1
|
Ewbank AC, Catão-Dias JL, Navas-Suarez PE, Duarte-Benvenuto A, Zamana-Ramblas R, Ferreira-Machado E, Lial HC, Ibáñez-Porras P, Sacristán I, Sacristán C. Novel Alpha-, Beta-, and Gammaherpesviruses in Neotropical Carnivores of Brazil. Transbound Emerg Dis 2024; 2024:1347516. [PMID: 40303167 PMCID: PMC12020407 DOI: 10.1155/2024/1347516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/27/2023] [Accepted: 05/08/2024] [Indexed: 05/02/2025]
Abstract
The knowledge regarding infectious agents affecting wildlife is crucial for species' conservation. We hypothesized that herpesviruses are present in wild Neotropical carnivores. Herein, we used DNA polymerase and glycoprotein B broad-spectrum PCRs to molecularly survey the presence of herpesviruses in spleen and/or lung samples of 53 wild Neotropical carnivores of Brazil, comprising the families Canidae, Felidae, Mustelidae, and Procyonidae. The percentage of PCR-positives was 28.3% (15/53). An alphaherpesvirus was found in a Neotropical river otter (Lontra longicaudis, 1/1), a betaherpesvirus in a lesser grison (Galictis cuja, 1/3), and different gammaherpesviruses in Neotropical river otter (1/1), lesser grison (1/3), crab-eating raccoons (Procyon cancrivorus, 8/9), South American coati (Nasua nasua, 1/2), southern tiger cat (Leopardus guttulus, 1/2), jaguarundi (Puma yagouaroundi, 1/5), and ocelot (Leopardus pardalis, 1/10). None of the tested canids were herpesvirus-positive. This is the first report of herpesvirus in procyonids, and in jaguarundi, southern tiger cat, lesser grison, and Neotropical river otter. This study broadens the host range of herpesviruses in Neotropical carnivores.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Faculdade de Medicina Veterinária e ZootecniaUniversidade de São Paulo Av. Prof. Orlando Marques de Paiva, 87-Butantã, São Paulo05508-270SPBrazil
- Centro de Investigación en Sanidad Animal (CISA-INIA)Spanish National Research Council (CSIC) Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos28130Spain
| | - José Luiz Catão-Dias
- Faculdade de Medicina Veterinária e ZootecniaUniversidade de São Paulo Av. Prof. Orlando Marques de Paiva, 87-Butantã, São Paulo05508-270SPBrazil
| | - Pedro Enrique Navas-Suarez
- Faculdade de Medicina Veterinária e ZootecniaUniversidade de São Paulo Av. Prof. Orlando Marques de Paiva, 87-Butantã, São Paulo05508-270SPBrazil
| | - Aricia Duarte-Benvenuto
- Faculdade de Medicina Veterinária e ZootecniaUniversidade de São Paulo Av. Prof. Orlando Marques de Paiva, 87-Butantã, São Paulo05508-270SPBrazil
| | - Roberta Zamana-Ramblas
- Faculdade de Medicina Veterinária e ZootecniaUniversidade de São Paulo Av. Prof. Orlando Marques de Paiva, 87-Butantã, São Paulo05508-270SPBrazil
| | - Eduardo Ferreira-Machado
- Faculdade de Medicina Veterinária e ZootecniaUniversidade de São Paulo Av. Prof. Orlando Marques de Paiva, 87-Butantã, São Paulo05508-270SPBrazil
| | - Henrique Christino Lial
- Faculdade de Medicina Veterinária e ZootecniaUniversidade de São Paulo Av. Prof. Orlando Marques de Paiva, 87-Butantã, São Paulo05508-270SPBrazil
| | - Pablo Ibáñez-Porras
- Centro de Investigación en Sanidad Animal (CISA-INIA)Spanish National Research Council (CSIC) Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos28130Spain
| | - Irene Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA)Spanish National Research Council (CSIC) Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos28130Spain
| | - Carlos Sacristán
- Faculdade de Medicina Veterinária e ZootecniaUniversidade de São Paulo Av. Prof. Orlando Marques de Paiva, 87-Butantã, São Paulo05508-270SPBrazil
- Centro de Investigación en Sanidad Animal (CISA-INIA)Spanish National Research Council (CSIC) Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos28130Spain
| |
Collapse
|
2
|
Martins NB, de Almeida JCN, Gonçalves MSS, Gila LI, Yogui DR, Alves MH, Desbiez ALJ, Brandão PE, da Hora AS. Occurrence of Typical Domestic Animal Viruses in Wild Carnivorans: An Emerging Threat to the Conservation of Endangered Species. Transbound Emerg Dis 2024; 2024:3931047. [PMID: 40303121 PMCID: PMC12016978 DOI: 10.1155/2024/3931047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 05/02/2025]
Abstract
