1
|
Jiang X, Wu X, Lu M, Fan W, Song J, Song F. Long non-coding RNA FAM87A is associated with overall survival and promotes cell migration and invasion in gastric cancer. Front Oncol 2024; 14:1448502. [PMID: 39386192 PMCID: PMC11461168 DOI: 10.3389/fonc.2024.1448502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Background The role of long non-coding RNAs (lncRNAs) in the invasion and metastasis of gastric cancer remains largely unclear. Methods Integrating transcriptome data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, differentially expressed genes were identified in gastric cancer. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) database-curated gene set, lncRNAs associated with invasion and metastasis were identified. The Cox analyses were performed to identify prognostic lncRNAs. The competing endogenous RNA (ceRNA) regulation network was constructed to identify hub lncRNAs in gastric cancer. Functional and pathway analyses were used to investigate the function of identified lncRNAs. RT-qPCR and Transwell assays were used to investigate the expression in gastric cancer tissues and functions in gastric cancer cell lines. Results Based on GEO and TCGA databases, 111 differentially expressed lncRNAs were identified between gastric cancer and normal samples. A total of 43 lncRNAs were significantly correlated with hallmark genes of cancer invasion and metastasis. Among them, as a hub lncRNA in the invasion-related ceRNA regulation network, FAM87A showed potential regulation on MAPK signaling and transforming growth factor (TGF) signaling cascade, such as TGFB2, TGFBR1, and TGFBR2. Furthermore, FAM87A also showed a significant correlation with cell adhesion molecules, such as Integrin alpha 6 (ITGA6) and Contactin-1 (CNTN1). RT-qPCR experiments showed that FAM87A expression was upregulated in gastric cancer tissues compared to normal samples (n = 30). Transwell assays showed that FAM87A knockdown inhibited the migration and invasion abilities of gastric cancer cells in vitro. Notably, clinical data analysis showed that lncRNA FAM87A could be an independent factor for the overall survival of patients with gastric cancer. Conclusion LncRNA FAM87A may play a pivotal role in regulating migration and invasion of gastric cancer cells. FAM87A could be a potential biomarker for the overall survival of patients with gastric cancer.
Collapse
Affiliation(s)
- Xue Jiang
- Molecular medicine and cancer research center, the basic school of Chongqing Medical University, Chongqing, China
- School of Smart Healthcare Industry, Chongqing City Management College, Chongqing, China
| | - Xiaobin Wu
- Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Manjiao Lu
- Molecular medicine and cancer research center, the basic school of Chongqing Medical University, Chongqing, China
| | - Wenna Fan
- Molecular medicine and cancer research center, the basic school of Chongqing Medical University, Chongqing, China
| | - Jing Song
- Molecular medicine and cancer research center, the basic school of Chongqing Medical University, Chongqing, China
| | - Fangzhou Song
- Molecular medicine and cancer research center, the basic school of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Wang Z, Liang X, Yi G, Wu T, Sun Y, Zhang Z, Fu M. Bioinformatics analysis proposes a possible role for long noncoding RNA MIR17HG in retinoblastoma. Cancer Rep (Hoboken) 2024; 7:e1933. [PMID: 38321787 PMCID: PMC10864729 DOI: 10.1002/cnr2.1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Retinoblastoma (RB) is the most common prevalent intraocular malignancy among infants and children, particularly in underdeveloped countries. With advancements in genomics and transcriptomics, noncoding RNAs have been increasingly utilized to investigate the molecular pathology of diverse diseases. AIMS This study aims to establish the competing endogenous RNAs network associated with RB, analyse the function of mRNAs and lncRNAs, and finds the relevant regulatory network. METHODS AND RESULTS This study establishes a network of competing endogenous RNAs by Spearman correlation analysis and prediction based on RB patients and healthy children. Enrichment analyzes based on Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes are conducted to analyze the potential biological functions of lncRNA and mRNA networks. Weighted gene co-expression network analysis (WGCNA) is employed to identify gene cluster modules exhibiting the strongest correlation with RB. The results indicate a significant correlation between the lncRNA MIR17HG (R = .73, p = .02) and the RB phenotype. ceRNA networks reveal downstream miRNAs (hsa-mir-425-5p and hsa-mir455-5p) and mRNAs (MDM2, IPO11, and ITGA1) associated with MIR17Hg. As an inhibitor of the p53 signaling pathway, MDM2 can suppress the development of RB. CONCLUSION In conclusion, lncRNAs play a role in RB, and the MIR17HG/hsa-mir-425-5p/MDM2 pathway may contribute to RB development by inhibiting the p53 signaling pathway.
Collapse
Affiliation(s)
- Zijin Wang
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaotian Liang
- Department of Cardiovascular Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Guoguo Yi
- Department of OphthalmologyThe Sixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Tong Wu
- The First Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuxin Sun
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ziran Zhang
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Fu
- Department of Ophthalmology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Ye Q, Xu G, Yuan H, Mi J, Xie Y, Li H, Li Z, Huang G, Chen X, Li W, Yang R. Urinary PART1 and PLA2R1 Could Potentially Serve as Diagnostic Markers for Diabetic Kidney Disease Patients. Diabetes Metab Syndr Obes 2023; 16:4215-4231. [PMID: 38162802 PMCID: PMC10757812 DOI: 10.2147/dmso.s445341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is a chronic renal disease which could eventually develop into renal failure. Though albuminuria and estimated glomerular filtration rate (eGFR) are helpful for the diagnosis of DKD, the lack of specific biomarkers reduces the efficiency of therapeutic interventions. Methods Based on bulk-seq of 56 urine samples collected at different time points (including 11 acquired from DKD patients and 11 from healthy controls), in corporation of scRNA-seq data of urine samples and snRNA-seq data of renal punctures from DKD patients (retrieved from NCBI GEO Omnibus), urine-kidney specific genes were identified by Multiple Biological Information methods. Results Forty urine-kidney specific genes/differentially expressed genes (DEGs) were identified to be highly related to kidney injury and proteinuria for the DKD patients. Most of these genes participate in regulating glucagon and apoptosis, among which, urinary PART1 (mainly derived from distal tubular cells) and PLA2R1 (podocyte cell surface marker) could be used together for the early diagnosis of DKD. Moreover, urinary PART1 was significantly associated with multiple clinical indicators, and remained stable over time in urine. Conclusion Urinary PART1 and PLA2R1 could be shed lights on the discovery and development of non-invasive diagnostic method for DKD, especially in early stages.
