1
|
Pourrrahim R, Farzadfar S. The Incidence and Genetic Analysis of Two Betaflexiviruses Capillovirus alphavii and Tepovirus tafpruni in Iran. THE PLANT PATHOLOGY JOURNAL 2025; 41:38-50. [PMID: 39916414 PMCID: PMC11834561 DOI: 10.5423/ppj.oa.10.2024.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 02/20/2025]
Abstract
Viral diseases have emerged as a serious threat to cherry trees production in Iran. To determine which virus(es) are present, three leaves from a sweet cherry tree (Qz5) with diffuse white blotch spots and deformation were subjected to high-throughput sequencing. After de novo assembly, blast analysis revealed that 12 contigs ranging from 360 to 7,433 nucleotides (nts) shared 78-96% nt identities with Capillovirus alphavii (cherry virus A, CVA) and seven contigs, ranging from 350 to 6,844 nts, shared 79-88% nt identities with Tepovirus tafpruni (prunus virus T, PrVT). During a survey, CVA, PrVT, and CVA + PrVT infections were detected in 12.6%, 5.1%, and 7.9% of 724 sour and sweet cherry samples. Phylogenetic analysis revealed that Iranian CVA was grouped into GIIIB, whereas PrVT fell into a distinct branch, which was confirmed by diversity plots. The within-population diversity was lower than the between-population diversity suggesting the contribution of a founder effect on diversification of CVA isolates. Host-specific codon adaptation analysis revealed the highest adaptation of CVA to sour cherry. This could suggest that sour cherry may be one of the closest Prunus species to wild progenitors. It raises the possibility that viruses such as CVA may have exerted evolutionary pressures influencing domestication processes. Additionally, the similarity index indicated that the common plum (Prunus domestica) may have exerted significant evolutionary pressure on CVA and PrVT. The association of CVA and PrVT was reported for the first time in the mid-Eurasian region, specifically in Iran, which represents an issue in phytosanitary certification of cherry plants.
Collapse
Affiliation(s)
- Reza Pourrrahim
- Plant Virus Research Department, Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, P.O. Box 19395-1454, Iran
| | - Shirin Farzadfar
- Plant Virus Research Department, Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, P.O. Box 19395-1454, Iran
| |
Collapse
|
2
|
Yarmus I, Gelbart D, Shemesh-Mayer E, Teper DD, Ment D, Faigenboim A, Peters R, Kamenetsky-Goldstein R. Pathogen Eradication in Garlic in the Phytobiome Context: Should We Aim for Complete Cleaning? PLANTS (BASEL, SWITZERLAND) 2023; 12:4125. [PMID: 38140452 PMCID: PMC10747685 DOI: 10.3390/plants12244125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Global food production is challenged by plant pathogens that cause significant crop losses. Fungi, bacteria, and viruses have long threatened sustainable and profitable agriculture. The danger is even higher in vegetatively propagated horticultural crops, such as garlic. Currently, quarantine, rouging infected plants, and control of natural vectors are used as the main means of disease and pest control in garlic crops. Agricultural biotechnology, meristem-tip culture, and cryotherapy offer solutions for virus eradication and for the multiplication of 'clean stocks', but at the same time, impact the symbiotic and beneficial components of the garlic microbiome. Our research involves the first metatranscriptomic analysis of the microbiome of garlic bulb tissue, PCR analyses, and a biological assay of endophytes and pathogens. We have demonstrated that in vitro sanitation methods, such as shoot tip culture or cryotherapy can alter the garlic microbiome. Shoot tip culture proved ineffective in virus elimination, but reduced bacterial load and eliminated fungal infections. Conversely, cryotherapy was efficient in virus eradication but demolished other components of the garlic microbiome. Garlic plants sanitized by cryotherapy exhibited a lower survival rate, and a longer in vitro regeneration period. The question arises whether total eradication of viruses, at the expense of other microflora, is necessary, or if a partial reduction in the pathogenic load would suffice for sanitized garlic production. We explore this question from both scientific and commercial perspectives.
