1
|
Yang Q, Downey R, Stark JS, Johnstone GJ, Mitchell JG. The Microbial Ecology of Antarctic Sponges. MICROBIAL ECOLOGY 2025; 88:44. [PMID: 40382475 DOI: 10.1007/s00248-025-02543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 05/03/2025] [Indexed: 05/20/2025]
Abstract
Microbial communities in Antarctic marine sponges have distinct taxonomic and functional profiles due to low temperatures, seasonal days and nights, and geographic isolation. These sponge holobionts contribute to nutrient cycling, structural habitat formation, and benthic ecosystem resilience. We review Antarctic sponge holobiont knowledge, integrating culture-based and molecular data across environmental and taxonomic gradients. Although microbiome data exist for only a fraction of the region's 593 known sponge species, these hosts support diverse symbionts spanning at least 63 bacterial, 5 archaeal, and 6 fungal phyla, highlighting the complexity and ecological significance of these understudied polar microbiomes. A conserved core microbiome, dominated by Proteobacteria, Bacteroidetes, Nitrospinae, and Planctomycetes, occurs across Antarctic sponges, alongside taxa shaped by host identity, depth, and environment. Metagenomic data indicate microbial nitrogen cycling, chemoautotrophic carbon fixation, and stress tolerance. Despite these advances, major knowledge gaps remain, particularly in deep-sea and sub-Antarctic regions, along with challenges in taxonomy, methodological biases, and limited functional insights. We identify key research priorities, including developing standardised methodologies, expanded sampling across ecological and depth gradients, and integrating multi-omics with environmental and host metadata. Antarctic sponge holobionts provide a tractable model for investigating microbial symbiosis, functional adaptation, and ecosystem processes in one of Earth's most rapidly changing marine environments.
Collapse
Affiliation(s)
- Qi Yang
- CSIRO Agriculture and Food, Urrbrae, SA, 5064, Australia.
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Rachel Downey
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, 2601, Australia
| | - Jonathan S Stark
- East Antarctic Monitoring Program, Australian Antarctic Division, Kingston, TAS, 7050, Australia
| | - Glenn J Johnstone
- East Antarctic Monitoring Program, Australian Antarctic Division, Kingston, TAS, 7050, Australia
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
2
|
González-Aravena M, Perrois G, Font A, Cárdenas CA, Rondon R. Microbiome profile of the Antarctic clam Laternula elliptica. Braz J Microbiol 2024; 55:487-497. [PMID: 38157148 PMCID: PMC10920576 DOI: 10.1007/s42770-023-01200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
The filter feeder clam Laternula elliptica is a key species in the Antarctic ecosystem. As a stenothermal benthic species, it has a poor capacity for adaptation to small temperature variations. Despite their ecological importance and sensitivity to climate change, studies on their microbiomes are lacking. The goal of this study was to characterize the bacterial communities of L. elliptica and the tissues variability of this microbiome to provide an initial insight of host-microbiota interactions. We investigated the diversity and taxonomic composition of bacterial communities of L. elliptica from five regions of the body using high-throughput 16S rRNA gene sequencing. The results showed that the microbiome of L. elliptica tended to differ from that of the surrounding seawater samples. However, there were no significant differences in the microbial composition between the body sites, and only two OTUs were present in all samples, being considered core microbiome (genus Moritella and Polaribacter). No significant differences were detected in diversity indexes among tissues (mean 626.85 for observed OTUs, 628.89 Chao1, 5.42 Shannon, and 0.87 Simpson). Rarefaction analysis revealed that most tissues reached a plateau of OTU number according to sample increase, with the exception of Siphon samples. Psychromonas and Psychrilyobacter were particularly abundant in L. elliptica whereas Fluviicola dominated seawater and siphons. Typical polar bacteria were Polaribacter, Shewanella, Colwellia, and Moritella. We detected the prevalence of pathogenic bacterial sequences, particularly in the family Arcobacteraceae, Pseudomonadaceae, and Mycoplasmataceae. The prokaryotic diversity was similar among tissues, as well as their taxonomic composition, suggesting a homogeneity of the microbiome along L. elliptica body. The Antarctic clam population can be used to monitor the impact of human activity in areas near Antarctic stations that discharge wastewater.