Collapse
Affiliation(s)
- Qinglin Ye
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Guiling Xu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Hao Yuan
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Junhao Mi
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yuli Xie
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Haoyu Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Zhejun Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Guanwen Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Xuesong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Rirong Yang
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
4
|
Jiang Y, Liang F, Chen R, Huang Y, Xiao Z, Zeng H, Han P, Huang X. C2orf48 promotes the progression of nasopharyngeal carcinoma by regulating high mobility group AT-hook 2. Med Oncol 2023; 40:306. [PMID: 37755629 DOI: 10.1007/s12032-023-02179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Recurrence and metastasis are the major factors affecting the survival of nasopharyngeal carcinoma (NPC), and the mechanism remains unclear. Long non-coding RNA chromosome 2 open reading frame 48 (C2orf48) has been shown to influence the prognosis of many cancers. However, C2orf48's function in NPC has not been clarified. In this investigation, C2orf48 expression in NPC was measured by quantitative real-time PCR (qRT-PCR) at the cellular and tissue levels, and the association between C2orf48 expression and the prognosis of patients with NPC was examined. Additionally, the effects of C2orf48 and high mobility group AT-hook 2 (HMGA2) upon NPC proliferation, migration, and invasion were examined employing the MTT assay, colony formation assay, and transwell assay, respectively. Furthermore, the association between C2orf48 and HMGA2 in NPC was investigated. Our research demonstrated that C2orf48 was overexpressed in NPC tissues and cell lines, and compared to patients with lower levels of C2orf48 expression, those with higher levels had poorer 5-year overall survival and progression-free survival. Functionally, C2orf48 overexpression accelerated NPC cells proliferation, migration, and invasion. Besides, the tandem mass tag (TMT) quantitative proteomic analysis indicated that HMGA2 may be a target of C2orf48. Moreover, upregulation of C2orf48 could increase HMGA2 expression, and HMGA2 silencing could counteract the proliferation, migration, and invasion changes induced by C2orf48 in NPC cells. These results reveal that overexpression of C2orf48 can promote NPC cells proliferation, migration, and invasion via regulating the expression of HMGA2 and C2orf48 may be a potentially important prognostic marker for NPC.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Faya Liang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Yongsheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
- The Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiwen Xiao
- Department of Otorhinolaryngology, Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haicang Zeng
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.
| | - Xiaoming Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.
| |
Collapse
|
5
|
Chen B, Xu K, Zhang Y, Xu P, Li C, Liu J, Xu Y. LncRNA ERVH48-1 Contributes to the Drug Resistance of Prostate Cancer and Proliferation through Sponging of miR-4784 to the Activation of the Wnt/β-Catenin Pathway. Cancers (Basel) 2023; 15:cancers15061902. [PMID: 36980789 PMCID: PMC10046998 DOI: 10.3390/cancers15061902] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/30/2023] Open
Abstract
Long noncoding RNAs (LncRNAs) are very important in the way that docetaxel resistance (DR) happens in prostate cancer (PCa) patients. ImmuneScore and StromalScore were calculated using PCa-related expression data from TCGA and the ESTIMATE algorithm. We finally found the DEGs that were related to the immune system and the stroma of the patients by making profiles of the DEGs in ImmuneScore and StromalScore. The CancerSubtypes algorithm identified prognosis-related PCa subtypes, and the GSVA assessed their pathway activity. A UniCox regression analysis was used to identify a prognosis-related differential gene set. We then used intersection analysis to identify immunological and prognostic (IP)-related genes (IPGs). The coexpression of long noncoding RNAs (lncRNAs) and IPGs was used to identify IP-related lncRNAs (IPLs). Three methods (SVM-RFE, random forest, and LASSO) were used to find genes that overlap in the GEO database. A gene signature was then validated by building an ROC curve. CIBERSORT technology was used to look at the possibility of a link between the gene signature and immune cells. LncRNA-miRNA pairs and miRNA-mRNA pairs from the miRDB and TargetScan databases were used to construct the ERVH48-1-miR-4784-WNT2B ceRNA regulation network. The concentration of docetaxel elevated the expression of ERVH48-1. Overexpression of ERVH48-1 increased PCa-DR cell proliferation, invasion, and migration while inhibiting apoptosis. ERVH48-1 increased the tumorigenicity of PCa-DR cells in nude mice. ERVH48-1, acting as a ceRNA, targeted miR-4784 to increase WNT2B expression. ICG001 therapy increased Wnt/-catenin signaling activity in PCa-DR cells by inhibiting ERVH48-1. Finally, ERVH48-1 increased docetaxel resistance in a WNT2B-dependent manner via the miR-4784/Wnt/-catenin pathway.
Collapse
Affiliation(s)
- Binshen Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yiming Zhang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chaoming Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jun Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yawen Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
6
|
Ghafouri-Fard S, Harsij A, Hussen BM, Abdullah SR, Baniahmad A, Taheri M, Sharifi G. A review on the role of long non-coding RNA prostate androgen-regulated transcript 1 (PART1) in the etiology of different disorders. Front Cell Dev Biol 2023; 11:1124615. [PMID: 36875771 PMCID: PMC9974648 DOI: 10.3389/fcell.2023.1124615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
LncRNA prostate androgen-regulated transcript 1 (PART1) is an important lncRNA in the carcinogenesis whose role has been firstly unraveled in prostate cancer. Expression of this lncRNA is activated by androgen in prostate cancer cells. In addition, this lncRNA has a role in the pathogenesis intervertebral disc degeneration, myocardial ischemia-reperfusion injury, osteoarthritis, osteoporosis and Parkinson's disease. Diagnostic role of PART1 has been assessed in some types of cancers. Moreover, dysregulation of PART1 expression is regarded as a prognostic factor in a variety of cancers. The current review provides a concise but comprehensive summary of the role of PART1 in different cancers and non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Liu H, Hei G, Zhang L, Jiang Y, Lu H. Identification of a novel ceRNA network related to prognosis and immunity in HNSCC based on integrated bioinformatic investigation. Sci Rep 2022; 12:17560. [PMID: 36266384 PMCID: PMC9584951 DOI: 10.1038/s41598-022-21473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 01/13/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by an immunosuppression environment and necessitates the development of new immunotherapy response predictors. The study aimed to build a prognosis-related competing endogenous RNA (ceRNA) network based on immune-related genes (IRGs) and analyze its immunological signatures. Differentially expressed IRGs were identified by bioinformatics analysis with Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and ImmPort databases. Finally, via upstream prognosis-related microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) prediction and co-expression analysis, we built an immune-related ceRNA network (LINC00052/hsa-miR-148a-3p/PLAU) related to HNSCC patient prognosis. CIBERSORT analysis demonstrated that there were substantial differences in 11 infiltrating immune cells in HNSCC, and PLAU was closely correlated with 10 type cells, including T cells CD8+ (R = - 0.329), T cells follicular helper (R = - 0.342) and macrophage M0 (R = 0.278). Methylation and Tumor Immune Dysfunction and Exclusion (TIDE) analyses revealed that PLAU upregulation was most likely caused by hypomethylation and that high PLAU expression may be associated with tumor immune evasion in HNSCC, respectively.
