1
|
Zhu M, Hao C, Zou T, Jiang S, Wu B. Phage therapy as an alternative strategy for oral bacterial infections: a systematic review. BMC Oral Health 2025; 25:44. [PMID: 39780179 PMCID: PMC11715224 DOI: 10.1186/s12903-024-05399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Oral infectious diseases, such as dental caries, periodontitis and periapical periodontitis, are often complicated by causative bacterial biofilm formation and significantly impact human oral health and quality of life. Bacteriophage (phage) therapy has emerged as a potential alternative with successful applications in antimicrobial trials. While therapeutic use of phages has been considered as effective treatment of some infectious diseases, related research focusing on oral infectious diseases is few and lacks attention. Therefore, a systematic review was conducted to comprehensively evaluate the overall efficacy of phages in reducing bacterial infections associated with various oral diseases. METHODS A systematic search of PubMed, MEDLINE and Web of Science for literature published up to May 2024 was conducted according to inclusion criteria to identify studies assessing bacteriophages as potential therapy for oral infectious diseases. A total of four authors assessed study eligibility and performed data extraction. RESULTS A total of 487 articles published between 1975 and 2024 were retrieved. Among the 10 eligible reports, preliminary studies have been conducted on seven types of phages and reported their antibacterial effect. To be more specific, 3 contained data on dental caries (n = 32), 5 focused on periodontitis (n = 105) and 2 examined periapical diseases (n = 7). The majority of publications (9 out of 10) discussed the impact of phages on biofilm formation. Only one report (1 out of 10) mentioned the safety concern in phage application. CONCLUSIONS This review strongly suggests that phages isolated from oral cavity with certain characteristics can be highly effective and are considered suitable candidates for phage therapy in treating oral/odontogenic infections caused by bacteria.
Collapse
Affiliation(s)
- Mingqi Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Chunxiu Hao
- Shenzhen Clinical College of Stomatology, Southern Medical University, Shenzhen, 518118, China
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China
| | - Ting Zou
- Shenzhen Clinical College of Stomatology, Southern Medical University, Shenzhen, 518118, China
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China
| | - Shan Jiang
- Shenzhen Clinical College of Stomatology, Southern Medical University, Shenzhen, 518118, China.
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China.
| | - Buling Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Shenzhen Clinical College of Stomatology, Southern Medical University, Shenzhen, 518118, China.
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China.
| |
Collapse
|
2
|
HOW SS, CHIENG S, NATHAN S, LAM SD. ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. J Zhejiang Univ Sci B 2024; 26:58-75. [PMID: 39815611 PMCID: PMC11735909 DOI: 10.1631/jzus.b2300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/17/2023] [Indexed: 10/22/2024]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.
Collapse
|
3
|
Gu BL, She Y, Pei GK, Du Y, Yang R, Ma LX, Zhao Q, Gao SG. Systematic analysis of prophages carried by Porphyromonas gingivalis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105489. [PMID: 37572952 DOI: 10.1016/j.meegid.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
To systematically investigate the prophages carrying in Porphyromonas gingivalis (P. gingivalis) strains, analyze potential antibiotic resistance genes (ARGs) and virulence genes in these prophages. We collected 90 whole genome sequences of P. gingivalis from NCBI and utilized the Prophage Hunter online software to predict prophages; Comprehensive antibiotic research database (CARD) and virulence factors database (VFDB) were adopted to analyze the ARGs and virulence factors (VFs) carried by the prophages. Sixty-nine prophages were identified among 24/90 P. gingivalis strains, including 17 active prophages (18.9%) and 52 ambiguous prophages (57.8%). The proportion of prophages carried by each P. gingivalis genome ranged from 0.5% to 6.7%. A total of 188 antibiotic resistance genes belonging to 25 phenotypes and 46 different families with six mechanisms of antibiotic resistance were identified in the 17 active prophages. Three active prophages encoded 4 virulence genes belonging to type III and type VI secretion systems. The potential hosts of these virulence genes included Escherichia coli, Shigella sonnei, Salmonella typhi, and Klebsiella pneumoniae. In conclusion, 26.7% P. gingivalis strains carry prophages, while the proportion of prophage genes in the P. gingivalis genome is relatively low. In addition, approximately 39.7% of the P. gingivalis prophage genes have ARGs identified, mainly against streptogramin, peptides, and aminoglycosides. Only a few prophages carry virulence genes. Prophages may play an important role in the acquisition, dissemination of antibiotic resistance genes, and pathogenicity evolution in P. gingivalis.
