5), 6th (t6), and 7th (t7) days following extraction. The Kolmogorov-Smirnov test and the Mann-Whitney U test were performed. The level of significance was set at 0.05 (p < 0.05). RESULTS The mean vas scores was 4.17 ± 1.76 at t1 and decreased to 0.73 ± 0.78 at t7 in the TXA-Gel group. However, in the Gelfoam group, the mean vas scores was 4.83 ± 2.18 at t1 and decreased to 1.80 ± 1.00 at t7. The results of the Mann-Whitney U test showed that there was no statistically significant difference between the two groups at t1 (p = 0.236) and t2 (p = 0.155). However, there was a statistically significance difference at the rest time points (p < 0.05). CONCLUSIONS TXA-Gel played a prominent role in alleviating post-extraction pain in warfarin patients. TRIAL REGISTRATION The trail was retrospectively registered at the ISRCTN registry (ISRCTN71901901).
Collapse
Affiliation(s)
- Mohammed Kaddah
- Department of Oral and Maxillofacial Surgery, Damascus University, Damascus, Syrian Arab Republic
| | - Isam Alkhouri
- Department of Oral and Maxillofacial Surgery, Damascus University, Damascus, Syrian Arab Republic
| | - Mawia Karkoutly
- Department of Pediatric Dentistry, Damascus University, Damascus, Syrian Arab Republic.
| |
Collapse
|
4
|
You C, Zhang Z, Guo Y, Liu S, Hu K, Zhan Y, Aihemaiti S, Tao S, Chu Y, Fan L. Application of extracellular matrix cross-linked by microbial transglutaminase to promote wound healing. Int J Biol Macromol 2024; 266:131384. [PMID: 38580012 DOI: 10.1016/j.ijbiomac.2024.131384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
One primary focus of skin tissue engineering has been the creation of innovative biomaterials to facilitate rapid wound healing. Extracellular matrix (ECM), an essential biofunctional substance, has recently been discovered to play a crucial role in wound healing. Consequently, we endeavored to decellularize ECM from pig achilles tendon and refine its mechanical and biological properties through modification by utilizing cross-linking agents. Glutaraldehyde (GA), 1-ethyl-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), double aldol starch (DAS), and microbial transglutaminase (MTG) were utilized to produce crosslinked ECM variants (GA-ECM, EDC/NHS-ECM, DAS-ECM, and MTG-ECM). Comprehensive assessments were conducted to evaluate the physical properties, biocompatibility, and wound healing efficacy of each material. The results indicated that MTG-ECM exhibited superior tensile strength, excellent hydrophilicity, minimal cytotoxicity, and the best pro-healing impact among the four modified scaffolds. Staining analysis of tissue sections further revealed that MTG-ECM impeded the transition from type III collagen to type I collagen in the wound area, potentially reducing the development of wound scar. Therefore, MTG-ECM is expected to be a potential pro-skin repair scaffold material to prevent scar formation.
Collapse
Affiliation(s)
- Chenkai You
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Zhihan Zhang
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Yuandong Guo
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Shuang Liu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Kangdi Hu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Yuhang Zhan
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Shami Aihemaiti
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Shengxiang Tao
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China.
| | - Yingying Chu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China.
| | - Lihong Fan
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China.
| |
Collapse
|
5
|
Zhao J, Lu F, Dong Z. Strategies for Constructing Tissue-Engineered Fat for Soft Tissue Regeneration. Tissue Eng Regen Med 2024; 21:395-408. [PMID: 38032533 PMCID: PMC10987464 DOI: 10.1007/s13770-023-00607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Repairing soft tissue defects caused by inflammation, tumors, and trauma remains a major challenge for surgeons. Adipose tissue engineering (ATE) provides a promising way to solve this problem. METHODS This review summarizes the current ATE strategies for soft tissue reconstruction, and introduces potential construction methods for ATE. RESULTS Scaffold-based and scaffold-free strategies are the two main approaches in ATE. Although several of these methods have been effective clinically, both scaffold-based and scaffold-free strategies have limitations. The third strategy is a synergistic tissue engineering strategy and combines the advantages of scaffold-based and scaffold-free strategies. CONCLUSION Personalized construction, stable survival of reconstructed tissues and functional recovery of organs are future goals of building tissue-engineered fat for ATE.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Plastic Surgery Institute of Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Ziqing Dong
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
6
|
Zhu M, Xiao J, Lv Y, Li X, Zhou Y, Liu M, Wang C. Preparation, Characterization, and Evaluation of Enzyme Co-Modified Fish Gelatin-Based Antibacterial Derivatives. Polymers (Basel) 2024; 16:895. [PMID: 38611154 PMCID: PMC11013131 DOI: 10.3390/polym16070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Fish gelatin (FG)-based wound dressings exhibit superior water absorption capacity, thermal stability, and gelation properties, which enhance the performance of these dressings. In this study, our objective was to investigate the conditions underlying the enzymatic hydrolysis of FG and subsequent cross-linking to prepare high-performance gels. A two-step enzymatic method of protease-catalyzed hydrolysis followed by glutamine transglutaminase (TGase)-catalyzed cross-linking was used to prepare novel high-performance fish gelatin derivatives with more stable dispersion characteristics than those of natural gelatin derivatives. Compared with conventional TGase cross-linked derivatives, the novel derivatives were characterized by an average pore size of 150 μm and increased water solubility (423.06% to 915.55%), water retention (by 3.6-fold to 43.89%), thermal stability (from 313 °C to 323 °C), and water vapor transmission rate, which reached 486.72 g·m-2·24 h-1. In addition, loading glucose oxidase onto the fish gelatin derivatives increased their antibacterial efficacy to >99% against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Mingyao Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (M.Z.); (Y.L.); (X.L.); (Y.Z.)
| | - Jing Xiao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (M.Z.); (Y.L.); (X.L.); (Y.Z.)