Collapse
Affiliation(s)
- Hongbo Liu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Guoli Hei
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Lu Zhang
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yanxia Jiang
- grid.412521.10000 0004 1769 1119Department of Pathology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Haijun Lu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Zhou L, Jiang J, Huang Z, Jin P, Peng L, Luo M, Zhang Z, Chen Y, Xie N, Gao W, Nice EC, Li JQ, Chen HN, Huang C. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m6A-mediated degradation of STEAP3 mRNA. Mol Cancer 2022; 21:168. [PMID: 35986274 PMCID: PMC9392287 DOI: 10.1186/s12943-022-01638-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Hypoxia, a typical hallmark of solid tumors, exhibits an essential role in the progression of colorectal cancer (CRC), in which the dysregulation of long non-coding RNAs (lncRNAs) is frequently observed. However, the underlying mechanisms are not clearly defined. Methods The TCGA database was analyzed to identify differential lncRNA expression involved in hypoxia-induced CRC progression. qRT-PCR was conducted to validate the upregulation of lncRNA STEAP3-AS1 in CRC cell lines and tumor-bearing mouse and zebrafish models under hypoxia. ChIP-qRT-PCR was used to detect the transcriptional activation of STEAP3-AS1 mediated by HIF-1α. RNA-seq, fluorescent in situ hybridization, RNA pulldown, RNA immunoprecipitation, co-immunoprecipitation, immunofluorescence and immunoblot experiments were used to ascertain the involved mechanisms. Functional assays were performed in both in vitro and in vivo models to investigate the regulatory role of STEAP3-AS1/STEAP3/Wnt/β-catenin axis in CRC proliferation and metastasis. Results Here, we identified a hypoxia-induced antisense lncRNA STEAP3-AS1 that was highly expressed in clinical CRC tissues and positively correlated with poor prognosis of CRC patients. Upregulation of lncRNA STEAP3-AS1, which was induced by HIF-1α-mediated transcriptional activation, facilitated the proliferation and metastasis of CRC cells both in vitro and in vivo. Mechanistically, STEAP3-AS1 interacted competitively with the YTH domain-containing family protein 2 (YTHDF2), a N6-methyladenosine (m6A) reader, leading to the disassociation of YTHDF2 with STEAP3 mRNA. This effect protected STEAP3 mRNA from m6A-mediated degradation, enabling the high expression of STEAP3 protein and subsequent production of cellular ferrous iron (Fe2+). Increased Fe2+ levels elevated Ser 9 phosphorylation of glycogen synthase kinase 3 beta (GSK3β) and inhibited its kinase activity, thus releasing β-catenin for nuclear translocation and subsequent activation of Wnt signaling to support CRC progression. Conclusions Taken together, our study highlights the mechanisms of lncRNA STEAP3-AS1 in facilitating CRC progression involving the STEAP3-AS1/STEAP3/Wnt/β-catenin axis, which may provide novel diagnostic biomarkers or therapeutic targets to benefit CRC treatment. Graphical abstract Hypoxia-induced HIF-1α transcriptionally upregulates the expression of lncRNA STEAP3-AS1, which interacts competitively with YTHDF2, thus upregulating mRNA stability of STEAP3 and consequent STEAP3 protein expression. The enhanced STEAP3 expression results in production of cellular ferrous iron (Fe2+), which induces the Ser 9 phosphorylation and inactivation of GSK3β, releasing β-catenin for nuclear translocation and contributing to subsequent activation of Wnt signaling to promote CRC progression.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01638-1.
Collapse
|
9
|
Ran R, Gong CY, Wang ZQ, Zhou WM, Zhang SB, Shi YQ, Ma CW, Zhang HH. Long non‑coding RNA PART1: dual role in cancer. Hum Cell 2022; 35:1364-1374. [PMID: 35864416 DOI: 10.1007/s13577-022-00752-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Increasing evidence has shown that long non-coding RNAs (lncRNAs), which are non-coding endogenous single-stranded RNAs, play an essential role in various physiological and pathological processes through transcriptional interference, post-transcriptional regulation, and epigenetic modification. Moreover, lncRNAs, as oncogenes or tumor suppressor genes, play an important role in the occurrence and development of human cancers. Prostate androgen-regulated transcript 1 (PART1) was initially identified as a carcinogenic lncRNA in prostate adenomas. The upregulated expression of PART1 plays a tumor-promoting role in liver, prostate, lung cancers, and other tumors. In contrast, the expression of PART1 is downregulated in esophageal squamous cell carcinoma, glioma, and other tumors, which may inhibit the tumor. PART1 plays a dual role in cancer and regulates cell proliferation, apoptosis, invasion, and metastasis through a variety of potential mechanisms. These findings suggest that PART1 is a promising tumor biomarker and therapeutic target. This article reviews the biological functions, related mechanisms, and potential clinical significance of PART1 in a variety of human cancers.