Collapse
Affiliation(s)
| | - Garance Perrois
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| |
Collapse
|
3
|
Papale M, Giannarelli S, Azzaro di Rosamarina M, Ghezzi L, Lo Giudice A, Rizzo C. Chemical and microbiological insights into two littoral Antarctic demosponge species: Haliclona ( Rhizoniera) dancoi (Topsent 1901) and Haliclona ( Rhizoniera) scotti (Kirkpatrick 1907). Front Microbiol 2024; 15:1341641. [PMID: 38404594 PMCID: PMC10884823 DOI: 10.3389/fmicb.2024.1341641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Antarctic Porifera have gained increasing interest as hosts of diversified associated microbial communities that could provide interesting insights on the holobiome system and its relation with environmental parameters. Methods The Antarctic demosponge species Haliclona dancoi and Haliclona scotti were targeted for the determination of persistent organic pollutant (i. e., polychlorobiphenyls, PCBs, and polycyclic aromatic hydrocarbons, PAHs) and trace metal concentrations, along with the characterization of the associated prokaryotic communities by the 16S rRNA next generation sequencing, to evaluate possible relationships between pollutant accumulation (e.g., as a stress factor) and prokaryotic community composition in Antarctic sponges. To the best of our knowledge, this approach has been never applied before. Results Notably, both chemical and microbiological data on H. scotti (a quite rare species in the Ross Sea) are here reported for the first time, as well as the determination of PAHs in Antarctic Porifera. Both sponge species generally contained higher amounts of pollutants than the surrounding sediment and seawater, thus demonstrating their accumulation capability. The structure of the associated prokaryotic communities, even if differing at order and genus levels between the two sponge species, was dominated by Proteobacteria and Bacteroidota (with Archaea abundances that were negligible) and appeared in sharp contrast to communities inhabiting the bulk environment. Discussions Results suggested that some bacterial groups associated with H. dancoi and H. scotti were significantly (positively or negatively) correlated to the occurrence of certain contaminants.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council, Messina, Italy
| | - Stefania Giannarelli
- Department of Chemical and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Lisa Ghezzi
- Department of Earth Sciences, University of Pisa, Pisa, Italy
| | | | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council, Messina, Italy
- Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|
4
|
Ochoa-Sánchez M, Acuña Gomez EP, Ramírez-Fenández L, Eguiarte LE, Souza V. Current knowledge of the Southern Hemisphere marine microbiome in eukaryotic hosts and the Strait of Magellan surface microbiome project. PeerJ 2023; 11:e15978. [PMID: 37810788 PMCID: PMC10557944 DOI: 10.7717/peerj.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lia Ramírez-Fenández
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
- Centro de Desarrollo de Biotecnología Industrial y Bioproductos, Antofagasta, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
5
|
De Castro-Fernández P, Angulo-Preckler C, García-Aljaro C, Avila C, Cutignano A. A Chemo-Ecological Investigation of Dendrilla antarctica Topsent, 1905: Identification of Deceptionin and the Effects of Heat Stress and Predation Pressure on Its Terpene Profiles. Mar Drugs 2023; 21:499. [PMID: 37755112 PMCID: PMC10532619 DOI: 10.3390/md21090499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Marine sponges usually host a wide array of secondary metabolites that play crucial roles in their biological interactions. The factors that influence the intraspecific variability in the metabolic profile of organisms, their production or ecological function remain generally unknown. Understanding this may help predict changes in biological relationships due to environmental variations as a consequence of climate change. The sponge Dendrilla antarctica is common in shallow rocky bottoms of the Antarctic Peninsula and is known to produce diterpenes that are supposed to have defensive roles. Here we used GC-MS to determine the major diterpenes in two populations of D. antarctica from two islands, Livingston and Deception Island (South Shetland Islands). To assess the potential effect of heat stress, we exposed the sponge in aquaria to a control temperature (similar to local), heat stress (five degrees higher) and extreme heat stress (ten degrees higher). To test for defence induction by predation pressure, we exposed the sponges to the sea star Odontaster validus and the amphipod Cheirimedon femoratus. Seven major diterpenes were isolated and identified from the samples. While six of them were already reported in the literature, we identified one new aplysulphurane derivative that was more abundant in the samples from Deception Island, so we named it deceptionin (7). The samples were separated in the PCA space according to the island of collection, with 9,11-dihydrogracilin A (1) being more abundant in the samples from Livingston, and deceptionin (7) in the samples from Deception. We found a slight effect of heat stress on the diterpene profiles of D. antarctica, with tetrahydroaplysulphurin-1 (6) and the gracilane norditerpene 2 being more abundant in the group exposed to heat stress. Predation pressure did not seem to influence the metabolite production. Further research on the bioactivity of D. antarctica secondary metabolites, and their responses to environmental changes will help better understand the functioning and fate of the Antarctic benthos.
Collapse
Affiliation(s)
- Paula De Castro-Fernández
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain;
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Napoli, Italy;
| | - Carlos Angulo-Preckler
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain;
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Napoli, Italy;
| |
Collapse
|
6
|
Freitas MAMD, Cunha-Ferreira IC, Leal CV, Fernandez JCC, Omachi CY, Campos LS, Masi BP, Krüger RH, Hajdu E, Thompson CC, Thompson FL. Microbiome diversity from sponges biogeographically distributed between South America and Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163256. [PMID: 37011689 DOI: 10.1016/j.scitotenv.2023.163256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Sponges from South America and Antarctica are evolutionarily closely related. Specific symbiont signatures that could differentiate these two geographic regions are unknown. This study aimed to investigate the microbiome diversity of sponges from South America and Antarctica. In total 71 sponge specimens were analyzed (Antarctica: N = 59, 13 different species; South America: N = 12, 6 different species). Illumina 16S rRNA sequences were generated (2.88 million sequences; 40K ± 29K/sample). The most abundant symbionts were heterotrophic (94.8 %) and belonged mainly to Proteobacteria and Bacteroidota. EC94 was the most abundant symbiont and dominated the microbiome of some species (70-87 %), comprising at least 10 phylogroups. Each of the EC94 phylogroups was specific to one genus or species of sponge. Furthermore, South America sponges had higher abundance of photosynthetic microorganisms (2.3 %) and sponges from Antarctica, the highest abundance of chemosynthetic (5.5 %). Sponge symbionts may contribute to the function of their hosts. The unique features from each of these two regions (e.g., light, temperature, and nutrients) possibly stimulate distinct microbiome diversity from sponges biogeographically distributed across continents.
