1
|
Garces KR, Bell-Dereske L, Rudgers JA, Emery SM. Nitrogen addition and fungal symbiosis alter early dune plant succession. Oecologia 2023; 201:1067-1077. [PMID: 36941448 PMCID: PMC10027266 DOI: 10.1007/s00442-023-05362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Anthropogenic nitrogen (N) enrichment can have complex effects on plant communities. In low-nutrient, primary successional systems such as sand dunes, N enrichment may alter the trajectory of plant community assembly or the dominance of foundational, ecosystem-engineering plants. Predicting the consequences of N enrichment may be complicated by plant interactions with microbial symbionts because increases in a limiting resource, such as N, could alter the costs and benefits of symbiosis. To evaluate the direct and interactive effects of microbial symbiosis and N addition on plant succession, we established a long-term field experiment in Michigan, USA, manipulating the presence of the symbiotic fungal endophyte Epichloë amarillans in Ammophila breviligulata, a dominant ecosystem-engineering dune grass species. From 2016 to 2020, we implemented N fertilization treatments (control, low, high) in a subset of the long-term experiment. N addition suppressed the accumulation of plant diversity over time mainly by reducing species richness of colonizing plants. However, this suppression occurred only when the endophyte was present in Ammophila. Although Epichloë enhanced Ammophila tiller density over time, N addition did not strongly interact with Epichloë symbiosis to influence vegetative growth of Ammophila. Instead, N addition directly altered plant community composition by increasing the abundance of efficient colonizers, especially C4 grasses. In conclusion, hidden microbial symbionts can alter the consequences of N enrichment on plant primary succession.
Collapse
Affiliation(s)
- Kylea R Garces
- Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, KY, 40292, USA.
| | - Lukas Bell-Dereske
- Laboratory of Environmental Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sarah M Emery
- Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, KY, 40292, USA
| |
Collapse
|
2
|
Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World. J Fungi (Basel) 2022; 8:jof8111142. [DOI: 10.3390/jof8111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Plants harbor a variety of fungal symbionts both above- and belowground, yet little is known about how these fungi interact within hosts, especially in a world where resource availability is changing due to human activities. Systemic vertically transmitted endophytes such as Epichloë spp. may have particularly strong effects on the diversity and composition of later-colonizing symbionts such as root fungal endophytes, especially in primary successional systems. We made use of a long-term field experiment in Great Lakes sand dunes to test whether Epichloë colonization of the dune-building grass, Ammophila breviligulata, could alter fungal root endophyte species richness or community composition in host plants. We also tested whether nitrogen addition intensified the effects of Epichlöe on the root endophyte community. We found that Epichloë increased richness of root endophytes in Ammophila by 17% overall, but only shifted community composition of root endophytes under nitrogen-enriched conditions. These results indicate that Epichlöe acts as a key species within Ammophila, changing richness and composition of the root mycobiome and integrating above- and belowground mycobiome interactions. Further, effects of Epichloë on root endophyte communities were enhanced by N addition, indicating that this fungal species may become even more important in future environments.
Collapse
|
3
|
El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021; 7:e06362. [PMID: 33869822 PMCID: PMC8035529 DOI: 10.1016/j.heliyon.2021.e06362] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The growing threat arises due to diseases such as cancer and the infections around the world leading to a critical requirement for novel and constructive compounds with unique ways of action capable of combating these deadly diseases. At present, it is evident that endophytic fungi constitute an enormous as well as comparatively untapped source of great biodiversity that can be considered as a wellspring of effective novel natural products for medical, agricultural and industrial use. Marine endophytic fungi have been found in every marine plants (algae, seagrass, driftwood, mangrove plants), marine vertebrates (mainly, fish) or marine invertebrates (mainly, sponge and coral) inter- and intra-cellular without causing any palpable symptoms of illness. Since evolution of microbes and eukaryotes to a higher level, coevolution has resulted in specific interaction mechanisms. Endophytic fungi are known to influence the life cycle and are necessary for the homeostasis of their eukaryotic hosts and the chemical signals of their host have been shown to activate gene expression in endophytes to induce expression of endophytic secondary metabolites. Marine endophytic fungi are receiving increasing attention by chemists because of their varied and structurally unmatched compounds that have strong biological roles in life as lead pharmaceutical compounds, including anticancer, antiviral, insulin mimetic, antineurodegenerative, antimicrobial, antioxidant and immuno-suppressant compounds. Moreover, fungal endophytes proved to have different biological activities for exploitation in the environmental and agricultural sustainability.
Collapse
|
4
|
Wiewióra B, Żurek G. The Response of the Associations of Grass and Epichloë Endophytes to the Increased Content of Heavy Metals in the Soil. PLANTS (BASEL, SWITZERLAND) 2021; 10:429. [PMID: 33668289 PMCID: PMC7996287 DOI: 10.3390/plants10030429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022]
Abstract
The rapid development of civilization increases the area of land exposed to the accumulation of toxic compounds, including heavy metals, both in water and soil. Endophytic fungi associated with many species of grasses are related to the resistance of plants to biotic and abiotic stresses, which include heavy metals. This paper reviews different aspects of symbiotic interactions between grass species and fungal endophytes from the genera Epichloë with special attention paid to the elevated concentration of heavy metals in growing substrates. The evidence shows the high resistance variation of plant endophyte symbiosis on the heavy metals in soil outcome. The fungal endophytes confer high heavy metal tolerance, which is the key feature in its practical application with their host plants, i.e., grasses in phytoremediation.