Collapse
Affiliation(s)
- Rui Ran
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Chao-Yang Gong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Zhi-Qiang Wang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Wen-Ming Zhou
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Shun-Bai Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Chun-Wei Ma
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Yang L, Yang T, Wang H, Dou T, Fang X, Shi L, Li X, Feng M. DNMBP-AS1 Regulates NHLRC3 Expression by Sponging miR-93-5p/17-5p to Inhibit Colon Cancer Progression. Front Oncol 2022; 12:765163. [PMID: 35574307 PMCID: PMC9092830 DOI: 10.3389/fonc.2022.765163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) act as competing endogenous RNAs (ceRNAs) in colon cancer (CC) progression, via binding microRNAs (miRNAs) to regulate the expression of corresponding messenger RNAs (mRNAs). This article aims to explore the detailed molecular mechanism of ceRNA in CC. Top mad 5000 lncRNAs and top mad 5000 mRNAs were used to perform weighted gene co-expression network analysis (WGCNA), and key modules were selected. We used 405 lncRNAs in the red module and 145 mRNAs in the purple module to build the original ceRNA network by online databases. The original ceRNA network included 50 target lncRNAs, 41 target miRNAs, and 34 target mRNAs. Fifty target lncRNAs were used to establish a prognostic risk model by univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses. LncRNAs in the risk model were used to build the secondary ceRNA network, which contained 9 lncRNAs in the risk model, 35 miRNAs, and 29 mRNAs. Survival analyses of 29 mRNAs in the secondary ceRNA network have shown HOXA10 and NHLRC3 were identified as crucial prognostic factors. Finally, we constructed the last ceRNA network including 5 lncRNAs in the risk model, 8 miRNAs, and 2 mRNAs related to prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) results revealed that DNMBP-AS1 and FAM87A were down-regulated in CC cells and tissues. Function assays showed that over-expression of DNMBP-AS1 and FAM87A inhibited CC cells proliferation and migration. Mechanism study showed that DNMBP-AS1 served as miR-93-5p/17-5p sponges and relieved the suppression effect of miR-93-5p/17-5p on their target NHLRC3. Our study suggested that DNMBP-AS1 inhibited the progression of colon cancer through the miR-93-5p/17-5p/NHLRC3 axis, which could be potential therapeutic targets for CC.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Tiecheng Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Huaqiao Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Tingting Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Xiaochang Fang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Liwen Shi
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Xuanfei Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| |
Collapse
|
11
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2022; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
12
|
LncRNA TSPEAR-AS1 predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma and promotes metastasis via miR-1915-5p. Virus Res 2022; 315:198788. [PMID: 35477008 DOI: 10.1016/j.virusres.2022.198788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) will contribute to more than half of the liver deaths worldwide. This study aimed to investigate the prognostic value of TSPEAR-AS1 in HBV-HCC and its role in the HBV-HCC progression. METHODS HBV-HCC tissue and adjacent non-cancerous tissues (ANT) were detected to figure out the expression level of TSPEAR-AS1 using real-time quantitative PCR. The relationship between TSPEAR-AS1 expression and each important clinical characteristic was evaluated. And the prognostic significance of TSPEAR-AS1 was assessed by Kaplan-Meier curve and Cox regression analysis. CCK-8 and Transwell assays were performed to observe the effects of TSPEAR-AS1 on HBV-HCC cell proliferation, migration, and invasion. RESULTS The TSPEAR-AS1 expression was downregulated in HBV-HCC tissues, as well as in HBV-HCC cell lines. The downregulation of TSPEAR-AS1 showed a significant association with TNM stage, clinical stage, and vascular invasion and predicted poor prognosis of HBV-HCC patients. Overexpression of TSPEAR-AS1 inhibited HBV-HCC cell ability of proliferation, migration, and invasiveness. TSPEAR-AS1 may bind to miR-1915-5p in HCC. CONCLUSION TSPEAR-AS1 expression was downregulated in HBV-HCC and may serve as a potential prognostic factor. TSPEAR-AS1 might exert a suppressor role in HBV-HCC through inhibiting tumor cell proliferation, migration, and invasion.
Collapse
|
13
|
Yang M, Zhang Y, Zhou Y, Zhao T, Li Z, Yue H, Piao Z. Analysis of the expression profiles of long noncoding RNAs and messenger RNAs in tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:230-239. [PMID: 35725960 DOI: 10.1016/j.oooo.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are involved in the progression of tongue squamous cell carcinoma (TSCC). Therefore, it is necessary to comprehensively investigate the role of lncRNAs in TSCC. STUDY DESIGN In this study, RNA sequencing was performed to examine the expression profiles of lncRNAs and messenger RNAs (mRNAs) of patients with TSCC. The expression of selected lncRNAs in TSCC and paired adjacent tissues as well as in cell lines was validated via quantitative real-time polymerase chain reaction (qRT-PCR). The cell function of lncRNA iodothyronine deiodinase 2 antisense RNA 1 (DIO2-AS1) overexpression was assessed through 5-(3-carboxymethoxyphenyl)-2-(4.5-dimethyl-thiazoly)-3-(4-sulfophenyl) tetrazolium inner salt and Transwell assays. RESULTS A total of 342 lncRNAs and 6392 mRNAs were differentially expressed in TSCC tissues compared with paired adjacent tissues. qRT-PCR revealed the increased expression of AC093818.1 and reduced expression of CYP4F35P and DIO2-AS1 in TSCC. Furthermore, DIO2-AS1 overexpression inhibited Cal-27 cell proliferation, migration, and invasion. CONCLUSIONS We provide evidence that DIO2-AS1 is involved in TSCC progression. This study provides a direction for subsequent research.
Collapse
Affiliation(s)
- Mi Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Yumin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Yang Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Tianyu Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Zhicong Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Haiqiong Yue
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Zhengguo Piao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China.