Collapse
Affiliation(s)
- Mayanne A M de Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Camille V Leal
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio C C Fernandez
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia Y Omachi
- Laboratory of Environmental Indicators, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lucia S Campos
- Department of Zoology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno P Masi
- Laboratory of Marine Ecology and Fishery Oceanography of the Amazon (LEMOPA), Socio environmental and Water Resources Institute (ISARH), Federal Rural University of the Amazon (UFRA), Belém, PA, Brazil
| | - Ricardo H Krüger
- Laboratory of Enzymology, Biology Institute, University of Brasília (UNB), Brasília, Brazil
| | - Eduardo Hajdu
- Laboratory of Environmental Indicators, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Hardoim CCP, Hardoim PR, Lôbo-Hajdu G, Custódio MR, Thomas T. The microbiome of the sponge Aplysina caissara in two sites with different levels of anthropogenic impact. FEMS Microbiol Lett 2023; 370:fnad064. [PMID: 37401172 DOI: 10.1093/femsle/fnad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Despite the important roles that marine sponges play in ecosystem functioning and structuring, little is known about how the sponge holobiont responds to local anthropogenic impacts. Here we assess the influence of an impacted environment (Praia Preta) on the microbial community associated with the endemic sponge Aplysina caissara in comparison to a less-impacted area (Praia do Guaecá) from the coast of São Paulo state (Brazil, southwestern Atlantic coast). We hypothesized that the local anthropogenic impacts will change the microbiome of A. caissara and that the community assembly will be driven by a different process (i.e. deterministic versus stochastic) under distinct levels of impact. The microbiome at the amplicon sequence variants level was found to be statistically distinct between sponges from the different sites, and this was also seen for the microbial communities of the surrounding seawater and sediments. Microbial communities of A. caissara from both sites were found to be assembled by deterministic processes, even though the sites presented distinct anthropogenic impacts, showing a pivotal role of the sponge host in selecting its own microbiome. Overall, this study revealed that local anthropogenic impacts altered the microbiome of A. caissara; however, assembly processes are largely determined by the sponge host.
Collapse
Affiliation(s)
- Cristiane C P Hardoim
- São Paulo State University, Praça Infante Dom Henrique s/nº, Parque Bitaru, São Vicente, São Paulo, CEP 11.330-900, Brazil
- Graduate Program in Evolution and Diversity of the Federal University of ABC, Av. dos Estados, 5001, Bairro Bangu, Santo André, São Paulo, CEP 09210-580, Brazil
| | - Pablo R Hardoim
- São Paulo State University, Praça Infante Dom Henrique s/nº, Parque Bitaru, São Vicente, São Paulo, CEP 11.330-900, Brazil
| | - Gisele Lôbo-Hajdu
- Department of Genetics, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, CEP: 20550-013, Brazil
| | - Márcio R Custódio
- Department of Genetics, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, CEP: 20550-013, Brazil
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14 , 101, São Paulo, CEP 05508-090, Brazil
| | - Torsten Thomas
- Department of Genetics, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, CEP: 20550-013, Brazil
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Cleary DFR, Polónia ARM, Swierts T, Coelho FJRC, de Voogd NJ, Gomes NCM. Spatial and environmental variables structure sponge symbiont communities. Mol Ecol 2022; 31:4932-4948. [PMID: 35881675 PMCID: PMC9804187 DOI: 10.1111/mec.16631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 01/05/2023]
Abstract
Understanding the maintenance and origin of beta diversity is a central topic in ecology. However, the factors that drive diversity patterns and underlying processes remain unclear, particularly for host-prokaryotic associations. Here, beta diversity patterns were studied in five prokaryotic biotopes, namely, two high microbial abundance (HMA) sponge taxa (Xestospongia spp. and Hyrtios erectus), one low microbial abundance (LMA) sponge taxon (Stylissa carteri), sediment and seawater sampled across thousands of kilometres. Using multiple regression on distance matrices (MRM), spatial (geographic distance) and environmental (sea surface temperature and chlorophyll α concentrations) variables proved significant predictors of beta diversity in all five biotopes and together explained from 54% to 82% of variation in dissimilarity of both HMA species, 27% to 43% of variation in sediment and seawater, but only 20% of variation of the LMA S. carteri. Variance partitioning was subsequently used to partition the variation into purely spatial, purely environmental and spatially-structured environmental components. The amount of variation in dissimilarity explained by the purely spatial component was lowest for S. carteri at 11% and highest for H. erectus at 55%. The purely environmental component, in turn, only explained from 0.15% to 2.83% of variation in all biotopes. In addition to spatial and environmental variables, a matrix of genetic differences between pairs of sponge individuals also proved a significant predictor of variation in prokaryotic dissimilarity of the Xestospongia species complex. We discuss the implications of these results for the HMA-LMA dichotomy and compare the MRM results with results obtained using constrained ordination and zeta diversity.