Collapse
Affiliation(s)
- Itay Yarmus
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Dana Gelbart
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Einat Shemesh-Mayer
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Doron Dov Teper
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Dana Ment
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Adi Faigenboim
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Ross Peters
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Rina Kamenetsky-Goldstein
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| |
Collapse
|
3
|
Skoczylas J, Jędrszczyk E, Dziadek K, Dacewicz E, Kopeć A. Basic Chemical Composition, Antioxidant Activity and Selected Polyphenolic Compounds Profile in Garlic Leaves and Bulbs Collected at Various Stages of Development. Molecules 2023; 28:6653. [PMID: 37764429 PMCID: PMC10537509 DOI: 10.3390/molecules28186653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Garlic is commonly used as vegetable or spice and as a herb in folklore as well as traditional medicine in many countries. The current study aimed to compare the chemical composition, antioxidant activity, and the content of selected polyphenolic compounds in cloves as well as leaves of winter garlic plants of the Harnaś and Ornak cultivars, which are of Polish origin. Garlic was grown from cloves for three years (2018-2020) in the experimental field of the University of Agriculture in Krakow, Poland. The research material was harvested on three dates: May; June, unripe garlic plants; and in July, the plant at full maturity. The content of vitamin C in the fresh material was determined. The proximate analysis was determined in the freeze-dried plants of garlic, and the total carbohydrate content was calculated. The antioxidant activity and the content of selected polyphenolic compounds were also determined. Garlic cloves showed a higher content of dry matter, and total carbohydrates than the leaves of garlic plants. On the other hand, in the leaves, a significantly higher content of protein, total fat and ash were observed. Additionally, garlic leaves were characterised by a higher content of vitamin C, total polyphenols, and a higher antioxidant activity than garlic cloves. The leaves of young garlic plants from the May harvest were distinguished by a higher content of these compounds. The dominant phenolic compounds were catechin and epicatechin. The leaves of young plants can be a valuable source of bioactive substances, especially in early spring.
Collapse
Affiliation(s)
- Joanna Skoczylas
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Kraków, Poland; (J.S.); (K.D.)
| | - Elżbieta Jędrszczyk
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland;
| | - Kinga Dziadek
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Kraków, Poland; (J.S.); (K.D.)
| | - Ewa Dacewicz
- Department of Sanitary Engineering and Water Management, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland;
| | - Aneta Kopeć
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Kraków, Poland; (J.S.); (K.D.)
| |
Collapse
|
4
|
Duarte MF, de Andrade IA, Silva JMF, de Melo FL, Machado AM, Inoue-Nagata AK, Nagata T. Metagenomic analyses of plant virus sequences in sewage water for plant viruses monitoring. TROPICAL PLANT PATHOLOGY 2023; 48:1-9. [PMID: 37362078 PMCID: PMC10147536 DOI: 10.1007/s40858-023-00575-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/25/2023] [Indexed: 06/28/2023]
Abstract
Frequent monitoring of emerging viruses of agricultural crops is one of the most important missions for plant virologists. A fast and precise identification of potential harmful viruses may prevent the occurrence of serious epidemics. Nowadays, high-throughput sequencing (HTS) technologies became an accessible and powerful tool for this purpose. The major discussion of this strategy resides in the process of sample collection, which is usually laborious, costly and nonrepresentative. In this study, we assessed the use of sewage water samples for monitoring the widespread, numerous, and stable plant viruses using HTS analysis and RT-qPCR. Plant viruses belonged to 12 virus families were found, from which Virgaviridae, Solemoviridae, Tymoviridae, Alphaflexiviridae, Betaflexiviridae, Closteroviridae and Secoviridae were the most abundant ones with more than 20 species. Additionally, we detected one quarantine virus in Brazil and a new tobamovirus species. To assess the importance of the processed foods as virus release origins to sewage, we selected two viruses, the tobamovirus pepper mild mottle virus (PMMoV) and the carlavirus garlic common latent virus (GarCLV), to detect in processed food materials by RT-qPCR. PMMoV was detected in large amount in pepper-based processed foods and in sewage samples, while GarCLV was less frequent in dried and fresh garlic samples, and in the sewage samples. This suggested a high correlation of virus abundance in sewage and processed food sources. The potential use of sewage for a virus survey is discussed in this study. Supplementary Information The online version contains supplementary material available at 10.1007/s40858-023-00575-8.