| |
Collapse
|
14
|
Liu X, Ma X, Li H, Wang Y, Mao M, Liang C, Hu Y. LINC00472 suppresses oral squamous cell carcinoma growth by targeting miR-455-3p/ELF3 axis. Bioengineered 2022; 13:1162-1173. [PMID: 35258410 PMCID: PMC8805930 DOI: 10.1080/21655979.2021.2018092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
LINC00472 is reported to play a role in suppressing tumors in cancers such as lung cancer and hepatocellular carcinoma, among others. We made investigations into the effects of LINC00472 in oral squamous cell carcinoma (OSCC) progression to explore the underlying molecular mechanisms. By qRT-PCR, we assessed the LINC00472 expression in OSCC tissues and cells and performed functional analysis to investigate how LINC00472/miR-455-3p/ELF3 impacts OSCC cell proliferation, apoptosis, and cell cycle. The role that LINC00472 plays in OSCC tumor growth was examined by establishing a xenograft model. Down-regulation of LINC00472 occurred in tissues and cells of an OSCC tumor. LINC00472 overexpression caused OSCC cell proliferation to be inhibited, cell apoptosis to be promoted, and cell cycle arrest to be induced. As a competing endogenous RNA (ceRNA), LINC00472 can block miR-455-3p function and further promote ELF3 expression. The overexpression of miR-455-3p or ELF3 knockdown was shown to be capable of reversing the anti-tumor effects of LINC00472 in OSCC. In vivo experiments confirmed the tumor-suppressing role of LINC00472 in the progression of OSCC. In short, we found that the novel LINC00472 inhibits OSCC growth via the miR-455-3p/ELF3 axis. LINC00472 and its targeted miR-455-3p/ELF3 axis may represent valuable targets for treating OSCC.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xinrong Ma
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hongyu Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Minghui Mao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chao Liang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Xu H, Zhang H, Tan L, Yang Y, Wang H, Zhao Q, Lu J. FAM87A as a Competing Endogenous RNA of miR-424-5p Suppresses Glioma Progression by Regulating PPM1H. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7952922. [PMID: 34712356 PMCID: PMC8546405 DOI: 10.1155/2021/7952922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023]
Abstract
Far less has been unveiled about the functions of lncRNAs on cancers yet. Here, we reported that lncRNA FAM87A, as a ceRNA of miR-424-5p, played a vital role in glioma development. qRT-PCR result indicated that FAM87A was abnormally downregulated in glioma tissue and cells. Survival analysis suggested that the FAM87A expression was negatively correlated with the survival rate. Effects of FAM87A on human glioma cell lines were also analyzed by MTT, Edu, and transwell assays. FAM87A hastened proliferation and migration of glioma cells. MiR-424-5p, predicted target of FAM87A, was fostered in glioma, which was examined by qRT-PCR. A negative correlation was indicated between FAM87A and miR-424-5p. Results of bioinformatics, dual luciferase, and RIP assays unveiled that FAM87A and miR-424-5p act upon each other. In addition, miR-424-5p targeted 3'-UTR of PPM1H. Also, effects of miR-424-5p/FAM87A on glioma cells were identified via the cell function experiments. FAM87A suppressed PPM1H by binding to miR-424-5p competitively, thereby restraining cell proliferation, migration, and invasion. Collectively, these findings illuminated a new mechanism for glioma progression. Therefore, FAM87A may act as a feasible target for glioma treatment.
Collapse
Affiliation(s)
- Hua Xu
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Haiping Zhang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China 710100
| | - Lina Tan
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Yang Yang
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Haiyun Wang
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Qin Zhao
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| | - Jun Lu
- Radiotherapy Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China 710100
| |
Collapse
|
16
|
Su L, Zhang J, Zhang X, Zheng L, Zhu Z. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma. Med Oncol 2021; 38:141. [PMID: 34655361 PMCID: PMC8520510 DOI: 10.1007/s12032-021-01594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Gallbladder cancer (GBC), the most common malignancy in the biliary tract, is highly lethal malignant due to seldomly specific symptoms in the early stage of GBC. This study aimed to identify exosome-derived miRNAs mediated competing endogenous RNAs (ceRNA) participant in GBC tumorigenesis. A total of 159 differentially expressed miRNAs (DEMs) was identified as exosome-derived miRNAs, contains 34 upregulated exo-DEMs and 125 downregulated exo-DEMs based on the expression profiles in GBC clinical samples downloaded from the Gene Expression Omnibus database with the R package. Among them, 2 up-regulated exo-DEMs, hsa-miR-125a-3p and hsa-miR-4647, and 5 down-regulated exo-DEMs, including hsa-miR-29c-5p, hsa-miR-145a-5p, hsa-miR-192-5p, hsa-miR-194-5p, and hsa-miR-338-3p, were associated with the survival of GBC patients. Results of the gene set enrichment analysis showed that the cell cycle-related pathways were activated in GBC tumor tissues, mainly including cell cycle, M phase, and cell cycle checkpoints. Furthermore, the dysregulated ceRNA network was constructed based on the lncRNA-miRNA-mRNA interactions using miRDB, TargetScan, miRTarBase, miRcode, and starBase v2.0., consisting of 27 lncRNAs, 6 prognostic exo-DEMs, and 176 mRNAs. Together with prognostic exo-DEMs, the STEAP3-AS1/hsa-miR-192-5p/MAD2L1 axis was identified, suggesting lncRNA STEAP3-AS1, might as a sponge of exosome-derived hsa-miR-192-5p, modulates cell cycle progression via affecting MAD2L1 expression in GBC tumorigenesis. In addition, the biological functions of genes in the ceRNA network were also annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Our study promotes exploration of the molecular mechanisms associated with tumorigenesis and provide potential targets for GBC diagnosis and treatment.
Collapse
Affiliation(s)
- Li Su
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jicheng Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xinglong Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Lei Zheng
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zhifa Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China
| |
Collapse
|
17
|
Chen J, Meng E, Lin Y, Shen Y, Hu C, Zhou G, Yuan C. The Role of Tumor-related LncRNA PART1 in cancer. Curr Pharm Des 2021; 27:4152-4159. [PMID: 34225608 DOI: 10.2174/1381612827666210705161955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND As we all know, long non-coding RNA (lncRNA) affects tumor progression, which has caused a great upsurge in recent years. It can also affect the growth, migration, and invasion of tumors. When we refer to the abnormal expression of lncRNA, we will find it associated with malignant tumors. In addition, lncRNA has been proved to be a key targeted gene for the treatment of some diseases. PART1, a member of lncRNA, has been reported as a regulator in the process of tumor occurrence and development. This study aims to reveal the biological functions, specific mechanisms, and clinical significance of PART1 in various tumor cells. METHODS Through the careful search of PUBMED, the mechanisms of the effect of PART1 on tumorigenesis and development are summarized. RESULTS On the one hand, the up-regulated expression of PART1 plays a tumor-promoting role in tumors, including lung cancer, prostate cancer, bladder cancer and so on. On the other hand, PART1 is down-regulated in gastric cancer, glioma and other tumors to play a tumor inhibitory role. In addition, PART1 regulates tumor growth mainly by targeting microRNA such as miR-635, directly regulating the expression of proteins such as FUS/EZH2, affecting signal pathways such as the Toll-like receptor pathway, or regulating immune cells. CONCLUSION PART1 is closely related to tumors by regulating a variety of molecular mechanisms. In addition, PART1 can be used as a clinical marker for the early diagnosis of tumors and plays an important role in tumor-targeted therapy.