- Shandong Loncote Enzymes Co., Ltd., Linyi 276000, China; (M.L.); (C.W.)
| | - Yaru Lv
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (M.Z.); (Y.L.); (X.L.); (Y.Z.)
| | - Xin Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (M.Z.); (Y.L.); (X.L.); (Y.Z.)
| | - Yangyi Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (M.Z.); (Y.L.); (X.L.); (Y.Z.)
| | - Miaomiao Liu
- Shandong Loncote Enzymes Co., Ltd., Linyi 276000, China; (M.L.); (C.W.)
| | - Chunxiao Wang
- Shandong Loncote Enzymes Co., Ltd., Linyi 276000, China; (M.L.); (C.W.)
| |
Collapse
|
7
|
Nepal A, Tran HD, Nguyen NT, Ta HT. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact Mater 2023; 27:231-256. [PMID: 37122895 PMCID: PMC10130630 DOI: 10.1016/j.bioactmat.2023.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
In traumatized patients, the primary cause of mortality is uncontrollable continuous bleeding and unexpected intraoperative bleeding which is likely to increase the risk of complications and surgical failure. High expansion sponges are effective clinical practice for the treatment of wound bleeding (irregular/deep/narrow) that are caused by capillaries, veins and even arterioles as they possess a high liquid absorption ratio so can absorb blood platelets easily in comparison with traditional haemostasis treatments, which involve compression, ligation, or electrical coagulation etc. When in contact with blood, haemostatic sponges can cause platelet adhesion, aggregation, and thrombosis, preventing blood from flowing out from wounds, triggering the release of coagulation factors, causing the blood to form a stable polymerized fibre protein, forming blood clots, and achieving the goal of wound bleeding control. Haemostatic sponges are found in a variety of shapes and sizes. The aim of this review is to facilitate an overview of recent research around haemostatic sponge materials, products, and technology. This paper reviews the synthesis, properties, and characteristics of haemostatic sponges, together with the haemostasis mechanisms of haemostatic sponges (composite materials), such as chitosan, cellulose, gelatin, starch, graphene oxide, hyaluronic acid, alginate, polyethylene glycol, silk fibroin, synthetic polymers silver nanoparticles, zinc oxide nanoparticles, mesoporous silica nanoparticles, and silica nanoparticles. Also, this paper reviews commercial sponges and their properties. In addition to this, we discuss various in-vitro/in-vivo approaches for the evaluation of the effect of sponges on haemostasis.
Collapse
Affiliation(s)
- Akriti Nepal
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Huong D.N. Tran
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Corresponding author. Bioscience Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia..
| |
Collapse
|
8
|
Xu X, Li X, Qiu S, Zhou Y, Li L, Chen X, Zheng K, Xu Y. Concentration Selection of Biofriendly Enzyme-Modified Gelatin Hydrogels for Periodontal Bone Regeneration. ACS Biomater Sci Eng 2023; 9:4341-4355. [PMID: 37294274 DOI: 10.1021/acsbiomaterials.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Periodontitis is challenging to cure radically due to its complex periodontal structure and particular microenvironment of dysbiosis and inflammation. However, with the assistance of various materials, cell osteogenic differentiation could be improved, and the ability of hard tissue regeneration could be enhanced. This study aimed to explore the appropriate concentration ratio of biofriendly transglutaminase-modified gelatin hydrogels for promoting periodontal alveolar bone regeneration. Through a series of characterization and cell experiments, we found that all the hydrogels possessed multi-space network structures and demonstrated their biocompatibility. In vivo and in vitro osteogenic differentiation experiments also confirmed that the group 40-5 (transglutaminase-gelatin concentration ratio) possessed a favorable osteogenic potential. In summary, we conclude that such hydrogel with a 40-5 concentration is most conducive to promoting periodontal bone reconstruction, which might be a new route to deal with the dilemma of clinical periodontal treatment.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
9
|
Pepe A, Laezza A, Ostuni A, Scelsi A, Laurita A, Bochicchio B. Bioconjugation of Carbohydrates to Gelatin Sponges Promoting 3D Cell Cultures. Biomimetics (Basel) 2023; 8:biomimetics8020193. [PMID: 37218779 DOI: 10.3390/biomimetics8020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed by 1H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was characterized by SEM. After the crosslinking reaction, the sponges preserve their porous structure as ascertained by SEM. Finally, HepG2 cells cultured on the decorated gelatin sponges show high viability and significant differences in the cellular morphology as a function of the conjugated disaccharide. More spherical morphologies are observed when cultured on maltose-conjugated gelatin sponges, while a more flattened aspect is discerned when cultured onto lactose-conjugated gelatin sponges. Considering the increasing interest in small-sized carbohydrates as signaling cues on biomaterial surfaces, systematic studies on how small carbohydrates might influence cell adhesion and differentiation processes could take advantage of the described protocol.