Collapse
Affiliation(s)
| | | | | | | | - Ana Maria Machado
- Companhia de Saneamento Ambiental Do DF, ETE-Norte, Brasília, DF 70800-130 Brazil
| | | | | |
Collapse
|
5
|
Parreño R, Rodríguez-Alcocer E, Martínez-Guardiola C, Carrasco L, Castillo P, Arbona V, Jover-Gil S, Candela H. Turning Garlic into a Modern Crop: State of the Art and Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1212. [PMID: 36986902 PMCID: PMC10057115 DOI: 10.3390/plants12061212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Garlic is cultivated worldwide for the value of its bulbs, but its cultivation is challenged by the infertility of commercial cultivars and the accumulation of pathogens over time, which occurs as a consequence of vegetative (clonal) propagation. In this review, we summarize the state of the art of garlic genetics and genomics, highlighting recent developments that will lead to its development as a modern crop, including the restoration of sexual reproduction in some garlic strains. The set of tools available to the breeder currently includes a chromosome-scale assembly of the garlic genome and multiple transcriptome assemblies that are furthering our understanding of the molecular processes underlying important traits like the infertility, the induction of flowering and bulbing, the organoleptic properties and resistance to various pathogens.
Collapse
Affiliation(s)
- Ricardo Parreño
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Eva Rodríguez-Alcocer
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | - Lucía Carrasco
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Purificación Castillo
- Departamento I+D, Coopaman S.C.L., Carretera Peñas De San Pedro, km 1.6, 02006 Albacete, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
6
|
Silva JMF, Melo FL, Elena SF, Candresse T, Sabanadzovic S, Tzanetakis IE, Blouin AG, Villamor DEV, Mollov D, Constable F, Cao M, Saldarelli P, Cho WK, Nagata T. Virus classification based on in-depth sequence analyses and development of demarcation criteria using the Betaflexiviridae as a case study. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.
Collapse
Affiliation(s)
- João Marcos Fagundes Silva
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, University of Brasília, Brasília 70910-900, Brazil
| | - Fernando Lucas Melo
- Departamento de Fitopatologia, Instituto de Biología Integrativa de Sistemas, University of Brasília, Brasília 70910-900, Brazil
| | - Santiago F. Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Instituto de Biología Integrativa de Sistemas (I2 13 SysBio), CSIC-Universitat de València, Paterna 14 46980 València, Spain
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave d’Ornon, France
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland
| | | | - Dimitre Mollov
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, 97330, USA
| | - Fiona Constable
- Department of Jobs Precincts and Regions, Agriculture Victoria Research, Agribio, Bundoora, VIC 3083, Australia
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, PR China
| | - Pasquale Saldarelli
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Via Amendola 122/D, 70126 Bari, Italy
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
7
|
Shemesh-Mayer E, Gelbart D, Belausov E, Sher N, Daus A, Rabinowitch HD, Kamenetsky-Goldstein R. Garlic Potyviruses Are Translocated to the True Seeds through the Vegetative and Reproductive Systems of the Mother Plant. Viruses 2022; 14:2092. [PMID: 36298648 PMCID: PMC9612218 DOI: 10.3390/v14102092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 10/15/2023] Open
Abstract
Garlic lost its ability to produce true seeds millennia ago, and today non-fertile commercial cultivars are propagated only vegetatively. Garlic viruses are commonly carried over from one generation of vegetative propagules to the other, while nematodes and arthropods further transmit the pathogens from infected to healthy plants. A recent breakthrough in the production of true (botanical) garlic seeds resulted in rapid scientific progress, but the question of whether viruses are transmitted via seeds remains open and is important for the further development of commercial seed production. We combined morpho-physiological analysis, fluorescence in situ hybridization (FISH), and PCR analysis to follow potyvirus localization and translocation within garlic fertile plants and seeds. Spatial distribution was recorded in both vegetative and reproductive organs. We conclude that garlic potyviruses are translocated to the seeds from the infected mother plant during flower development and post-fertilization, while pollen remains virus-free and does not contribute to seed infection. Therefore, the main practical goal for virus-clean seed production in garlic is the careful maintenance of virus-free mother plants. Although garlic pollen is free of potyviral infection, the male parents' plants also need to be protected from contamination, since viral infection weakens plants, reducing flowering ability and pollen production.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Dana Gelbart