Collapse
Affiliation(s)
- Jinlan Chen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Enqing Meng
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yexiang Lin
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yujie Shen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengyu Hu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
18
|
Liu ZQ, Zhang GT, Jiang L, Li CQ, Chen QT, Luo DQ. Construction and Comparison of ceRNA Regulatory Network for Different Age Female Breast Cancer. Front Genet 2021; 12:603544. [PMID: 33968126 PMCID: PMC8097183 DOI: 10.3389/fgene.2021.603544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Studies have shown the difference appearing among the prognosis of patients in different age groups. However, the molecular mechanism implicated in this disparity have not been elaborated. In this study, expression profiles of female breast cancer (BRCA) associated mRNAs, lncRNAs and miRNAs were downloaded from the TCGA database. The sample were manually classified into three groups according to their age at initial pathological diagnosis: young (age ≤ 39 years), elderly (age ≥ 65 years), and intermediate (age 40-64 years). lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was respectively constructed for different age BRCA. Then, the biological functions of differentially expressed mRNAs (DEmRNAs) in ceRNA network were further investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, survival analysis was used to identify prognostic biomarkers for different age BRCA patients. We identified 13 RNAs, 38 RNAs and 40 RNAs specific to patients aged ≤ 39 years, aged 40-64 years, and aged ≥ 65 years, respectively. Furthermore, the unique pathways were mainly enriched in cytokine-cytokine receptor interaction in patients aged 40-64 years, and were mainly enriched in TGF-beta signaling pathway in patients aged ≥ 65 years. According to the survival analysis, AGAP11, has-mir-301b, and OSR1 were respectively functioned as prognostic biomarkers in young, intermediate, and elderly group. In summary, our study identified the differences in the ceRNA regulatory networks and provides an effective bioinformatics basis for further understanding of the pathogenesis and predicting outcomes for different age BRCA.
Collapse
Affiliation(s)
- Zhi-Qin Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, College of Pharmaceutical Science, Hebei University, Baoding, China
| | - Gao-Tao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Li Jiang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Chun-Qing Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| | - Que-Ting Chen
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Du-Qiang Luo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
19
|
Wang Z, Ji X, Gao L, Guo X, Lian W, Deng K, Xing B. Comprehensive In Silico Analysis of a Novel Serum Exosome-Derived Competitive Endogenous RNA Network for Constructing a Prognostic Model for Glioblastoma. Front Oncol 2021; 11:553594. [PMID: 33747903 PMCID: PMC7973265 DOI: 10.3389/fonc.2021.553594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Glioblastoma (GBM) is one of the most aggressive brain tumors with high mortality, and tumor-derived exosomes provide new insight into the mechanisms of GBM tumorigenesis, metastasis and therapeutic resistance. We aimed to establish an exosome-derived competitive endogenous RNA (ceRNA) network for constructing a prognostic model for GBM. Methods We obtained the expression profiles of long noncoding RNAs (lncRNAs), miRNAs, and mRNAs from the GEO and TCGA databases and identified differentially expressed RNAs in GBM to construct a ceRNA network. By performing lasso and multivariate Cox regression analyses, we identified optimal prognosis-related differentially expressed lncRNAs (DElncRNAs) and generated a risk score model termed the exosomal lncRNA (exo-lncRNA) signature. The exo-lncRNA signature was subsequently validated in the CGGA GBM cohort. Finally, a novel prognostic nomogram was constructed based on the exo-lncRNA signature and clinicopathological parameters and validated in the CGGA external cohort. Based on the ceRNA hypothesis, oncocers were identified based on highly positive correlations between lncRNAs and mRNAs mediated by the same miRNAs. Furthermore, regression analyses were performed to assess correlations between the expression abundances of lncRNAs in tumors and exosomes. Results A total of 45 DElncRNAs, six DEmiRNAs, and 38 DEmRNAs were identified, and an exosome-derived ceRNA network was built. Three optimal prognostic-related DElncRNAs, HOTAIR (HR=0.341, P<0.001), SOX21-AS1 (HR=0.30, P<0.001), and STEAP3-AS1 (HR=2.47, P<0.001), were included to construct the exo-lncRNA signature, which was further proven to be an independent prognostic factor. The novel prognostic nomogram was constructed based on the exo-lncRNA signature, patient age, pharmacotherapy, radiotherapy, IDH mutation status, and MGMT promoter status, with a concordance index of 0.878. ROC and calibration plots both suggested that the nomogram had beneficial discrimination and predictive abilities. A total of 11 pairs of prognostic oncocers were identified. Regression analysis suggested excellent consistency of the expression abundance of the three exosomal lncRNAs between exosomes and tumor tissues. Conclusions Exosomal lncRNAs may serve as promising prognostic predictors and therapeutic targets. The prognostic nomogram based on the exo-lncRNA signature might provide an intuitive method for individualized survival prediction and facilitate better treatment strategies.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China
| | - Xin Ji
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, China
| |
Collapse
|
20
|
Xiong D, Wang D, Chen Y. Role of the long non-coding RNA LINC00052 in tumors. Oncol Lett 2021; 21:316. [PMID: 33692848 PMCID: PMC7933760 DOI: 10.3892/ol.2021.12577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Long intergenic non-protein coding RNA 52 (LINC00052) is a non-coding RNA with >200 nucleotides in length, which exerts important effects on several physiological and pathological processes of the human body. Recent studies have demonstrated that LINC00052 plays key roles in the tumorigenesis, progression and metastasis of multiple types of human cancer, including hepatocellular carcinoma, breast cancer, colorectal cancer, cervical carcinoma and gastric cancer. However, the associations between LINC00052 and these tumors remain unclear. The present review summarizes the biological functions of LINC00052 during the pathogenic process of certain tumors, and discusses its potential therapeutic targets.