Collapse
Affiliation(s)
- Antonietta Pepe
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Antonio Laezza
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Angela Ostuni
- Cellular Biochemistry Laboratory, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandra Scelsi
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandro Laurita
- Microscopy Area, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Brigida Bochicchio
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
10
|
Caamal-Herrera I, Erreguin-Isaguirre MB, León-Buitimea A, Morones-Ramírez JR. Synthesis and Design of a Synthetic-Living Material Composed of Chitosan, Calendula officinalis Hydroalcoholic Extract, and Yeast with Applications as a Biocatalyst. ACS OMEGA 2023; 8:12716-12729. [PMID: 37065078 PMCID: PMC10099135 DOI: 10.1021/acsomega.2c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Design and development of materials that couple synthetic and living components allow taking advantage of the complexity of biological systems within a controlled environment. However, their design and fabrication represent a challenge for material scientists since it is necessary to synthesize synthetic materials with highly specialized biocompatible and physicochemical properties. The design of synthetic-living materials (vita materials) requires materials capable of hosting cell ingrowth and maintaining cell viability for extended periods. Vita materials offer various advantages, from simplifying product purification steps to controlling cell metabolic activity and improving the resistance of biological systems to external stress factors, translating into reducing bioprocess costs and diversifying their industrial applications. Here, chitosan sponges, functionalized with Calendula officinalis hydroalcoholic extract, were synthesized using the freeze-drying method; they showed small pore sizes (7.58 μm), high porosity (97.95%), high water absorption (1695%), and thermal stability, which allows the material to withstand sterilization conditions. The sponges allowed integration of 58.34% of viable Saccharomyces cerevisiae cells, and the cell viability was conserved 12 h post-process (57.14%) under storage conditions [refrigerating temperature (4 °C) and without a nutrient supply]. In addition, the synthesized vita materials conserved their biocatalytic activity after 7 days of the integration process, which was evaluated through glucose consumption and ethanol production. The results in this paper describe the synthesis of complex vita materials and demonstrate that biochemically modified chitosan sponges can be used as a platform material to host living and metabolically active yeast with diverse applications as biocatalysts.
Collapse
Affiliation(s)
- Isabel
O. Caamal-Herrera
- School
of Chemistry, Autonomous University of Nuevo
Leon (UANL), San Nicolas de los
Garza, Nuevo Leon 66455, Mexico
- Applied
Microbiology Department, NanoBiotechnology Research Group, Research
Center on Biotechnology and Nanotechnology, School of Chemical Sciences, Autonomous University of Nuevo Leon, PIIT, Km 10 Autopista al Aeropuerto Mariano
Escobedo, Apodaca, Nuevo
Leon 66629, Mexico
| | - Mariana B. Erreguin-Isaguirre
- School
of Chemical Engineering Pharmaceutics, Technological
University of San Juan del Rio, Av. La Palma No. 125, Col. Vista Hermosa, San Juan del Rio, Queretaro 76800, Mexico
| | - Angel León-Buitimea
- School
of Chemistry, Autonomous University of Nuevo
Leon (UANL), San Nicolas de los
Garza, Nuevo Leon 66455, Mexico
- Applied
Microbiology Department, NanoBiotechnology Research Group, Research
Center on Biotechnology and Nanotechnology, School of Chemical Sciences, Autonomous University of Nuevo Leon, PIIT, Km 10 Autopista al Aeropuerto Mariano
Escobedo, Apodaca, Nuevo
Leon 66629, Mexico
| | - José R. Morones-Ramírez
- School
of Chemistry, Autonomous University of Nuevo
Leon (UANL), San Nicolas de los
Garza, Nuevo Leon 66455, Mexico
- Applied
Microbiology Department, NanoBiotechnology Research Group, Research
Center on Biotechnology and Nanotechnology, School of Chemical Sciences, Autonomous University of Nuevo Leon, PIIT, Km 10 Autopista al Aeropuerto Mariano
Escobedo, Apodaca, Nuevo
Leon 66629, Mexico
| |
Collapse
|
11
|
Sun X, Yan X, Chen D, Liu X, Wu Y. Efficacy and safety of microbial transglutaminase-induced scleral stiffening invivo. Exp Eye Res 2023; 227:109387. [PMID: 36646298 DOI: 10.1016/j.exer.2023.109387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The purpose of this study was to investigate the efficacy and safety of microbial transglutaminases (mTGases) during scleral collagen cross-linking (CXL) in vivo. Sixteen New Zealand white albino rabbits were treated with sub-Tenon's injections of 2 ml of 1 U/ml mTGases in the right eye and 2 ml of phosphate buffer saline (PBS) in the left eye. The rabbits were killed 2 weeks after the injection, and all eyeballs, including some scleral strips, were processed. The elastic modulus was measured with a biomaterials tester. Histopathological analysis and transmission electron microscopy (TEM) were used for the morphological observations. The elastic modulus of the mTGase-treated sclera was 15.79 ± 2.93 MPa, and that of the control was 6.91 ± 2.23 MPa, indicating an increase of 129% after the mTGases treatment (P < 0.05). The density of the scleral collagen bundles and diameter of the collagen fibrils increased compared with those in the control group. No apoptosis was detected in the retina or posterior sclera by TUNEL staining, and no histological damage was observed on the TEM scan. This study is based on a short-term study on animal models. These results indicate that mTGase-mediated scleral CXL is a promising approach to effectively stiffen the sclera and safe enough for retina, and may be a useful treatment modality for strengthening scleral tissue.