Collapse
Affiliation(s)
- B L Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Y She
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - G K Pei
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Y Du
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - R Yang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - L X Ma
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Q Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - S G Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China.
| |
Collapse
|
4
|
Osei EK, Mahony J, Kenny JG. From Farm to Fork: Streptococcus suis as a Model for the Development of Novel Phage-Based Biocontrol Agents. Viruses 2022; 14:1996. [PMID: 36146802 PMCID: PMC9501460 DOI: 10.3390/v14091996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Bacterial infections of livestock threaten the sustainability of agriculture and public health through production losses and contamination of food products. While prophylactic and therapeutic application of antibiotics has been successful in managing such infections, the evolution and spread of antibiotic-resistant strains along the food chain and in the environment necessitates the development of alternative or adjunct preventive and/or therapeutic strategies. Additionally, the growing consumer preference for "greener" antibiotic-free food products has reinforced the need for novel and safer approaches to controlling bacterial infections. The use of bacteriophages (phages), which can target and kill bacteria, are increasingly considered as a suitable measure to reduce bacterial infections and contamination in the food industry. This review primarily elaborates on the recent veterinary applications of phages and discusses their merits and limitations. Furthermore, using Streptococcus suis as a model, we describe the prevalence of prophages and the anti-viral defence arsenal in the genome of the pathogen as a means to define the genetic building blocks that are available for the (synthetic) development of phage-based treatments. The data and approach described herein may provide a framework for the development of therapeutics against an array of bacterial pathogens.
Collapse
Affiliation(s)
- Emmanuel Kuffour Osei
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - John G. Kenny
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
5
|
Khongfak S, Thummeepak R, Leungtongkam U, Tasanapak K, Thanwisai A, Sitthisak S. Insights into mobile genetic elements and the role of conjugative plasmid in transferring aminoglycoside resistance in extensively drug-resistant Acinetobacter baumannii AB329. PeerJ 2022; 10:e13718. [PMID: 35855908 PMCID: PMC9288165 DOI: 10.7717/peerj.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter baumannii is a major cause of nosocomial infection, and the incidence of extensively drug-resistant A. baumannii (XDRAB) infections has dramatically increased worldwide. In this study, we aimed to explore the complete genome sequence of XDRAB 329, ST1166/98 (Oxford/Pasteur), which is an outbreak clone from a hospital in Thailand. Whole-genome sequencing (WGS) was performed using short-read Illumina and long-read PacBio sequencing, and a conjugation assay of its plasmid was performed. The complete genome sequence of A. baumannii AB329 revealed a circular chromosome 3,948,038 bp in length with 39% GC content. Antibiotic resistance genes (ARGs), including beta-lactam resistance (bla OXA-51, bla ADC-25, bla OXA-23, bla TEM-1D), aminoglycoside resistance (aph(3')-Ia, aph(3″)-Ib, aph(6)-Id, armA), tetracycline resistance (tet(B), tet (R)), macrolide resistance (mph(E), msr(E)), and efflux pumps, were found. Mobile genetic elements (MGEs) analysis of A. baumannii AB329 revealed two plasmids (pAB329a and pAB329b), three prophages, 19 genomic islands (GIs), and 33 insertion sequences (ISs). pAB329a is a small circular plasmid of 8,731 bp, and pAB329b is a megaplasmid of 82,120 bp. aph(3')-VIa was detected in pAB329b, and a major facilitator superfamily (MFS) transporter was detected in the prophage. Acinetobacter baumannii resistance island 4 (AbaR4) harboring tetracycline and aminoglycoside resistance was detected in the genome of A. baumannii AB329. pAB329b, which belongs to Rep-type GR6 (plasmid lineage LN_1), is a conjugative plasmid with the ability to transfer an aminoglycoside resistance gene to sodium azide-resistant A. baumannii. This study provides insights into the features of the MGEs of XDRAB, which are the main reservoir and source of dissemination of ARGs.
Collapse
Affiliation(s)
- Supat Khongfak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand
| | - Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand
| | - Kannipa Tasanapak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand
| |
Collapse
|
6
|
Genome-Wide Identification and Analysis of Chromosomally Integrated Putative Prophages Associated with Clinical Klebsiella pneumoniae Strains. Curr Microbiol 2021; 78:2015-2024. [PMID: 33813641 DOI: 10.1007/s00284-021-02472-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Klebsiella pneumoniae, an opportunistic pathogen found in the environment and human mucosal surfaces, is a leading cause of nosocomial infections. K. pneumoniae is now considered a global threat owing to the emergence of multidrug-resistant strains making its infections untreatable. In this study, 254 strains of K. pneumoniae were screened for the presence of prophages using the PHASTER tool. Very few strains lacked prophages (3.1%), while the remaining harboured both intact (811) and defective prophages (709). A subset of 42 unique strains of K. pneumoniae was chosen for further analysis. Our analysis revealed the presence of 110 complete prophages which were further classified as belonging to Myoviridae (67.3%), Siphoviridae (28.2%) and Podoviridae family (4.5%). An alignment of the 110 complete, prophage genome sequences clustered the prophages into 16 groups and 3 singletons. While none of the prophages encoded for virulence factors, 2 (1.8%) prophages were seen to encode for the antibiotic resistance-related genes. The CRISPR-Cas system was prevalent in 10 (23.8%) out of the 42 strains. Further analysis of the CRISPR spacers revealed 11.42% of the total spacers integrated in K. pneumoniae chromosome to match prophage protein sequences.