Collapse
Affiliation(s)
- Dongmei Xiong
- Early Childhood Health Research Innovation Team, Nursing School of Chongqing Medical and Pharmaceutical College, Chongqing 401331, P.R. China
| | - Dan Wang
- Clinical Laboratory, The People's Hospital of Rongchang, Chongqing 402460, P.R. China
| | - Yanmeng Chen
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
21
|
Wang S, Fu Z, Wang Y, Sun Y, Cui L, Wang C, Liu Q, Shao D, Wang Y, Wen N. Correlation of carbonic anhydrase 9 (CA9) with pathological T-stage and prognosis in patients with oral tongue squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1521. [PMID: 33313266 PMCID: PMC7729320 DOI: 10.21037/atm-20-7144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background We explored the mechanisms underlying tumorigenesis in oral tongue squamous cell carcinoma (OTSCC) with the goal of uncovering prognostic molecular biomarkers. Methods An mRNA sequencing dataset was obtained from The Cancer Genome Atlas (TCGA) database, and differentially expressed genes (DEGs) were selected using R language software packages. Functional enrichment analysis was conducted with DAVID software and protein-protein interaction (PPI) networks were constructed using the STRING database. The relationship between hub genes and overall survival (OS) was evaluated by Kaplan-Meier analysis and Cox proportional hazard regression models. Expression of the candidate gene, carbonic anhydrase 9 (CA9), was verified by real-time RT-PCR, western blotting, and immunohistochemistry. Results DEGs (n=581) were obtained from 11 OTSCC samples and corresponding adjacent non-tumor tissues. Gene ontology (GO) analysis revealed that most DEGs were implicated in anterior/posterior pattern specification, embryonic skeletal system morphogenesis, and multicellular organism development, and pathway analysis suggested that DEGs were associated with neuroactive ligand-receptor interaction, calcium signaling pathway and transcriptional misregulation in the cancer. A PPI network consisting of 301 nodes and 2011 edges was constructed and 71 hub genes, with high degrees of connectivity in the network, were identified. Kaplan-Meier analysis of the hub genes indicated that high expression of CA9, LHX1, and KISS1R and low expression of CCKAR were associated with poor OS in OTSCC; however, only CA9 was a significant prognostic factor influencing survival in OTSCC on multivariate analysis. High expression of CA9 was associated with poor pathological T-stage. CA9 tumor specificity was confirmed using the Gene Expression Omnibus (GEO) database and further molecular tests. Conclusions We identified key DEGs that may assist in the molecular understanding of OTSCC. CA9 warrants further exploration as potential prognostic biomarker and therapeutic target in OTSCC.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Stomatology, Huangdao District Central Hospital, Qingdao, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, PLA, Beijing, China
| | - Yizhu Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yaping Sun
- Department of Stomatology, Huangdao District Central Hospital, Qingdao, China
| | - Lei Cui
- Department of Stomatology, Huangdao District Central Hospital, Qingdao, China
| | - Chunfang Wang
- Department of Stomatology, Huangdao District Central Hospital, Qingdao, China
| | - Qiaoling Liu
- Department of Oncology, Huangdao District Central Hospital, Qingdao, China
| | - Dan Shao
- Department of Stomatology, Huangdao District Central Hospital, Qingdao, China
| | - Yu Wang
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China
| | - Ning Wen
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Zhao X, Hong Y, Cheng Q, Guo L. LncRNA PART1 Exerts Tumor-Suppressive Functions in Tongue Squamous Cell Carcinoma via miR-503-5p. Onco Targets Ther 2020; 13:9977-9989. [PMID: 33116583 PMCID: PMC7548330 DOI: 10.2147/ott.s264410] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tongue squamous cell carcinoma (TSCC) accounts for one-third of oral cancers. Previous studies had reported that lncRNA/miRNA regulated the biological behaviors of different cancer cells. However, the mechanisms of PART1 in regulating tumorigenesis and TSCC development via targeting miR-503-5p had not been studied. Methods The expressions of PART1 and miR-503-5p in tissues and cultured cell lines were detected by qRT-PCR. StarBase 3.0 was used to predict the binding sites of PART1, then dual-luciferase assay and RNA pull-down assay were executed to confirm whether miR-503-5p was a target of PART1. TSCC cells were co-transfected with PART1-overexpressed plasmid or miR-503-5p mimics in vitro, and the transfection efficiency was evaluated through qRT-PCR. Western blot was performed to assess the expressions of EMT-related proteins. CCK-8 and clone formation assays were conducted to detect cell proliferation, TUNEL assay was used to detect apoptosis, and transwell assay was executed to test migration and invasion. Results The low PART1 expression and high miR-503-5p expression were found in TSCC tissues and cell lines (CAL-27 and SCC9). PART1 expression was positively correlated with patients’ prognosis. The targeting and binding relationship between PART1 and miR-503-5p was confirmed, and overexpressed PART1 diminished the expression of miR-503-5p as well. Moreover, PART1 facilitated apoptosis, inhibited proliferation, invasion and migration of TSCC cells, and these influences were impeded by miR-503-5p overexpression. Conclusion LncRNA PART1 played a cancer-suppressing role in TSCC by targeting miR-503-5p, which provided a potential target for TSCC treatment.
Collapse
Affiliation(s)
- Xiqun Zhao
- Department of Pediatric Dentistry, Jinan Stomatological Hospital, Jinan, Shandong 250001, People's Republic of China
| | - Yanqing Hong
- Prosthodontic Lab, Jinan Stomatological Hospital, Jinan, Shandong 250001, People's Republic of China
| | - Qingyuan Cheng
- Department of Stomatology, Jinan LiCheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong 250001, People's Republic of China
| | - Lixin Guo
- Department of Scientific Education, Jinan Stomatological Hospital, Jinan, Shandong 250001, People's Republic of China
| |
Collapse
|
23
|
Yu L, Yang Z, Liu Y, Liu F, Shang W, Shao W, Wang Y, Xu M, Wang YN, Fu Y, Xu X. Identification of SPRR3 as a novel diagnostic/prognostic biomarker for oral squamous cell carcinoma via RNA sequencing and bioinformatic analyses. PeerJ 2020; 8:e9393. [PMID: 32596058 PMCID: PMC7305774 DOI: 10.7717/peerj.9393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has always been one of the most aggressive and invasive cancers among oral and maxillofacial malignancies. As the morbidity and mortality of the disease have increased year by year, the search for a promising diagnostic and prognostic biomarker for the disease is becoming increasingly urgent. Tumorous and adjacent tissues were collected from three OSCC sufferers and we obtained 229 differentially expressed genes (DEGs) between tumor and normal tissues via high-throughput RNA sequence. Function and pathway enrichment analyses for DEGs were conducted to find a correlation between tumorigenesis status and DEGs. Protein interaction network and molecular complex detection (MCODE) were constructed to detect core modules. Two modules were enriched in MCODE. The diagnostic and prognostic values of the candidate genes were analyzed, which provided evidence for the candidate genes as new tumor markers. Small Proline Rich Protein 3 (SPRR3), a potential tumor marker that may be useful for the diagnosis of OSCC, was screened out. The survival analysis showed that SPRR3 under expression predicted the poor prognosis of OSCC patients. Further experiments have also shown that the expression of SPRR3 decreased as the malignancy of OSCC increased. Therefore, we believe that SPRR3 could be used as a novel diagnostic and prognostic tumor marker.