Collapse
Affiliation(s)
- Daniel F. R. Cleary
- CESAM ‐ Centre for Environmental and Marine Studies, Department of BiologyUniversity of AveiroAveiroPortugal
| | - Ana R. M. Polónia
- CESAM ‐ Centre for Environmental and Marine Studies, Department of BiologyUniversity of AveiroAveiroPortugal
| | - Thomas Swierts
- Marine Biodiversity, Naturalis Biodiversity CenterLeidenThe Netherlands,Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | - Francisco J. R. C. Coelho
- CESAM ‐ Centre for Environmental and Marine Studies, Department of BiologyUniversity of AveiroAveiroPortugal
| | - Nicole J. de Voogd
- Marine Biodiversity, Naturalis Biodiversity CenterLeidenThe Netherlands,Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | - Newton C. M. Gomes
- CESAM ‐ Centre for Environmental and Marine Studies, Department of BiologyUniversity of AveiroAveiroPortugal
| |
Collapse
|
9
|
Lo Giudice A, Rizzo C. Bacteria Associated with Benthic Invertebrates from Extreme Marine Environments: Promising but Underexplored Sources of Biotechnologically Relevant Molecules. Mar Drugs 2022; 20:617. [PMID: 36286440 PMCID: PMC9605250 DOI: 10.3390/md20100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024] Open
Abstract
Microbe-invertebrate associations, commonly occurring in nature, play a fundamental role in the life of symbionts, even in hostile habitats, assuming a key importance for both ecological and evolutionary studies and relevance in biotechnology. Extreme environments have emerged as a new frontier in natural product chemistry in the search for novel chemotypes of microbial origin with significant biological activities. However, to date, the main focus has been microbes from sediment and seawater, whereas those associated with biota have received significantly less attention. This review has been therefore conceived to summarize the main information on invertebrate-bacteria associations that are established in extreme marine environments. After a brief overview of currently known extreme marine environments and their main characteristics, a report on the associations between extremophilic microorganisms and macrobenthic organisms in such hostile habitats is provided. The second part of the review deals with biotechnologically relevant bioactive molecules involved in establishing and maintaining symbiotic associations.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| |
Collapse
|
10
|
Cophylogeny and convergence shape holobiont evolution in sponge-microbe symbioses. Nat Ecol Evol 2022; 6:750-762. [PMID: 35393600 DOI: 10.1038/s41559-022-01712-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Symbiotic microbial communities of sponges serve critical functions that have shaped the evolution of reef ecosystems since their origins. Symbiont abundance varies tremendously among sponges, with many species classified as either low microbial abundance (LMA) or high microbial abundance (HMA), but the evolutionary dynamics of these symbiotic states remain unknown. This study examines the LMA/HMA dichotomy across an exhaustive sampling of Caribbean sponge biodiversity and predicts that the LMA symbiotic state is the ancestral state among sponges. Conversely, HMA symbioses, consisting of more specialized microorganisms, have evolved multiple times by recruiting similar assemblages, mostly since the rise of scleractinian-dominated reefs. Additionally, HMA symbioses show stronger signals of phylosymbiosis and cophylogeny, consistent with stronger co-evolutionary interaction in these complex holobionts. These results indicate that HMA holobionts are characterized by increased endemism, metabolic dependence and chemical defences. The selective forces driving these patterns may include the concurrent increase in dissolved organic matter in reef ecosystems or the diversification of spongivorous fishes.
Collapse
|
11
|
Happel L, Rondon R, Font A, González-Aravena M, Cárdenas CA. Stability of the Microbiome of the Sponge Mycale ( Oxymycale) acerata in the Western Antarctic Peninsula. Front Microbiol 2022; 13:827863. [PMID: 35444618 PMCID: PMC9014287 DOI: 10.3389/fmicb.2022.827863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
The sponge microbiome, especially in Low Microbial Abundance (LMA) species, is expected to be influenced by the local environment; however, contrasting results exist with evidence showing that host specificity is also important, hence suggesting that the microbiome is influenced by host-specific and environmental factors. Despite sponges being important members of Southern Ocean benthic communities, their relationships with the microbial communities they host remain poorly studied. Here, we studied the spatial and temporal patterns of the microbiota associated with the ecologically important LMA sponge M. acerata at sites along ∼400 km of the Western Antarctic Peninsula (WAP) to assess patterns in the core and variable microbial components of the symbiont communities of this sponge species. The analyses of 31 samples revealed that the microbiome of M. acerata is composed of 35 prokaryotic phyla (3 Archaea, 31 Bacteria, and one unaffiliated), being mainly dominated by Proteobacteria with Gammaproteobacteria as the most dominant class. The core community was composed of six prokaryotic OTUs, with gammaproteobacterial OTU (EC94 Family), showing a mean abundance over 65% of the total abundance. Despite some differences in rare OTUs, the core community did not show clear patterns in diversity and abundance associated with specific sites/environmental conditions, confirming a low variability in community structure of this species along the WAP. The analysis at small scale (Doumer Island, Palmer Archipelago) showed no differences in space and time in the microbiome M. acerata collected at sites around the island, sampled in three consecutive years (2016-2018). Our results highlight the existence of a low spatial and temporal variability in the microbiome of M. acerata, supporting previous suggestions based on limited studies on this and other Antarctic sponges.