Collapse
Affiliation(s)
- Xiaona Sun
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100034, China; Department of Ophthalmology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100034, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Duo Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyu Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing, 100034, China.
| |
Collapse
|
12
|
Enzymatic Crosslinked Hydrogels of Gelatin and Poly (Vinyl Alcohol) Loaded with Probiotic Bacteria as Oral Delivery System. Pharmaceutics 2022; 14:pharmaceutics14122759. [PMID: 36559253 PMCID: PMC9784308 DOI: 10.3390/pharmaceutics14122759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Probiotic bacteria are widely used to prepare pharmaceutical products and functional foods because they promote and sustain health. Nonetheless, probiotic viability is prone to decrease under gastrointestinal conditions. In this investigation, Lactiplantibacillus plantarum spp. CM-CNRG TB98 was entrapped in a gelatin−poly (vinyl alcohol) (Gel−PVA) hydrogel which was prepared by a “green” route using microbial transglutaminase (mTGase), which acts as a crosslinking agent. The hydrogel was fully characterized and its ability to entrap and protect L. plantarum from the lyophilization process and under simulated gastric and intestine conditions was explored. The Gel−PVA hydrogel showed a high probiotic loading efficiency (>90%) and survivability from the lyophilization process (91%) of the total bacteria entrapped. Under gastric conditions, no disintegration of the hydrogel was observed, keeping L. plantarum protected with a survival rate of >94%. While in the intestinal fluid the hydrogel is completely dissolved, helping to release probiotics. A Gel−PVA hydrogel is suitable for a probiotic oral administration system due to its physicochemical properties, lack of cytotoxicity, and the protection it offers L. plantarum under gastric conditions.
Collapse
|
13
|
Brooks AK, Wulff HE, Broitman JM, Zhang N, Yadavalli VK. Stretchable and Electroactive Crosslinked Gelatin for Biodevice and Cell Culture Applications. ACS APPLIED BIO MATERIALS 2022; 5:4922-4931. [PMID: 36179055 DOI: 10.1021/acsabm.2c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomimetic substrates that incorporate functionality such as electroactivity and mechanical flexibility, find utility in a variety of biomedical applications. Toward these uses, nature-derived materials such as gelatin offer inherent biocompatibility and sustainable sourcing. However, issues such as high swelling, poor mechanical properties, and lack of stability at biological temperatures limit their use. The enzymatic crosslinking of gelatin via microbial transglutaminase (mTG) yields flexible and robust large area substrates that are stable under physiological conditions. Here, we demonstrate the fabrication and characterization of strong, stretchable, conductive mTG crosslinked gelatin thin films. Incorporation of the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate in the gel matrix with a bioinspired polydopamine surface coating is used to enable conductivity with enhanced mechanical properties such as extensibility and flexibility, in comparison to plain gelatin or crosslinked gelatin films. The electroconductive substrates are conducive to cell growth, supporting myoblast cell adhesion, viability, and proliferation and could find use in creating active cell culture systems incorporating electrical stimulation. The substrates are responsive to motion such as stretching and bending while being extremely handleable and elastic, making them useful for applications such as electronic skin and flexible bioelectronics. Overall, this work presents facile, yet effective development of bioinspired conductive composites as substrates for bio-integrated devices and functional tissue engineering.
Collapse
Affiliation(s)
- Anne K Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Halle E Wulff
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Jacob M Broitman
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Ning Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
14
|
Sharifi S, Maleki Dizaj S, Ahmadian E, Karimpour A, Maleki A, Memar MY, Ghavimi MA, Dalir Abdolahinia E, Goh KW. A Biodegradable Flexible Micro/Nano-Structured Porous Hemostatic Dental Sponge. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3436. [PMID: 36234564 PMCID: PMC9565827 DOI: 10.3390/nano12193436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A biodegradable micro/nano-structured porous hemostatic gelatin-based sponge as a dentistry surgery foam was prepared using a freeze-drying method. In vitro function evaluation tests were performed to ensure its hemostatic effect. Biocompatibility tests were also performed to show the compatibility of the sponge on human fetal foreskin fibroblasts (HFFF2) cells and red blood cells (RBCs). Then, 10 patients who required the extraction of two teeth were selected, and after teeth extraction, for dressing, the produced sponge was placed in one of the extracavities while a commercial sponge was placed in the cavity in the other tooth as a control. The total weight of the absorbed blood in each group was compared. The results showed a porous structure with micrometric and nanometric pores, flexibility, a two-week range for degradation, and an ability to absorb blood 35 times its weight in vitro. The prepared sponge showed lower blood clotting times (BCTs) (243.33 ± 2.35 s) and a lower blood clotting index (BCI) (10.67 ± 0.004%) compared to two commercial sponges that displayed its ability for faster coagulation and good hemostatic function. It also had no toxic effects on the HFFF2 cells and RBCs. The clinical assessment showed a better ability of blood absorption for the produced sponge (p-value = 0.0015). The sponge is recommended for use in dental surgeries because of its outstanding abilities.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Alireza Karimpour
- Kimia Pajuhesh Nanofarnam Compony, Tabriz Medical Equipment Technology Incubator Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Abdollah Maleki
- Non-Destructive Testing Lab, Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran 15914, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Khang Wen Goh
- Faculty of Data Sciences and Information Technology, INTI International University, Nilai 78100, Malaysia
| |
Collapse
|
15
|
Mehwish N, Chen Y, Zaeem M, Wang Y, Lee BH, Deng H. Novel biohybrid spongy scaffolds for fabrication of suturable intraoral graft substitutes. Int J Biol Macromol 2022; 214:617-631. [PMID: 35753514 DOI: 10.1016/j.ijbiomac.2022.06.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Despite the fact that classic autograft is the gold standard material for periodontal plastic surgery, it has some drawbacks, including the need for a second surgical site and the scarcity of palatal donor tissue. However, only a few research works on the manufacturing of bioengineered intraoral connective tissue grafts have been conducted. In this work, porous bovine serum albumin methacryloyl/gelatin methacryloyl (BG) biohybrid scaffolds were developed for super-elasticity, shape recovery, suturability for persistent stability, sufficient scaffolding function, and convenient manipulating characteristics to fabricate an intraoral graft substitute with superb stability to resist frequent dynamic forces caused by functional movement (speaking, masticating, and swallowing). Furthermore, in a 3D cell culture assay, BG scaffolds demonstrated excellent cell adhesion and proliferation of L929 cells. In addition, the BG scaffolds were able to release Ibuprofen in a controlled manner for postoperative recovery. The use of a low-cost, optimized cryogelation technique for functional biomacromolecules offers up new possibilities to develop promising scaffolds for dental clinical settings.