Wild species are susceptible to several typical domestic animal pathogens, and the increasingly close contact between these groups is a predictive factor for disease exposure. Some viruses are important and old-known, and others are emerging or reemerging for domestic carnivorans and have been identified as threats to the conservation of wild mammals. The purpose of the study was to investigate the occurrence of bocaparvoviruses (BoVs, Parvoviridae family, Parvovirinae subfamily, Bocaparvovirus genus), parvoviruses (Parvoviridae family, Parvovirinae subfamily, Protoparvovirus genus, Protoparvovirus carnivoran1), hepadnaviruses (Hepadnaviridae family), coronaviruses (Coronaviridae family, Orthocoronavirinae subfamily), paramyxoviruses (Paramyxoviridae family) and canine distemper virus (Orthoparamyxovirinae subfamily, Morbillivirus genus, Morbillivirus canis), poxviruses (Poxviridae family), feline herpesvirus (Orthoherpesviridae family, Alphaherpesvirinae subfamily, Varicellovirus genus, Varicellovirus felidalpha1), feline calicivirus (Caliciviridae family, Vesivirus genus, FCV), feline immunodeficiency virus (Retroviridae family, Orthoretrovirinae subfamily, Lentivirus genus, FIV), feline leukemia virus (Retroviridae family, Orthoretrovirinae subfamily, Gammaretrovirus genus, FeLV), and gammaherpesviruses (Orthoherpesviridae family, Gammaherpesvirinae subfamily) in wild carnivorans. A total of 30 biological samples from the families Canidae, Felidae, Mephitidae, Mustelidae, and Procyonidae were evaluated. All animals were victims of vehicular collisions in the state of Mato Grosso do Sul, Brazil. Canine parvovirus (CPV-2) DNA was detected in the spleen of a bush dog (Speothos venaticus), a jaguarundi (Puma yagouaroundi), and a jaguar (Panthera onca), FeLV proviral DNA was found in the spleen of an ocelot (Leopardus pardalis); while CDV RNA was detected in the liver of a jaguarundi. Phylogenetic analysis carried out with the partial sequence of the CPV-2 VP2 gene and the U3 (LTR) gag region of FeLV showed 100% identity with strains obtained from domestic dogs and cats, respectively. The approximation between wild and domestic animals favors the transmission of pathogens, especially between phylogenetically close species, such as members of the Canidae and Felidae families. Identification of the DNA and RNA of potentially fatal viruses such as CPV-2, FeLV, and CDV in four wilds endangered to extinction and understudied species contributes to our understanding of the pathogens circulating in this free-ranging and vulnerable population.
Collapse
Affiliation(s)
- Nathana B. Martins
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Julio C. Neves de Almeida
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Marianne S. S. Gonçalves
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Lana I. Gila
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Débora R. Yogui
- Instituto de Conservação de Animais Silvestres (ICAS), Mato Grosso do Sul 79070-180, Campo Grande, Brazil
- Postgraduate Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Mato Grosso do Sul 79070-900, Campo Grande, Brazil
- Nashville Zoo, Nashville 37211, TN, USA
| | - Mario H. Alves
- Instituto de Conservação de Animais Silvestres (ICAS), Mato Grosso do Sul 79070-180, Campo Grande, Brazil
- Postgraduate Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Mato Grosso do Sul 79070-900, Campo Grande, Brazil
| | - Arnaud L. J. Desbiez
- Instituto de Conservação de Animais Silvestres (ICAS), Mato Grosso do Sul 79070-180, Campo Grande, Brazil
- Royal Zoological Society of Scotland (RZSS), Murrayfield, Edinburgh EH12 6TS, UK
| | - Paulo E. Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo 05339-003, Brazil
| | - Aline S. da Hora
- Laboratory of Veterinary Etiological Investigation, School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| |
Collapse
|
3
|
Dannemiller NG, Kechejian S, Kraberger S, Logan K, Alldredge M, Crooks KR, VandeWoude S, Carver S. Diagnostic Uncertainty and the Epidemiology of Feline Foamy Virus in Pumas (Puma concolor). Sci Rep 2020; 10:1587. [PMID: 32005906 PMCID: PMC6994588 DOI: 10.1038/s41598-020-58350-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022] Open
Abstract