Collapse
Affiliation(s)
- Lea Happel
- IMBRSea International Masters Program, Ghent University, Ghent, Belgium
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | | | - César A. Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| |
Collapse
|
12
|
Cristi A, Parada-Pozo G, Morales-Vicencio F, Cárdenas CA, Trefault N. Variability in Host Specificity and Functional Potential of Antarctic Sponge-Associated Bacterial Communities. Front Microbiol 2022; 12:771589. [PMID: 35095792 PMCID: PMC8792898 DOI: 10.3389/fmicb.2021.771589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Sponge-associated microorganisms are essential for sponge survival. They play an important role in recycling nutrients and, therefore, in the maintenance of the ecosystem. These microorganisms are diverse, species-specific, and different from those in the surrounding seawater. Bacterial sponge symbionts have been extensively studied in the tropics; however, little is known about these microorganisms in sponges from high-latitude environments. Sponges can cover up to 80% of the benthos in Antarctica and are crucial architects for the marine food web. In this study, we present analyses of the bacterial symbionts of three sponges: Haliclona (Rhizoniera) sp., Hymeniacidon torquata, and Isodictya kerguelenensis from the Western Antarctic Peninsula (WAP) with the aim to determine variations on the specificity of the bacteria–sponge interactions and potential signatures on their predicted functional profiles. We use high-throughput 16S rRNA gene sequencing of 30 sponge individuals inhabiting South Bay (Palmer Archipelago, WAP) to describe their microbiome taxonomy and diversity and predict potential functional profiles based on this marker gene. Our work shows similar bacterial community composition profiles among the same sponge species, although the symbiotic relationship is not equally conserved among the three Antarctic sponges. The number of species-specific core operational taxonomic units (OTUs) of these Antarctic sponges was low, with important differences between the total abundance accounted for these OTUs. Only eight OTUs were shared between the three sponge species. Analyses of the functional potential revealed that despite the high host–symbiont specificity, the inferred functions are conserved among these microbiomes, although with differences in the abundance of specific functions. H. torquata showed the highest level of intra-specificity and a higher potential of pathways related to energy metabolism, metabolisms of terpenoids and polyketides, and biosynthesis of other secondary metabolites. Overall, this work shows variations in the specificity of the sponge-associated bacterial communities, differences in how hosts and symbionts establish their relations, and in their potential functional capabilities.
Collapse
Affiliation(s)
- Antonia Cristi
- Centro GEMA – Genómica, Ecología y Medio Ambiente, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Génesis Parada-Pozo
- Centro GEMA – Genómica, Ecología y Medio Ambiente, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Felipe Morales-Vicencio
- Centro GEMA – Genómica, Ecología y Medio Ambiente, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - César A. Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Nicole Trefault
- Centro GEMA – Genómica, Ecología y Medio Ambiente, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- *Correspondence: Nicole Trefault,
| |
Collapse
|
13
|
Florez JZ, Camus C, Hengst MB, Buschmann AH. A mesocosm study on bacteria-kelp interactions: Importance of nitrogen availability and kelp genetics. JOURNAL OF PHYCOLOGY 2021; 57:1777-1791. [PMID: 34570392 DOI: 10.1111/jpy.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Macroalgal holobiont studies involve understanding interactions between the host, its microbiota, and the environment. We analyzed the effect of bacteria-kelp interactions on phenotypic responses of two genetically distinct populations of giant kelp, Macrocystis pyrifera (north and south), exposed to different nitrogen (N) concentrations. In co-culture experiments with different N concentration treatments, we evaluated kelp growth responses and changes in three specific molecular markers associated with the N cycle, both in epiphytic bacteria (relative abundance of nrfA-gene: cytochrome c nitrite reductase) and macroalgae (expression of NR-gene: nitrate reductase; GluSyn-gene: glutamate synthase). Both kelp populations responded differently to N limitation, with M. pyrifera-south sporophytes having a lower specific growth rate (SGR) under N-limiting conditions than the northern population; M. pyrifera-north sporophytes showed no significant differences in SGR when exposed to low-N and high-N concentrations. This corresponded to a higher GluSyn-gene expression in the M. pyrifera-north sporophytes and the co-occurrence of specific nrfA bacterial taxa. These bacteria may increase ammonium availability under low-N concentrations, allowing M. pyrifera-north to optimize nutrient assimilation by increasing the expression of GluSyn. We conclude that bacteria-kelp interactions are important in enhancing kelp growth rates under low N availability, although this effect may be regulated by the genetic background of kelp populations.
Collapse
Affiliation(s)
- July Z Florez
- Programa de Doctorado en Ciencias mención Conservación y Manejo de Recursos Naturales, Universidad de Los Lagos, Puerto Montt, Chile
- Centro i˜mar and CeBiB, Universidad de Los Lagos, Puerto Montt, Chile
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile
| | - Carolina Camus
- Centro i˜mar and CeBiB, Universidad de Los Lagos, Puerto Montt, Chile
| | - Martha B Hengst
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Biotecnología y Bioingeniería (CeBiB), Santiago, Chile
| | | |
Collapse
|
14
|
Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Dobson ADW, Laport MS. Not That Close to Mommy: Horizontal Transmission Seeds the Microbiome Associated with the Marine Sponge Plakina cyanorosea. Microorganisms 2020; 8:E1978. [PMID: 33322780 PMCID: PMC7764410 DOI: 10.3390/microorganisms8121978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 01/28/2023] Open
Abstract
Marine sponges are excellent examples of invertebrate-microbe symbioses. In this holobiont, the partnership has elegantly evolved by either transmitting key microbial associates through the host germline and/or capturing microorganisms from the surrounding seawater. We report here on the prokaryotic microbiota during different developmental stages of Plakina cyanorosea and their surrounding environmental samples by a 16S rRNA metabarcoding approach. In comparison with their source adults, larvae housed slightly richer and more diverse microbial communities, which are structurally more related to the environmental microbiota. In addition to the thaumarchaeal Nitrosopumilus, parental sponges were broadly dominated by Alpha- and Gamma-proteobacteria, while the offspring were particularly enriched in the Vibrionales, Alteromonodales, Enterobacterales orders and the Clostridia and Bacteroidia classes. An enterobacterial operational taxonomic unit (OTU) was the dominant member of the strict core microbiota. The most abundant and unique OTUs were not significantly enriched amongst the microbiomes from host specimens included in the sponge microbiome project. In a wider context, Oscarella and Plakina are the sponge genera with higher divergence in their associated microbiota compared to their Homoscleromorpha counterparts. Our results indicate that P. cyanorosea is a low microbial abundance sponge (LMA), which appears to heavily depend on the horizontal transmission of its microbial partners that likely help the sponge host in the adaptation to its habitat.