Collapse
Affiliation(s)
- Nabila Mehwish
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China
| | - Yuan Chen
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Muhammad Zaeem
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bae Hoon Lee
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
16
|
Hsieh YL, Gao X, Wang X, Hsiang FC, Sun X, Wang W. Therapeutic Validation of Venous Pulsatile Tinnitus and Biomaterial Applications for Temporal Bone Reconstruction Surgery Using Multi-sensing Platforms and Coupled Computational Techniques. Front Bioeng Biotechnol 2022; 9:777648. [PMID: 35047487 PMCID: PMC8762232 DOI: 10.3389/fbioe.2021.777648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022] Open
Abstract
The application of grafts and biomaterials is a cardinal therapeutic procedure to resolve venous pulsatile tinnitus (PT) caused by temporal bone dehiscence during transtemporal reconstructive surgery. However, the transmission mechanism of venous PT remains unclear, and the sound absorption and insulation properties of different repair materials have not been specified. This study quantifies the vibroacoustic characteristics of PT, sources the major transmission pathway of PT, and verifies the therapeutic effect of different material applications using joint multi-sensing platforms and coupled computational fluid dynamics (CFD) techniques. The in vivo intraoperative acoustic and vibroacoustic characteristics of intrasinus blood flow motion and dehiscent sigmoid plate of a typical venous PT patient were investigated using acoustic and displacement sensors. The acoustical, morphological, and mechanical properties of the dehiscent sigmoid plate, grafts harvested from a cadaveric head, and other biomaterials were acquired using acoustical impedance tubes, micro-CT, scanning electron microscopy, and mercury porosimetry, as appropriate. To analyze the therapeutic effect of our previous reconstructive techniques, coupled CFD simulations were performed using the acquired mechanical properties of biomaterials and patient-specific radiologic data. The peak in vivo intraoperatively gauged, peak simulated vibroacoustic and peak simulated hydroacoustic amplitude of PT prior to sigmoid plate reconstruction were 64.0, 70.4, and 72.8 dB, respectively. After the solidified gelatin sponge–bone wax repair technique, the intraoperative gauged peak amplitude of PT was reduced from 64.0 to 47.3 dB. Among three different reconstructive techniques based on CFD results, the vibroacoustic and hydroacoustic sounds were reduced to 65.9 and 68.6 dB (temporalis–cartilage technique), 63.5 and 63.1 dB (solidified gelatin sponge technique), and 42.4 and 39.2 dB (solidified gelatin sponge–bone wax technique). In conclusion, the current novel biosensing applications and coupled CFD techniques indicate that the sensation of PT correlates with the motion and impact from venous flow, causing vibroacoustic and hydroacoustic sources that transmit via the air-conduction transmission pathway. The transtemporal reconstructive surgical efficacy depends on the established areal density of applied grafts and/or biomaterials, in which the total transmission loss of PT should surpass the amplitude of the measured loudness of PT.
Collapse
Affiliation(s)
- Yue-Lin Hsieh
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Xiuli Gao
- Department of Radiology, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China
| | - Xing Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, China
| | - Fu-Chou Hsiang
- Department of Orthopedics, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xinbo Sun
- BOACH Acoustic Laboratory, BOACH Acoustic Technology Co., Ltd., Xianyang, China
| | - Wuqing Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Shanghai, China
| |
Collapse
|
17
|
da S. Pereira A, Souza CPL, Moraes L, Fontes-Sant’Ana GC, Amaral PFF. Polymers as Encapsulating Agents and Delivery Vehicles of Enzymes. Polymers (Basel) 2021; 13:polym13234061. [PMID: 34883565 PMCID: PMC8659040 DOI: 10.3390/polym13234061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/15/2023] Open
Abstract
Enzymes are versatile biomolecules with broad applications. Since they are biological molecules, they can be easily destabilized when placed in adverse environmental conditions, such as variations in temperature, pH, or ionic strength. In this sense, the use of protective structures, as polymeric capsules, has been an excellent approach to maintain the catalytic stability of enzymes during their application. Thus, in this review, we report the use of polymeric materials as enzyme encapsulation agents, recent technological developments related to this subject, and characterization methodologies and possible applications of the formed bioactive structures. Our search detected that the most explored methods for enzyme encapsulation are ionotropic gelation, spray drying, freeze-drying, nanoprecipitation, and electrospinning. α-chymotrypsin, lysozyme, and β-galactosidase were the most used enzymes in encapsulations, with chitosan and sodium alginate being the main polymers. Furthermore, most studies reported high encapsulation efficiency, enzyme activity maintenance, and stability improvement at pH, temperature, and storage. Therefore, the information presented here shows a direction for the development of encapsulation systems capable of stabilizing different enzymes and obtaining better performance during application.