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Nisan Sher
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Ahuva Daus
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Haim D. Rabinowitch
- Robert H. Smith Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| |
Collapse
|
8
|
Prajapati MR, Manav A, Singh J, Kumar P, Kumar A, Kumar R, Prakash S, Baranwal VK. Identification and Characterization of a Garlic Virus E Genome in Garlic ( Allium sativum L.) Using High-Throughput Sequencing from India. PLANTS (BASEL, SWITZERLAND) 2022; 11:224. [PMID: 35050112 PMCID: PMC8780593 DOI: 10.3390/plants11020224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Garlic (Allium sativum L.) plants exhibiting mosaics, deformation, and yellow stripes symptoms were identified in Meerut City, Uttar Pradesh, India. To investigate the viruses in the garlic samples, the method of high-throughput sequencing (HTS) was used. Complete genome of the garlic virus E (GarV-E) isolate (NCBI accession No. MW925710) was retrieved. The virus complete genome comprises 8450 nucleotides (nts), excluding the poly (A) tail at the 3' terminus, with 5' and 3' untranslated regions (UTRs) of 99 and 384 nts, respectively, and ORFs encoding replicase with a conserved motif for RNA-dependent RNA polymerase (RdRP), TGB1, TGB2, TGB3, serine-rich protein, coat protein, and nucleic acid binding protein (NABP). The sequence homology shared 83.49-90.40% and 87.48-92.87% with those of GarV-E isolates available in NCBI at the nucleotide and amino acid levels, respectively. Phylogenetic analysis showed a close relationship of this isolate from India (MW925710) with GarV-E isolate YH (AJ292230) from Zhejiang, China. The presence of GarV-E was also confirmed by RT-PCR. The present study is the first report of GarV-E in garlic cultivar Yamuna Safed-3 grown in northern India. However, further studies are needed to confirm its role in symptom development, nationwide distribution, genetic diversity, and potential yield loss to the garlic in India.
Collapse
Affiliation(s)
- Malyaj R. Prajapati
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India; (M.R.P.); (A.M.); (P.K.); (A.K.); (R.K.)
| | - Aakansha Manav
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India; (M.R.P.); (A.M.); (P.K.); (A.K.); (R.K.)
| | - Jitender Singh
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India; (M.R.P.); (A.M.); (P.K.); (A.K.); (R.K.)
| | - Pankaj Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India; (M.R.P.); (A.M.); (P.K.); (A.K.); (R.K.)
| | - Amit Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India; (M.R.P.); (A.M.); (P.K.); (A.K.); (R.K.)
| | - Ravindra Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India; (M.R.P.); (A.M.); (P.K.); (A.K.); (R.K.)
| | - Satya Prakash
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India;
| | - Virendra Kumar Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| |
Collapse
|
9
|
Kondo H, Yoshida N, Fujita M, Maruyama K, Hyodo K, Hisano H, Tamada T, Andika IB, Suzuki N. Identification of a Novel Quinvirus in the Family Betaflexiviridae That Infects Winter Wheat. Front Microbiol 2021; 12:715545. [PMID: 34489904 PMCID: PMC8417474 DOI: 10.3389/fmicb.2021.715545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Yellow mosaic disease in winter wheat is usually attributed to the infection by bymoviruses or furoviruses; however, there is still limited information on whether other viral agents are also associated with this disease. To investigate the wheat viromes associated with yellow mosaic disease, we carried out de novo RNA sequencing (RNA-seq) analyses of symptomatic and asymptomatic wheat-leaf samples obtained from a field in Hokkaido, Japan, in 2018 and 2019. The analyses revealed the infection by a novel betaflexivirus, which tentatively named wheat virus Q (WVQ), together with wheat yellow mosaic virus (WYMV, a bymovirus) and northern cereal mosaic virus (a cytorhabdovirus). Basic local alignment search tool (BLAST) analyses showed that the WVQ strains (of which there are at least three) were related to the members of the genus Foveavirus in the subfamily Quinvirinae (family Betaflexiviridae). In the phylogenetic tree, they form a clade distant from that of the foveaviruses, suggesting that WVQ is a member of a novel genus in the Quinvirinae. Laboratory tests confirmed that WVQ, like WYMV, is potentially transmitted through the soil to wheat plants. WVQ was also found to infect rye plants grown in the same field. Moreover, WVQ-derived small interfering RNAs accumulated in the infected wheat plants, indicating that WVQ infection induces antiviral RNA silencing responses. Given its common coexistence with WYMV, the impact of WVQ infection on yellow mosaic disease in the field warrants detailed investigation.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Naoto Yoshida