Collapse
Affiliation(s)
- Bruno F. R. Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
| | - Isabelle R. Lopes
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Anna L. B. Canellas
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Guilherme Muricy
- Laboratório de Biologia de Porifera, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940040, Brazil;
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella S. Laport
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| |
Collapse
|
15
|
Liao L, Su SY, Zhang YJ, Liu H, Zhang XY, Zhang J, Wen J, Chen B, Yu Y. Pseudopuniceibacterium antarcticum sp. nov., isolated from an Antarctic marine sponge. Int J Syst Evol Microbiol 2020; 71. [PMID: 33332260 DOI: 10.1099/ijsem.0.004605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, rod-shaped, non-motile bacterium, designated strain HQ09T, was isolated from a marine sponge off the coast of Fields Peninsula, West Antarctica. Strain HQ09T grew at 4-35 °C (optimum, 25 °C), pH 5-9 (optimum, pH 7.0), and with 1-10% NaCl (optimum, 2 %). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain HQ09T was affiliated with the genus Pseudopuniceibacterium in the family Rhodobacteraceae, sharing 99.64 % identity with the type strain of Pseudopuniceibacterium sediminis, the only known species in the genus. However, the low digital DNA-DNA hybridization (dDDH) (27.2 %) and average nucleotide identity (ANI) (83.63 %) values between strain HQ09T and the type strain of Pseudopuniceibacterium sediminis indicated that they did not belong to the same species. Strain HQ09T could also be differentiated from Pseudopuniceibacterium sediminis by many phenotypic characteristics. The major fatty acids (>5 %) of strain HQ09T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), 11-methyl C18 : 1 ω7c, C16 : 0 and C19 : 0 cyclo ω8c. The polar lipids included phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids and one unidentified phospholipid. The predominant respiratory quinone was ubiquinone 10 (Q-10). The genomic DNA G+C content was 62.63 mol%. Four secondary metabolite biosynthetic gene clusters were detected in the genome, potentially producing ectoine and three types of unknown compounds. On the basis of the polyphasic evidences obtained in this study, strain HQ09T represents a novel species of the genus Pseudopuniceibacterium, for which the name Pseudopuniceibacterium antarcticum sp. nov. is proposed, with the type strain being HQ09T (=KCTC 52229T=CGMCC 1.15538T).
Collapse
Affiliation(s)
- Li Liao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.,Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai, 200136, PR China
| | - Shi-Yuan Su
- Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai, 200136, PR China
| | - Yan-Jiao Zhang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Huan Liu
- Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai, 200136, PR China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Jin Zhang
- Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai, 200136, PR China
| | - Jiao Wen
- Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai, 200136, PR China
| | - Bo Chen
- Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai, 200136, PR China
| | - Yong Yu
- Key Laboratory of Polar Science, MNR, Polar Research Institute of China, Shanghai, 200136, PR China
| |
Collapse
|
16
|
Rondon R, González-Aravena M, Font A, Osorio M, Cárdenas CA. Effects of Climate Change Stressors on the Prokaryotic Communities of the Antarctic Sponge Isodictya kerguelenensis. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Papale M, Rizzo C, Fani R, Bertolino M, Costa G, Paytuví-Gallart A, Schiaparelli S, Michaud L, Azzaro M, Lo Giudice A. Exploring the Diversity and Metabolic Profiles of Bacterial Communities Associated With Antarctic Sponges (Terra Nova Bay, Ross Sea). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Yang Q, Franco CMM, Lin HW, Zhang W. Untapped sponge microbiomes: structure specificity at host order and family levels. FEMS Microbiol Ecol 2020; 95:5554005. [PMID: 31494678 DOI: 10.1093/femsec/fiz136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Sponges are complex holobionts in which the structure of the microbiome has seldom been characterized above the host species level. The hypothesis tested in this study is that the structure of the sponge microbiomes is specific to the host at the order and family levels. This was done by using 33 sponge species belonging to 19 families representing five orders. A combination of three primer sets covering the V1-V8 regions of the 16S rRNA gene provided a more comprehensive coverage of the microbiomes. Both the diversity and structure of sponge microbiomes were demonstrated to be highly specific to the host phylogeny at the order and family levels. There are always dominant operational taxonomic units (OTUs) (relative abundance >1%) shared between microbial communities of sponges within the same family or order, but these shared OTUs showed high levels of dissimilarity between different sponge families and orders. The unique OTUs for a particular sponge family or order could be regarded as their 'signature identity'. 70%-87% of these unique OTUs (class level) are unaffiliated and represent a vast resource of untapped microbiota. This study contributes to a deeper understanding on the concept of host-specificity of sponge microbiomes and highlights a hidden reservoir of sponge-associated microbial resources.