Collapse
Affiliation(s)
- Adejanildo da S. Pereira
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Camila P. L. Souza
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Lidiane Moraes
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Gizele C. Fontes-Sant’Ana
- Biochemical Processes Technology Department, Chemistry Institute, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil;
| | - Priscilla F. F. Amaral
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|
18
|
Labus K, Radosinski L, Kotowski P. Functional Properties of Two-Component Hydrogel Systems Based on Gelatin and Polyvinyl Alcohol-Experimental Studies Supported by Computational Analysis. Int J Mol Sci 2021; 22:9909. [PMID: 34576071 PMCID: PMC8469860 DOI: 10.3390/ijms22189909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
The presented research is focused on an investigation of the effect of the addition of polyvinyl alcohol (PVA) to a gelatin-based hydrogel on the functional properties of the resulting material. The main purpose was to experimentally determine and compare the properties of hydrogels differing from the content of PVA in the blend. Subsequently, the utility of these matrices for the production of an immobilized invertase preparation with improved operational stability was examined. We also propose a useful computational tool to predict the properties of the final material depending on the proportions of both components in order to design the feature range of the hydrogel blend desired for a strictly specified immobilization system (of enzyme/carrier type). Based on experimental research, it was found that an increase in the PVA content in gelatin hydrogels contributes to obtaining materials with a visibly higher packaging density, degree of swelling, and water absorption capacity. In the case of hydrolytic degradation and compressive strength, the opposite tendency was observed. The functionality studies of gelatin and gelatin/PVA hydrogels for enzyme immobilization indicate the very promising potential of invertase entrapped in a gelatin/PVA hydrogel matrix as a stable biocatalyst for industrial use. The molecular modeling analysis performed in this work provides qualitative information about the tendencies of the macroscopic parameters observed with the increase in the PVA and insight into the chemical nature of these dependencies.
Collapse
Affiliation(s)
- Karolina Labus
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| | - Lukasz Radosinski
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| | - Piotr Kotowski
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-370 Wrocław, Poland;
| |
Collapse
|
19
|
La Gatta A, Tirino V, Cammarota M, La Noce M, Stellavato A, Pirozzi AVA, Portaccio M, Diano N, Laino L, Papaccio G, Schiraldi C. Gelatin-biofermentative unsulfated glycosaminoglycans semi-interpenetrating hydrogels via microbial-transglutaminase crosslinking enhance osteogenic potential of dental pulp stem cells. Regen Biomater 2021; 8:rbaa052. [PMID: 34211725 PMCID: PMC8240633 DOI: 10.1093/rb/rbaa052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
Gelatin hydrogels by microbial-transglutaminase crosslinking are being increasingly exploited for tissue engineering, and proved high potential in bone regeneration. This study aimed to evaluate, for the first time, the combination of enzymatically crosslinked gelatin with hyaluronan and the newly developed biotechnological chondroitin in enhancing osteogenic potential. Gelatin enzymatic crosslinking was carried out in the presence of hyaluronan or of a hyaluronan–chondroitin mixture, obtaining semi-interpenetrating gels. The latter proved lower swelling extent and improved stiffness compared to the gelatin matrix alone, whilst maintaining high stability. The heteropolysaccharides were retained for 30 days in the hydrogels, thus influencing cell response over this period. To evaluate the effect of hydrogel composition on bone regeneration, materials were seeded with human dental pulp stem cells and osteogenic differentiation was assessed. The expression of osteocalcin (OC) and osteopontin (OPN), both at gene and protein level, was evaluated at 7, 15 and 30 days of culture. Scanning electron microscopy (SEM) and two-photon microscope observations were performed to assess bone-like extracellular matrix (ECM) deposition and to observe the cell penetration depth. In the presence of the heteropolysaccharides, OC and OPN expression was upregulated and a higher degree of calcified matrix formation was observed. Combination with hyaluronan and chondroitin improved both the biophysical properties and the biological response of enzymatically crosslinked gelatin, fastening bone deposition.
Collapse
Affiliation(s)
- Annalisa La Gatta
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Virginia Tirino
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marcella Cammarota
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marcella La Noce
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Antonietta Stellavato
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Anna Virginia Adriana Pirozzi
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Nadia Diano
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Luigi Laino
- Dipartimento Multidisciplinare di Specialita' Medico-Chirurgiche e Odontoiatriche, via Luigi De Crecchio, 6, Napoli 80138, Italy
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Chiara Schiraldi
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| |
Collapse
|
20
|
Ye J, Yang G, Zhang J, Xiao Z, He L, Zhang H, Liu Q. Preparation and characterization of gelatin-polysaccharide composite hydrogels for tissue engineering. PeerJ 2021; 9:e11022. [PMID: 33777525 PMCID: PMC7971083 DOI: 10.7717/peerj.11022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/07/2021] [Indexed: 02/05/2023] Open
Abstract
Background Tissue engineering, which involves the selection of scaffold materials, presents a new therapeutic strategy for damaged tissues or organs. Scaffold design based on blends of proteins and polysaccharides, as mimicry of the native extracellular matrix, has recently become a valuable strategy for tissue engineering. Objective This study aimed to construct composite hydrogels based on natural polymers for tissue engineering. Methods Composite hydrogels based on blends of gelatin with a polysaccharide component (chitosan or alginate) were produced and subsequently enzyme crosslinked. The other three hydrogels, chitosan hydrogel, sodium alginate hydrogel, and microbial transglutaminase-crosslinked gelatin (mTG/GA) hydrogel were also prepared. All hydrogels were evaluated for in vitro degradation property, swelling capacity, and mechanical property. Rat adipose-derived stromal stem cells (ADSCs) were isolated and seeded on (or embedded into) the above-mentioned hydrogels. The morphological features of ADSCs were observed and recorded. The effects of the hydrogels on ADSC survival and adhesion were investigated by immunofluorescence staining. Cell proliferation was tested by thiazolyl blue tetrazolium bromide (MTT) assay. Results Cell viability assay results showed that the five hydrogels are not cytotoxic. The mTG/GA and its composite hydrogels showed higher compressive moduli than the single-component chitosan and alginate hydrogels. MTT assay results showed that ADSCs proliferated better on the composite hydrogels than on the chitosan and alginate hydrogels. Light microscope observation and cell cytoskeleton staining showed that hydrogel strength had obvious effects on cell growth and adhesion. The ADSCs seeded on chitosan and alginate hydrogels plunged into the hydrogels and could not stretch out due to the low strength of the hydrogel, whereas cells seeded on composite hydrogels with higher elastic modulus, could spread out, and grew in size. Conclusion The gelatin-polysaccharide composite hydrogels could serve as attractive biomaterials for tissue engineering due to their easy preparation and favorable biophysical properties.
