1
|
Alvarez F, Piccirillo CA. The functional adaptation of effector Foxp3 + regulatory T cells to pulmonary inflammation. Eur J Immunol 2023; 53:e2250273. [PMID: 37366319 DOI: 10.1002/eji.202250273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
During infections, the timings of effector differentiation of pulmonary immune responses are of paramount importance, as pathogen persistence and unsuppressed inflammation can rapidly lead to a loss of function, increased frailty, and death. Thus, both an efficient clearance of the danger and a rapid resolution of inflammation are critical to host survival. We now know that tissue-localized FoxP3+ regulatory T cells, a subset of CD4+ T cells, are highly attuned to the type of immune response, acquiring unique phenotypic characteristics that allow them to adapt their suppressive functions with the nature of inflammatory cells. To achieve this, activated effector TREG cells acquire specialized TH 1, TH 2, and TH 17-like characteristics that allow them to migrate, survive, and time their function(s) through refined mechanisms. Herein, we describe how this process requires a unique developmental path that includes the acquisition of master transcription factors and the expression of receptors adapted to sense local danger signals that are found during pulmonary inflammation. In turn, we offer an overview of how these characteristics promote the capacity of local effector TREG cells to proliferate, survive, and display suppressive strategies to resolve lung injury.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Lombardelli L, Logiodice F, Kullolli O, Haller H, Agostinis C, Bulla R, Rukavina D, Piccinni MP. At Embryo Implantation Site IL-35 Secreted by Trophoblast, Polarizing T Cells towards IL-35+ IL-10+ IL-4+ Th2-Type Cells, Could Favour Fetal Allograft Tolerance and Pregnancy Success. Int J Mol Sci 2022; 23:ijms23094926. [PMID: 35563316 PMCID: PMC9103079 DOI: 10.3390/ijms23094926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
We investigated the role of rhIL-35, at low concentrations compatible with those produced by human trophoblast cells (less than 1 ng/mL), on human T helper (Th) cell functions and the presence of decidual IL-35-producing Th cells in human pregnancy. We found that human trophoblast cells produced IL-35 but not IL-4 or IL-10. RhIL-35, at concentrations produced by human trophoblasts, polarized T cells towards IL-35+, IL-10+, IL-4+ Th2-type cells and to Foxp3+ EBI3+ p35+ T reg cells producing IL-35 but not IL-10 and IL-4. Moreover, rhIL-35 at low concentrations did not suppress the proliferation of Th cells but stimulated IL-4 and IL-10 production by established Th clones. In particular, Th1-type clones acquired the capacity to produce IL-4. In addition, purified human trophoblast cell supernatants containing IL-35 upregulated IL-4 and IL-10 production by Th clones. Finally, IL-35+, IL-10+, IL-4+ Th2-type cells, which were found to be induced by low concentrations of IL-35 compatible with those produced by human trophoblasts, are exclusively present in the decidua of a successful pregnancy and at the embryo implantation site, suggesting their stringent dependence on trophoblast cells. Thus, the proximity of Th cells to IL-35-producing trophoblasts could be the determining factor for the differentiation of IL-35+, IL-10+, IL-4+ Th2-type cells that are crucial for human pregnancy success.
Collapse
Affiliation(s)
- Letizia Lombardelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.L.); (F.L.); (O.K.)
| | - Federica Logiodice
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.L.); (F.L.); (O.K.)
| | - Ornela Kullolli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.L.); (F.L.); (O.K.)
| | - Herman Haller
- Department of Gynecology and Obstetrics, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia;
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Daniel Rukavina
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia;
| | - Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.L.); (F.L.); (O.K.)
- Correspondence: ; Tel.: +39-055-275-8338
| |
Collapse
|
3
|
Zhu JJ, Shan NN. Immunomodulatory cytokine interleukin-35 and immune thrombocytopaenia. J Int Med Res 2020; 48:300060520976477. [PMID: 33356722 PMCID: PMC7768574 DOI: 10.1177/0300060520976477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Considerable attention has been paid to interleukin (IL)-35 because of its immunosuppressive effects in a variety of autoimmune diseases. IL-35, a recently identified cytokine of the IL-12 family, is a negative regulatory factor secreted by IL-35-inducible regulatory T cells (iTr35 cells) and the recently reported regulatory B cells (Breg cells). Four biological effects of IL-35 have been discovered in vitro and in vivo: (i) suppression of T cell proliferation; (ii) conversion of naive T cells into iTr35 cells; (iii) downregulation of type 17 helper T (Th17) cells; and (iv) conversion of Breg cells into a Breg subset that produces IL-35 and IL-10. IL-35 plays an important role in a variety of autoimmune diseases, such as rheumatoid arthritis, allergic asthma and systemic lupus erythematosus. Primary immune thrombocytopaenia (ITP), which is characterized by isolated thrombocytopaenia and mild mucocutaneous to life-threatening bleeding, is an autoimmune disease with complex dysregulation of the immune system. Both antibody-mediated and/or T cell-mediated platelet destruction are key processes. In addition, impairment of T cells and cytokine imbalances have now been recognized to be important. This review summarizes the immunomodulatory effects of IL-35 and its role in the pathogenesis of ITP as mediated by T and B cells.