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, Japan
| | - Miki Fujita
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Tetsuo Tamada
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| |
Collapse
|
10
|
Hanafi M, Tahzima R, Ben Kaab S, Tamisier L, Roux N, Massart S. Identification of Divergent Isolates of Banana Mild Mosaic Virus and Development of a New Diagnostic Primer to Improve Detection. Pathogens 2020; 9:pathogens9121045. [PMID: 33322809 PMCID: PMC7764570 DOI: 10.3390/pathogens9121045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Banana mild mosaic virus (BanMMV) (Betaflexiviridae, Quinvirinae, unassigned species) is a filamentous virus belonging to the Betaflexiviridae family. It infects Musa spp. with a very wide geographic distribution. The genome variability of plant viruses, including the members of the Betaflexiviridae family, makes their molecular detection by specific primers particularly challenging. During routine indexing of the Musa germplasm accessions, a discrepancy was observed between electron microscopy and immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) test results for one asymptomatic accession. Filamentous viral particles were observed while molecular tests failed to amplify any fragment. The accession underwent high-throughput sequencing and two complete genomes of BanMMV with 75.3% of identity were assembled. Based on these sequences and on the 54 coat protein sequences available from GenBank, a new forward primer, named BanMMV CP9, compatible with Poty1, an oligodT reverse primer already used in diagnostics, was designed. A retrospective analysis of 110 different germplasm accessions from diverse origins was conducted, comparing BanMMCP2 and BanMMV CP9 primers. Of these 110 accessions, 16 tested positive with both BanMMCP2 and BanMMV CP9, 3 were positive with only BanMMCP2 and 2 tested positive with only BanMMV CP9. Otherwise, 89 were negative with the two primers and free of flexuous virions. Sanger sequencing was performed from purified PCR products in order to confirm the amplification of the BanMMV sequence for the five accessions with contrasting results. It is highly recommended to use the two primers successively to improve the inclusiveness of the protocol.
Collapse
Affiliation(s)
- Marwa Hanafi
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
- Correspondence:
| | - Rachid Tahzima
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
| | - Sofiene Ben Kaab
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
| | - Lucie Tamisier
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
| | - Nicolas Roux
- Consultative Group on International Agricultural Research, 34090 Montpellier, France;
| | - Sébastien Massart
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
| |
Collapse
|
11
|
Maachi A, Nagata T, Silva JMF. Date palm virus A: first plant virus found in date palm trees. Virus Genes 2020; 56:792-795. [PMID: 33026576 DOI: 10.1007/s11262-020-01801-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
In this work, a novel ssRNA (+) viral genomic sequence with gene organization typical of members of the subfamily Quinvirinae (family Betaflexiviridae) was identified using high- throughput sequencing data of date palm obtained from the Sequence Read Archive database. The viral genome sequence consists of 7860 nucleotides and contains five ORFs encoding for the replication protein (Rep), triple gene block proteins 1, 2, 3 (TGB 1, 2, and 3), and coat protein (CP). Phylogenetic analysis based on the Rep and the CP amino acid sequences showed the closest relationship to garlic yellow mosaic-associated virus (GYMaV). Based on the demarcation criteria of the family Betaflexiviridae, this new virus, provisionally named date palm virus A (DPVA), could constitute a member of a novel genus. However, considering that DPVA and GYMaV share the same genomic organization and that they cluster together on the Rep phylogenetic analysis, they could also constitute a novel genus together, highlighting the necessity of a revision of the taxonomic criteria of the family Betaflexiviridae.
Collapse
Affiliation(s)
- Ayoub Maachi
- R&D Department, Abiopep S.L, Espinardo 30100, Murcia, Spain
| | - Tatsuya Nagata
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, 70910-900, Brazil
| | - João Marcos Fagundes Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, 70910-900, Brazil.
| |
Collapse
|
12
|
Choo S, Chin VK, Wong EH, Madhavan P, Tay ST, Yong PVC, Chong PP. Review: antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiol (Praha) 2020; 65:451-465. [DOI: 10.1007/s12223-020-00786-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
|