Collapse
Affiliation(s)
- Jing Ye
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Gang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ling He
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Han Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Qi Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Comparative behaviour of electrospun nanofibers fabricated from acid and alkaline hydrolysed gelatin: towards corneal tissue engineering. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02307-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Distler T, McDonald K, Heid S, Karakaya E, Detsch R, Boccaccini AR. Ionically and Enzymatically Dual Cross-Linked Oxidized Alginate Gelatin Hydrogels with Tunable Stiffness and Degradation Behavior for Tissue Engineering. ACS Biomater Sci Eng 2020; 6:3899-3914. [PMID: 33463325 DOI: 10.1021/acsbiomaterials.0c00677] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogels that allow for the successful long-term in vitro culture of cell-biomaterial systems to enable the maturation of tissue engineering constructs are highly relevant in regenerative medicine. Naturally derived polysaccharide-based hydrogels promise to be one material group with enough versatility and chemical functionalization capability to tackle the challenges associated with long-term cell culture. We report a marine derived oxidized alginate, alginate dialdehyde (ADA), and gelatin (GEL) system (ADA-GEL), which is cross-linked via ionic (Ca2+) and enzymatic (microbial transglutaminase, mTG) interaction to form dually cross-linked hydrogels. The cross-linking approach allowed us to tailor the stiffness of the hydrogels in a wide range (from <5 to 120 kPa), without altering the initial ADA and GEL hydrogel chemistry. It was possible to control the degradation behavior of the hydrogels to be stable for up to 30 days of incubation. Increasing concentrations of mTG cross-linker solutions allowed us to tune the degradation behavior of the ADA-GEL hydrogels from fast (<7 days) to moderate (14 days) and slow (>30 days) degradation kinetics. The cytocompatibility of mTG cross-linked ADA-GEL was assessed using NIH-3T3 fibroblasts and ATDC-5 mouse teratocarcinoma cells. Both cell types showed highly increased cellular attachment on mTG cross-linked ADA-GEL in comparison to Ca2+ cross-linked hydrogels. In addition, ATDC-5 cells showed a higher proliferation on mTG cross-linked ADA-GEL hydrogels in comparison to tissue culture polystyrene control substrates. Further, the attachment of human umbilical vein endothelial cells (HUVEC) on ADA-GEL (+) mTG was confirmed, proving the suitability of mTG+Ca2+ cross-linked ADA-GEL for several cell types. Summarizing, a promising platform to control the properties of ADA-GEL hydrogels is presented, with the potential to be applied in long-term cell culture investigations such as cartilage, bone, and blood-vessel engineering, as well as for biofabrication.
Collapse
Affiliation(s)
- Thomas Distler
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Kilian McDonald
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Susanne Heid
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| |
Collapse
|
23
|
Comparative Study on Enzyme Immobilization Using Natural Hydrogel Matrices—Experimental Studies Supported by Molecular Models Analysis. Catalysts 2020. [DOI: 10.3390/catal10050489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Currently, great attention is focused on conducting manufacture processes using clean and eco-friendly technologies. This research trend also relates to the production of immobilized biocatalysts of industrial importance using matrices and methods that fulfill specified operational and environmental requirements. For that reason, hydrogels of natural origin and the entrapment method become increasingly popular in terms of enzyme immobilization. The presented work is the comparative research on invertase immobilization using two natural hydrogel matrices—alginate and gelatin. During the study, we provided the molecular insight into the structural characteristics of both materials regarding their applicability as effective enzyme carriers. In order to confirm our predictions of using these hydrogels for invertase immobilization, we performed the typical experimental studies. In this case, the appropriate conditions of enzyme entrapment were selected for both types of carrier. Next, the characterization of received invertase preparations was made. As a final experimental result, the gelatin-based hydrogel was selected as an effective carrier for invertase immobilization. Hereby, using mild conditions and a pro-ecological, biodegradable matrix, it was possible to obtain very stable and reactive biocatalyst. The choice of gelatin-immobilized invertase preparation was compatible with our predictions based on the molecular models of hydrogel matrices and enzyme used.