Collapse
Affiliation(s)
- Barbara Wiewióra
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute-NRI, Radzików, 05-870 Błonie, Poland
| | - Grzegorz Żurek
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute-NRI, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
5
|
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes-From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J Fungi (Basel) 2020; 6:E322. [PMID: 33261217 PMCID: PMC7720123 DOI: 10.3390/jof6040322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.
Collapse
Affiliation(s)
- John R. Caradus
- Grasslanz Technology Ltd., Palmerston North PB11008, New Zealand
| | | |
Collapse
|
6
|
David AS, Bell-Dereske LP, Emery SM, McCormick BM, Seabloom EW, Rudgers JA. Testing for loss of Epichloë and non-epichloid symbionts under altered rainfall regimes. AMERICAN JOURNAL OF BOTANY 2019; 106:1081-1089. [PMID: 31386172 DOI: 10.1002/ajb2.1340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Microbial symbionts can buffer plant hosts from environmental change. Therefore, understanding how global change factors alter the associations between hosts and their microbial symbionts may improve predictions of future changes in host population dynamics and microbial diversity. Here, we investigated how one global change factor, precipitation, affected the maintenance or loss of symbiotic fungal endophytes in a C3 grass host. Specifically, we examined the distinct responses of Epichloë (vertically transmitted and systemic) and non-epichloid endophytes (typically horizontally transmitted and localized) by considering (1) how precipitation altered associations with Epichloë and non-epichloid endophytic taxa across host ontogeny, and (2) interactive effects of water availability and Epichloë on early seedling life history stages. METHODS We manipulated the presence of Epichloë amarillans in American beachgrass (Ammophila breviligulata) in a multiyear field experiment that imposed three precipitation regimes (ambient or ±30% rainfall). In laboratory assays, we investigated the interactive effects of water availability and Epichloë on seed viability and germination. RESULTS Reduced precipitation decreased the incidence of Epichloë in leaves in the final sampling period, but had no effect on associations with non-epichloid taxa. Epichloë reduced the incidence of non-epichloid endophytes, including systemic p-endophytes, in seeds. Laboratory assays suggested that association with Epichloë is likely maintained, in part, due to increased seed viability and germination regardless of water availability. CONCLUSIONS Our study empirically demonstrates several pathways for plant symbionts to be lost or maintained across host ontogeny and suggests that reductions in precipitation can drive the loss of a plant's microbial symbionts.
Collapse
Affiliation(s)
- Aaron S David
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Lukas P Bell-Dereske
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA
| | - Sarah M Emery
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Brandon M McCormick
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
7
|
Qian X, Chen L, Guo X, He D, Shi M, Zhang D. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient. PeerJ 2018; 6:e5767. [PMID: 30345176 PMCID: PMC6187995 DOI: 10.7717/peerj.5767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 02/03/2023] Open
Abstract
The altitudinal effects on the distributions of phyllosphere fungal assemblages in conspecific plants remain poorly elucidated. To address this, phyllosphere fungal communities associated with Mussaenda shikokiana were investigated at four sites across a 350 m elevation gradient in a subtropical forest by employing Illumina metabarcoding of the fungal internal transcribed spacer 2 (ITS2) region. Our results demonstrated that phyllosphere fungal assemblages with a single host possessed high taxonomic diversity and multiple trophic guilds. OTU richness was significantly influenced by elevation. The elevation gradient also entailed distinct shifts in the community composition of phyllosphere fungi, which was significantly related to geographical distance and mean annual temperature (MAT). Additionally, comparison of phyllosphere fungal networks showed reduced connectivity with increasing elevation. Our data provide insights on the distribution and interactions of the phyllosphere fungal community associated with a single host along a short elevation gradient.
Collapse
Affiliation(s)
- Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Bell-Dereske L, Takacs-Vesbach C, Kivlin SN, Emery SM, Rudgers JA. Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiol Ecol 2017; 93:3071445. [PMID: 28334408 PMCID: PMC5827620 DOI: 10.1093/femsec/fix036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding interactions between above- and belowground components of ecosystems is an important next step in community ecology. These interactions may be fundamental to predicting ecological responses to global change because indirect effects occurring through altered species interactions can outweigh or interact with the direct effects of environmental drivers. In a multiyear field experiment (2010-2015), we tested how experimental addition of a mutualistic leaf endophyte (Epichloë amarillans) associated with American beachgrass (Ammophila breviligulata) interacted with an altered precipitation regime (±30%) to affect the belowground microbial community. Epichloë addition increased host root biomass at the plot scale, but reduced the length of extraradical arbuscular mycorrhizal (AM) fungal hyphae in the soil. Under ambient precipitation alone, the addition of Epichloë increased root biomass per aboveground tiller and reduced the diversity of AM fungi in A. breviligulata roots. Furthermore, with Epichloë added, the diversity of root-associated bacteria declined with higher soil moisture, whereas in its absence, bacterial diversity increased with higher soil moisture. Thus, the aboveground fungal mutualist not only altered the abundance and composition of belowground microbial communities but also affected how belowground communities responded to climate, suggesting that aboveground microbes have potential for cascading influences on community dynamics and ecosystem processes that occur belowground.
Collapse
Affiliation(s)
- Lukas Bell-Dereske
- Department of Biology, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Stephanie N. Kivlin
- Department of Biology, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Sarah M. Emery
- Department of Biology, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Jennifer A. Rudgers
- Department of Biology, 1 University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|