Feline foamy virus (FFV) is a contact-dependent retrovirus forming chronic, largely apathogenic, infections in domestic and wild felid populations worldwide. Given there is no current ‘gold standard’ diagnostic test for FFV, efforts to elucidate the ecology and epidemiology of the virus may be complicated by unknown sensitivity and specificity of diagnostic tests. Using Bayesian Latent Class Analysis, we estimated the sensitivity and specificity of the only two FFV diagnostic tests available—ELISA and qPCR—as well as the prevalence of FFV in a large cohort of pumas from Colorado. We evaluated the diagnostic agreement of ELISA and qPCR, and whether differences in their diagnostic accuracy impacted risk factor analyses for FFV infection. Our results suggest ELISA and qPCR did not have strong diagnostic agreement, despite FFV causing a persistent infection. While both tests had similar sensitivity, ELISA had higher specificity. ELISA, but not qPCR, identified age to be a significant risk factor, whereas neither qPCR nor ELISA identified sex to be a risk factor. This suggests FFV transmission in pumas may primarily be via non-antagonistic, social interactions between adult conspecifics. Our study highlights that combined use of qPCR and ELISA for FFV may enhance estimates of the true prevalence of FFV and epidemiological inferences.
Collapse
Affiliation(s)
- Nicholas G Dannemiller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Sarah Kechejian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Simona Kraberger
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kenneth Logan
- Colorado Parks and Wildlife, Montrose, Colorado, USA
| | | | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
4
|
Hendrikse LD, Kambli A, Kayko C, Canuti M, Rodrigues B, Stevens B, Vashon J, Lang AS, Needle DB, Troyer RM. Identification of a Novel Gammaherpesvirus in Canada lynx ( Lynx canadensis). Viruses 2019; 11:v11040363. [PMID: 31010021 PMCID: PMC6520957 DOI: 10.3390/v11040363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses (GHVs) infect many animal species and are associated with lymphoproliferative disorders in some. Previously, we identified several novel GHVs in North American felids; however, a GHV had never been identified in Canada lynx (Lynx canadensis). We, therefore, hypothesized the existence of an unidentified GHV in lynx. Using degenerate nested and subsequently virus-specific PCR, we amplified and sequenced 3.4 kb of DNA from a novel GHV in lynx, which we named Lynx canadensis gammaherpesvirus 1 (LcaGHV1). Phylogenetic analysis determined that LcaGHV1 is a distinct GHV species belonging to the genus Percavirus. We then estimated the prevalence of LcaGHV1 in lynx by developing a PCR-based assay and detected LcaGHV1 DNA in 36% (95% CI: 22-53%) of lynx spleen DNA samples from Maine, USA and 17% (95% CI: 8-31%) from Newfoundland, Canada. The LcaGHV1 DNA sequences from Maine and Newfoundland lynx were nearly identical to each other (two nucleotide substitutions in 3.4 kb), suggesting that the unique lynx subspecies present on the island of Newfoundland (Lynx canadensis subsolanus) is infected with virus that very closely resembles virus found in mainland lynx. The potential ecologic and pathologic consequences of this novel virus for Canada lynx populations warrant further study.
Collapse
Affiliation(s)
- Liam D Hendrikse
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1, Canada.
| | - Ankita Kambli
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1, Canada.
| | - Caroline Kayko
- Map and Data Centre, Western Libraries, University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1, Canada.
| | - Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NF A1B 3X9, Canada.
| | - Bruce Rodrigues
- Wildlife Division, Newfoundland and Labrador Department of Fisheries and Land Resources, P.O. Box 2007, Corner Brook, NF A2H 7S1, Canada.
| | - Brian Stevens
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture, University of New Hampshire, 21 Botanical Lane, Durham, NH 03824, USA.
- Canadian Wildlife Health Cooperative⁻Ontario/Nunavut, Guelph, ON N1G 2W1, Canada.
| | - Jennifer Vashon
- Maine Department of Inland Fisheries and Wildlife, 650 State St., Bangor, ME 04401, USA.
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NF A1B 3X9, Canada.
| | - David B Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture, University of New Hampshire, 21 Botanical Lane, Durham, NH 03824, USA.
| | - Ryan M Troyer
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1, Canada.
| |
Collapse
|