Collapse
|
24
|
Besser RR, Bowles AC, Alassaf A, Carbonero D, Claure I, Jones E, Reda J, Wubker L, Batchelor W, Ziebarth N, Silvera R, Khan A, Maciel R, Saporta M, Agarwal A. Enzymatically crosslinked gelatin-laminin hydrogels for applications in neuromuscular tissue engineering. Biomater Sci 2020; 8:591-606. [PMID: 31859298 PMCID: PMC7141910 DOI: 10.1039/c9bm01430f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a water-soluble and non-toxic method to incorporate additional extracellular matrix proteins into gelatin hydrogels, while obviating the use of chemical crosslinkers such as glutaraldehyde. Gelatin hydrogels were fabricated using a range of gelatin concentrations (4%-10%) that corresponded to elastic moduli of approximately 1 kPa-25 kPa, respectively, a substrate stiffness relevant for multiple cell types. Microbial transglutaminase was then used to enzymatically crosslink a layer of laminin on top of gelatin hydrogels, resulting in 2-component gelatin-laminin hydrogels. Human induced pluripotent stem cell derived spinal spheroids readily adhered and rapidly extended axons on GEL-LN hydrogels. Axons displayed a more mature morphology and superior electrophysiological properties on GEL-LN hydrogels compared to the controls. Schwann cells on GEL-LN hydrogels adhered and proliferated normally, displayed a healthy morphology, and maintained the expression of Schwann cell specific markers. Lastly, skeletal muscle cells on GEL-LN hydrogels achieved long-term culture for up to 28 days without delamination, while expressing higher levels of terminal genes including myosin heavy chain, MyoD, MuSK, and M-cadherin suggesting enhanced maturation potential and myotube formation compared to the controls. Future studies will employ the superior culture outcomes of this hybrid substrate for engineering functional neuromuscular junctions and related organ on a chip applications.
Collapse
Affiliation(s)
- Rachel R Besser
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bioengineering of microbial transglutaminase for biomedical applications. Appl Microbiol Biotechnol 2019; 103:2973-2984. [PMID: 30805670 DOI: 10.1007/s00253-019-09669-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
Collapse
|
26
|
Belkhede SG, Salaria SK, Aggarwal R. Comparative evaluation of the platelet-rich fibrin bandage versus gelatin sponge-assisted palatal wound healing of free gingival graft donor site: A case series. J Indian Soc Periodontol 2019; 23:589-592. [PMID: 31849408 PMCID: PMC6906901 DOI: 10.4103/jisp.jisp_165_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Periodontal plastic surgery often involves palatal donor site, thereby creating an open wound that is prone to postoperative complications such as bleeding, pain, and slow healing process. To prevent the same, platelet-rich fibrin (PRF) and gelatin sponge (GS) were utilized equally at the donor site in six patients. Patients were monitored at the 1st, 2nd, 3rd, and 4th weeks after surgery for postoperative discomfort (D), consumption of analgesics during first postoperative week, alteration of sensitivity (AS), change in feeding habits (CFH), complete wound epithelialization (CWE), and healing index (Landry et al. 1998). Two patients in the GS group showed significantly early CWE, higher healing index score, and less D, AS, and CFH postoperatively in comparison to the PRF group. It was suggested that GS can also be considered as an effective, economical, and biocompatible dressing material of choice to enhance wound healing and to minimize postoperative complications associated with the donor site.
Collapse
Affiliation(s)
- Samyak Gautam Belkhede
- Department of Periodontology and Oral Implantology, Surendera Dental College and Research Institute, Sri-Ganganagar, Rajasthan, India
| | - Sanjeev Kumar Salaria
- Department of Periodontology and Oral Implantology, Surendera Dental College and Research Institute, Sri-Ganganagar, Rajasthan, India
| | - Rajni Aggarwal
- Department of Periodontology and Oral Implantology, Surendera Dental College and Research Institute, Sri-Ganganagar, Rajasthan, India
| |
Collapse
|
27
|
Wang L, Yu B, Wang R, Xie J. Biotechnological routes for transglutaminase production: Recent achievements, perspectives and limits. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Epigallocatechin Gallate-Modified Gelatin Sponges Treated by Vacuum Heating as a Novel Scaffold for Bone Tissue Engineering. Molecules 2018; 23:molecules23040876. [PMID: 29641458 PMCID: PMC6017288 DOI: 10.3390/molecules23040876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/03/2023] Open
Abstract
Chemical modification of gelatin using epigallocatechin gallate (EGCG) promotes bone formation in vivo. However, further improvements are required to increase the mechanical strength and bone-forming ability of fabricated EGCG-modified gelatin sponges (EGCG-GS) for practical applications in regenerative therapy. In the present study, we investigated whether vacuum heating-induced dehydrothermal cross-linking of EGCG-GS enhances bone formation in critical-sized rat calvarial defects. The bone-forming ability of vacuum-heated EGCG-GS (vhEGCG-GS) and other sponges was evaluated by micro-computed tomography and histological staining. The degradation of sponges was assessed using protein assays, and cell morphology and proliferation were verified by scanning electron microscopy and immunostaining using osteoblastic UMR106 cells in vitro. Four weeks after the implantation of sponges, greater bone formation was detected for vhEGCG-GS than for EGCG-GS or vacuum-heated gelatin sponges (dehydrothermal cross-linked sponges without EGCG). In vitro experiments revealed that the relatively low degradability of vhEGCG-GS supports cell attachment, proliferation, and cell-cell communication on the matrix. These findings suggest that vacuum heating enhanced the bone forming ability of EGCG-GS, possibly via the dehydrothermal cross-linking of EGCG-GS, which provides a scaffold for cells, and by maintaining the pharmacological effect of EGCG.
Collapse
|