Collapse
Affiliation(s)
- Qi Yang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia.,Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Christopher M M Franco
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Hou-Wen Lin
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia.,Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
19
|
Uncovering the Core Microbiome and Distribution of Palmerolide in Synoicum adareanum Across the Anvers Island Archipelago , Antarctica. Mar Drugs 2020; 18:md18060298. [PMID: 32498449 PMCID: PMC7345734 DOI: 10.3390/md18060298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023] Open
Abstract
Polar marine ecosystems hold the potential for bioactive compound biodiscovery, based on their untapped macro- and microorganism diversity. Characterization of polar benthic marine invertebrate-associated microbiomes is limited to few studies. This study was motivated by our interest in better understanding the microbiome structure and composition of the ascidian, Synoicum adareanum, in which palmerolide A (PalA), a bioactive macrolide with specificity against melanoma, was isolated. PalA bears structural resemblance to a hybrid nonribosomal peptide-polyketide that has similarities to microbially-produced macrolides. We conducted a spatial survey to assess both PalA levels and microbiome composition in S. adareanum in a region of the Antarctic Peninsula near Anvers Island (64°46′ S, 64°03′ W). PalA was ubiquitous and abundant across a collection of 21 ascidians (3 subsamples each) sampled from seven sites across the Anvers Island Archipelago. The microbiome composition (V3–V4 16S rRNA gene sequence variants) of these 63 samples revealed a core suite of 21 bacterial amplicon sequence variants (ASVs)—20 of which were distinct from regional bacterioplankton. ASV co-occurrence analysis across all 63 samples yielded subgroups of taxa that may be interacting biologically (interacting subsystems) and, although the levels of PalA detected were not found to correlate with specific sequence variants, the core members appeared to occur in a preferred optimum and tolerance range of PalA levels. These results, together with an analysis of the biosynthetic potential of related microbiome taxa, describe a conserved, high-latitude core microbiome with unique composition and substantial promise for natural product biosynthesis that likely influences the ecology of the holobiont.
Collapse
|
20
|
Steinert G, Busch K, Bayer K, Kodami S, Arbizu PM, Kelly M, Mills S, Erpenbeck D, Dohrmann M, Wörheide G, Hentschel U, Schupp PJ. Compositional and Quantitative Insights Into Bacterial and Archaeal Communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida). Front Microbiol 2020; 11:716. [PMID: 32390977 PMCID: PMC7193145 DOI: 10.3389/fmicb.2020.00716] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/27/2020] [Indexed: 12/01/2022] Open
Abstract
In the present study, we profiled bacterial and archaeal communities from 13 phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the associated bacteria and archaea were quantified by real-time qPCR. Our results show that bacterial communities from the deep-sea sponges are mostly host-species specific similar to what has been observed for shallow-water demosponges. The archaeal deep-sea sponge community structures are different from the bacterial community structures in that they are almost completely dominated by a single family, which are the ammonia-oxidizing genera within the Nitrosopumilaceae. Remarkably, the archaeal communities are mostly specific to individual sponges (rather than sponge-species), and this observation applies to both hexactinellids and demosponges. Finally, archaeal 16s gene numbers, as detected by quantitative real-time PCR, were up to three orders of magnitude higher than in shallow-water sponges, highlighting the importance of the archaea for deep-sea sponges in general.
Collapse
Affiliation(s)
- Georg Steinert
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Kathrin Busch
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Kristina Bayer
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sahar Kodami
- German Center for Marine Biodiversity Research, Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Michelle Kelly
- National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand
| | - Sadie Mills
- National Institute of Water and Atmospheric Research, Ltd., Wellington, New Zealand
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Dohrmann
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrecht University of Kiel, Kiel, Germany
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| |
Collapse
|
21
|
Cárdenas CA, Font A, Steinert G, Rondon R, González-Aravena M. Temporal Stability of Bacterial Communities in Antarctic Sponges. Front Microbiol 2019; 10:2699. [PMID: 31824467 PMCID: PMC6883807 DOI: 10.3389/fmicb.2019.02699] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022] Open
Abstract
Marine sponges host dense, diverse, and species-specific microbial communities around the globe; however, most of the current knowledge is restricted to species from tropical and temperate waters. Only recently, some studies have assessed the microbiome of a few Antarctic sponges; however, contrary to low mid-latitude sponges, the knowledge about temporal (stability) patterns in the bacterial communities of Antarctic sponges is absent. Here, we studied the temporal patterns of bacterial communities in the Antarctic sponges Mycale (Oxymycale) acerata, Isodictya sp., Hymeniacidon torquata, and Tedania (Tedaniopsis) wellsae that were tagged in situ and monitored during three austral summers over a 24-month period. By using amplicon sequencing of the bacterial 16S rRNA gene we found that the microbiome differed between species. In general, bacterial communities were dominated by gammaproteobacterial OTUs; however, M. acerata showed the most distinct pattern, being dominated by a single betaproteobacterial OTU. The analysis at OTU level (defined at 97% sequence similarity) showed a highly stable bacterial community through time, despite the abnormal seawater temperatures (reaching 3°C) and rates of temperature increase of 0.15°C day-1 recorded in austral summer 2017. Sponges were characterized by a small core bacterial community that accounted for a high percentage of the abundance. Overall, no consistent changes in core OTU abundance were recorded for all studied species, confirming a high temporal stability of the microbiome. In addition, predicted functional pathway profiles showed that the most abundant pathways among all sponges belonged mostly to metabolism pathway groups (e.g., amino acid, carbohydrate, energy, and nucleotide). The predicted functional pathway patterns differed among the four sponge species. However, no clear temporal differences were detected supporting what was found in terms of the relatively stable composition of the bacterial communities.