Collapse
Affiliation(s)
- Jing-Jing Zhu
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ning-Ning Shan
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
4
|
Pretreatment with interleukin 35-engineered mesenchymal stem cells protected against lipopolysaccharide-induced acute lung injury via pulmonary inflammation suppression. Inflammopharmacology 2020; 28:1269-1281. [PMID: 32170527 PMCID: PMC7095386 DOI: 10.1007/s10787-020-00696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI)-triggered pulmonary injury has been associated with high mortality, despite advances in drug treatment and supportive therapy. Remarkable progress has been made in attenuating the inflammatory injury associated with ALI using mesenchymal stem cells (MSCs)-based cell and gene therapy. However, to date, the benefits of interleukin-35 (IL-35)-modified MSCs in ALI intervention have not been investigated. In the present study, adult male C57BL/6 mice randomly received intravenous infusion of adipose-derived mesenchymal stem cells (ADSCs) constitutively expressing IL-35 (IL-35-GFP-ADSCs) or GFP (GFP-ADSCs) via retrovirus-mediated transduction (8 × 105 cells per mice) or isotonic saline 7 days before ALI modeling to investigate the effect and related mechanism. ALI was performed by lipopolysaccharide (LPS) inhalation for 24 h. Normal mice served as the sham group. The results indicated that compared with GFP-ADSCs, IL-35-modified ADSCs significantly increased cellular and pulmonary IL-10 and IL-35 production. Pretreatment with IL-35-ADSCs markedly reduced body weight loss, pulmonary wet/dry weight ratio and pathological injury. The PO2 was rescued to normal levels in mice that received IL-35-ADSCs. IL-35-ADSCs infusion apparently inhibited IL-6 release, protein leakage and MPO activity but greatly elevated IL-35 level in the bronchoalveolar lavage fluid (BALF). Splenic regulatory T cells in IL-35-ADSCs-pretreated mice got effective increase. Moreover, IL-35-ADSCs pretreatment remarkably inhibited neutrophil and macrophage infiltration and greatly decreased IL-6, tumor necrosis factor α (TNF-α) and Toll-like receptor 4 (TLR4) expression. In conclusion, pretreatment with IL-35-engineered ADSCs provided effective protection against LPS-induced ALI through suppression of pulmonary inflammation and, thus, might be a promising strategy to improve outcomes after ALI. The enhanced paracrine and immunosuppressive capacity of IL-35-ADSCs might contribute to their beneficial effects. However, further studies are needed to illuminate the detailed mechanism.
Collapse
|
6
|
Jiang H, Zhang T, Yan MX, Wu W. IL-35 inhibits CD8 + T cells activity by suppressing expression of costimulatory molecule CD28 and Th1 cytokine production. Transl Cancer Res 2019; 8:1319-1325. [PMID: 35116874 PMCID: PMC8797787 DOI: 10.21037/tcr.2019.07.30] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/31/2019] [Indexed: 11/06/2022]
Abstract
Background Interleukin-35 (IL-35), a novel immune-suppressing cytokine, can promote tumor angiogenesis and inhibits anti-tumor cytotoxic lymphocyte response. Here, we aimed to investigate the potential mechanism of the effects of IL-35 on anti-tumor cytotoxic lymphocyte. Methods Dendritic cells (DCs) were used to induce anti-tumor cytotoxic lymphocyte. Flow cytometry, carboxyfluorescein succinimidyl ester staining, ELISA assay and western blotting were used to analyze the effect of IL-35 on anti-tumor cytotoxic lymphocyte. Results We observed that IL-35 inhibited the expression of costimulatory molecule CD28 on CD8+ T cell surface and Th1 cytokine production. However, IL-35 did not inhibit anti-tumor cytotoxic lymphocyte proliferation nor enhance the expression of apoptosis-related proteins of anti-tumor cytotoxic lymphocyte. Moreover, IL-35 did not repress the expression of Fas ligand (FasL) on cytotoxic lymphocyte surface. Conclusions Our findings revealed that IL-35 can inhibit CD8+ T cells activity by suppressing the expression of costimulatory molecule CD28 and Th1 cytokine production.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Otolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Department of Radiation Oncology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Department of Otolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Eye Center, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ting Zhang
- Department of Otolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Department of Radiation Oncology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Department of Otolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Eye Center, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Mao-Xiao Yan
- Department of Otolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Department of Radiation Oncology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Department of Otolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Eye Center, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei Wu
- Department of Otolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Department of Radiation Oncology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Department of Otolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Eye Center, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|