Collapse
|
7
|
Characterization of a Novel Bacteriophage Henu2 and Evaluation of the Synergistic Antibacterial Activity of Phage-Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10020174. [PMID: 33572473 PMCID: PMC7916345 DOI: 10.3390/antibiotics10020174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus phage Henu2 was isolated from a sewage sample collected in Kaifeng, China, in 2017. In this study, Henu2, a linear double-stranded DNA virus, was sequenced and found to be 43,513 bp long with 35% G + C content and 63 putative open reading frames (ORFs). Phage Henu2 belongs to the family Siphoviridae and possesses an isometric head (63 nm in diameter). The latent time and burst size of Henu2 were approximately 20 min and 7.8 plaque forming unit (PFU)/infected cells. The Henu2 maintained infectivity over a wide range of temperature (10–60 °C) and pH values (4–12). Phylogenetic and comparative genomic analyses indicate that Staphylococcus aureus phage Henu2 should be a new member of the family of Siphoviridae class-II. In this paper, Phage Henu2 alone exhibited weak inhibitory activity on the growth of S. aureus. However, the combination of phage Henu2 and some antibiotics or oxides could effectively inhibit the growth of S. aureus, with a decrease of more than three logs within 24 h in vitro. These results provide useful information that phage Henu2 can be combined with antibiotics to increase the production of phage Henu2 and thus enhance the efficacy of bacterial killing.
Collapse
|
8
|
Ashari KS, Roslan NS, Omar AR, Bejo MH, Ideris A, Mat Isa N. Genome sequencing and analysis of Salmonella enterica subsp. enterica serovar Stanley UPM 517: Insights on its virulence-associated elements and their potentials as vaccine candidates. PeerJ 2019; 7:e6948. [PMID: 31293824 PMCID: PMC6601603 DOI: 10.7717/peerj.6948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Stanley (S. Stanley) is a pathogen that contaminates food, and is related to Salmonella outbreaks in a variety of hosts such as humans and farm animals through products like dairy items and vegetables. Despite the fact that several vaccines of Salmonella strains had been constructed, none of them were developed according to serovar Stanley up to this day. This study presents results of genome sequencing and analysis on our S. Stanley UPM 517 strain taken from fecal swabs of 21-day-old healthy commercial chickens in Perak, Malaysia and used Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) as a reference to be compared with. First, sequencing and assembling of the Salmonella Stanley UPM 517 genome into a contiguous form were done. The work was then continued with scaffolding and gap filling. Annotation and alignment of the draft genome was performed with S. Typhimurium LT2. The other elements of virulence estimated in this study included Salmonella pathogenicity islands, resistance genes, prophages, virulence factors, plasmid regions, restriction-modification sites and the CRISPR-Cas system. The S. Stanley UPM 517 draft genome had a length of 4,736,817 bp with 4,730 coding sequence and 58 RNAs. It was discovered via genomic analysis on this strain that there were antimicrobial resistance properties toward a wide variety of antibiotics. Tcf and ste, the two fimbrial virulence clusters related with human and broiler intestinal colonizations which were not found in S. Typhimurium LT2, were atypically discovered in the S. Stanley UPM 517 genome. These clusters are involved in the intestinal colonization of human and broilers, respectively. There were seven Salmonella pathogenicity islands (SPIs) within the draft genome, which contained the virulence factors associated with Salmonella infection (except SPI-14). Five intact prophage regions, mostly comprising of the protein encoding Gifsy-1, Fels-1, RE-2010 and SEN34 prophages, were also encoded in the draft genome. Also identified were Type I–III restriction-modification sites and the CRISPR-Cas system of the Type I–E subtype. As this strain exhibited resistance toward numerous antibiotics, we distinguished several genes that had the potential for removal in the construction of a possible vaccine candidate to restrain and lessen the pervasiveness of salmonellosis and to function as an alternative to antibiotics.
Collapse
Affiliation(s)
- Khalidah Syahirah Ashari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Hair Bejo
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Aini Ideris
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|