Collapse
Affiliation(s)
- César A. Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | | |
Collapse
|
22
|
Savoca S, Lo Giudice A, Papale M, Mangano S, Caruso C, Spanò N, Michaud L, Rizzo C. Antarctic sponges from the Terra Nova Bay (Ross Sea) host a diversified bacterial community. Sci Rep 2019; 9:16135. [PMID: 31695084 PMCID: PMC6834628 DOI: 10.1038/s41598-019-52491-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/04/2019] [Indexed: 11/23/2022] Open
Abstract
Sponges represent important habitats for a community of associated (micro)organisms. Even if sponges dominate vast areas of the Antarctic shelves, few investigations have been performed on Antarctic sponge-associated bacteria. Using a culture-dependent approach, the composition of the bacterial communities associated with 14 Antarctic sponge species from different sites within the Terra Nova Bay (Ross Sea) area was analyzed. Overall, isolates were mainly affiliated to Gammaproteobacteria, followed by Actinobacteria and CF group of Bacteroidetes, being the genera Pseudoalteromonas, Arthrobacter and Gillisia predominant, respectively. Alphaproteobacteria and Firmicutes were less represented. Cluster analyses highlighted similarities/differences among the sponge-associated bacterial communities, also in relation to the sampling site. The gammaproteobacterial Pseudoalteromonas sp. SER45, Psychrobacter sp. SER48, and Shewanella sp. SER50, and the actinobacterial Arthrobacter sp. SER44 phylotypes occurred in association with almost all the analyzed sponge species. However, except for SER50, these phylotypes were retrieved also in seawater, indicating that they may be transient within the sponge body. The differences encountered within the bacterial communities may depend on the different sites of origin, highlighting the importance of the habitat in structuring the composition of the associated bacterial assemblages. Our data support the hypothesis of specific ecological interactions between bacteria and Porifera.
Collapse
Affiliation(s)
- Serena Savoca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Universitàdi Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Angelina Lo Giudice
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Universitàdi Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy. .,Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche (CNR-ISP), Spianata San Raineri 86, 98122, Messina, Italy.
| | - Maria Papale
- Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche (CNR-ISP), Spianata San Raineri 86, 98122, Messina, Italy
| | - Santina Mangano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Universitàdi Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Consolazione Caruso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Universitàdi Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Nunziacarla Spanò
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, A.O.U. Policlinico "G. Martino", Torre Biologica, Via Consolare Valeria, 98125, Messina, Italy
| | | | - Carmen Rizzo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Universitàdi Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
23
|
Benthic primary production and respiration of shallow rocky habitats: a case study from South Bay (Doumer Island, Western Antarctic Peninsula). Polar Biol 2019; 42:1459-1474. [PMID: 31462853 PMCID: PMC6690856 DOI: 10.1007/s00300-019-02533-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 11/25/2022]
Abstract
Rocky benthic communities are common in Antarctic coastal habitats; yet little is known about their carbon turnover rates. Here, we performed a broad survey of shallow ( < 65 m depth) rocky ice-scoured habitats of South Bay (Doumer Island, Western Antarctic Peninsula), combining (i) biodiversity assessments from benthic imaging, and (ii) in situ benthic dissolved oxygen (O2) exchange rates quantified by the aquatic eddy covariance technique. The 18 study sites revealed a gradual transition from macroalgae and coralline-dominated communities at ice-impacted depths (15–25 m; zone I) to large suspension feeders (e.g., sponges, bivalves) at depth zone II (25–40 m) and extensive suspension feeders at the deepest study location (zone III; 40–65 m). Gross primary production (GPP) in zone I was up to 70 mmol O2 m−2 d−1 and dark ecosystem respiration (ER) ranged from 15 to 90 mmol m−2 d−1. Zone II exhibited reduced GPP (average 1.1 mmol m−2 d−1) and ER rates from 6 to 36 mmol m−2 d−1, whereas aphotic zone III exhibited ER between 1 and 6 mmol m−2 d−1. Benthic ER exceeded GPP at all study sites, with daily net ecosystem metabolism (NEM) ranging from − 22 mmol m−2 d−1 at the shallow sites to − 4 mmol m−2 d−1 at 60 m. Similar NEM dynamics have been observed for hard-substrate Arctic habitats at comparable depths. Despite relatively high GPP during summer, coastal rocky habitats appear net heterotrophic. This is likely due to active drawdown of organic material by suspension-feeding communities that are key for biogeochemical and ecological functioning of high-latitude coastal ecosystems.
Collapse
|