Collapse
Affiliation(s)
- Lu Yu
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| | - Zongcheng Yang
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| | - Yingjiao Liu
- School of Philosophy, Psychology and Language Sciences, College of Humanities and Social Science, The University of Edinburgh, Edinburgh, UK
| | - Fen Liu
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wenjing Shang
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wei Shao
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yue Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Man Xu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| | - Yue Fu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Luo Y, Ye J, Wei J, Zhang J, Li Y. Long non‑coding RNA‑based risk scoring system predicts prognosis of alcohol‑related hepatocellular carcinoma. Mol Med Rep 2020; 22:997-1007. [PMID: 32468063 PMCID: PMC7339747 DOI: 10.3892/mmr.2020.11179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) serve a crucial role in predicting prognosis for hepatocellular carcinoma (HCC). However, prognostic performance may not be the same for alcohol‑related HCC. The aim of the present study was to screen prognosis‑associated lncRNAs and construct a risk scoring system for alcohol‑related HCC. The expression profiles of lncRNAs in 113 patients with alcohol‑related HCC and 224 with non‑alcohol‑related HCC were obtained from The Cancer Genome Atlas (TCGA) database and screened for differentially expressed lncRNAs. Cox regression analysis was performed to identify prognosis‑associated lncRNAs and select the optimal lncRNA model. A risk scoring system was established to calculate the risk score for each patient. The prognostic ability of this system was tested. Functional enrichment analysis was performed for genes that were highly associated with lncRNA expression. A total of 102 differentially expressed lncRNAs were identified between alcohol‑related and non‑alcohol‑related HCC. Four lncRNAs (AC012640.1, AC013451.2, AC062004.1 and LINC02334) were used to construct the risk assessment model to predict overall survival (OS), and five lncRNAs (ERVH48‑1, LINC02043, LINC01605, AC062004.1 and AL139385) were used to predict recurrence‑free survival (RFS). Patients were assigned to high‑ or low‑risk groups according to the risk score. OS in the high‑risk group was significantly shorter than that of the low‑risk group. The area under the receiver operating characteristic (ROC) curve of risk scoring systems was >0.7. The risk score was an independent prognostic factor for alcohol‑related HCC. Functional enrichment analysis demonstrated that lncRNA‑related genes found in this system were mainly involved in chemical carcinogenesis, drug metabolism, and the cell cycle. In conclusion, this study developed and validated a prognostic scoring system for alcohol‑related HCC based on lncRNAs.
Collapse
Affiliation(s)
- Yue Luo
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiaxiang Ye
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiazhang Wei
- Department of Otolaryngology and Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Jinyan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongqiang Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
25
|
Zhang K, Zhou H, Yan B, Cao X. TUG1/miR-133b/CXCR4 axis regulates cisplatin resistance in human tongue squamous cell carcinoma. Cancer Cell Int 2020; 20:148. [PMID: 32390763 PMCID: PMC7201732 DOI: 10.1186/s12935-020-01224-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNA taurine upregulated 1 (TUG1) has been reported to play an important role in human cancers. However, little is known about the role of TUG1 in drug resistance and its mechanism in tongue squamous cell carcinoma (TSCC). Methods Twenty-one cisplatin-sensitive or resistant TSCC patients were enrolled in this study. Cisplatin-resistant cells (SCC25/CDDP and CAL27/CDDP) were used for experiments in vitro. Transfection was performed using Lipofectamine 2000 transfection reagent. The levels of TUG1, microRNA-133b (miR-133b) and cysteine-X-cysteine chemokine receptor 4 (CXCR4) were measured by quantitative real-time polymerase chain reaction or western blot. The cisplatin resistance was investigated by cell viability, transwell invasion and apoptosis assays. The interactions among TUG1, miR-133b and CXCR4 were evaluated by luciferase reporter assay and RNA immunoprecipitation. Murine xenograft model was established using the stably transfected CAL27/CDDP cells. Results TUG1 expression was elevated in cisplatin-resistant TSCC tissues and cells compared with that in sensitive group and its knockdown inhibited cisplatin resistance to SCC25/CDDP and CAL27/CDDP cells. miR-133b was targeted via TUG1 and its overexpression suppressed cisplatin resistance. Moreover, CXCR4 was a target of miR-133b. CXCR4 silence repressed cisplatin resistance, which was reversed by miR-133b knockdown. The level of CXCR4 protein was decreased by inhibition of TUG1 and recuperated by miR-133b knockdown. Besides, interference of TUG1 attenuated tumor growth by regulating miR-133b and CXCR4 in vivo. Conclusion Downregulation of TUG1 impeded cisplatin resistance in TSCC-resistant cells by mediating miR-133b and CXCR4, indicating TUG1 as a promising target for TSCC chemotherapy.
Collapse
Affiliation(s)
- Ke Zhang
- The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Hong Zhou
- The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Bo Yan
- The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Xuanping Cao
- The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000 Henan China
| |
Collapse
|
26
|
Gao D, Hao L, Zhao Z. Long non-coding RNA PART1 promotes intervertebral disc degeneration through regulating the miR‑93/MMP2 pathway in nucleus pulposus cells. Int J Mol Med 2020; 46:289-299. [PMID: 32319551 PMCID: PMC7255469 DOI: 10.3892/ijmm.2020.4580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the role of the long non‑coding (lnc)RNA PART1 in nucleus pulposus (NP) cells derived from patients with intervertebral disc degeneration (IDD). The level of PART1 in degenerative NP tissues from patients with IDD, bulging and herniated discs was measured by reverse transcription‑quantitative PCR (RT‑qPCR) analysis. NP cells were isolated from patients with IDD and transfected with siPART1, after which time the growth ability of the NP cells was evaluated by Cell Counting Kit‑8 and colony formation assays, and cell apoptosis was measured by flow cytometry. The levels of the cell proliferation marker Ki‑67 and the apoptosis marker cleaved caspase‑3, and the levels of genes related to extracellular matrix (ECM) synthesis and degradation, were also evaluated by western blotting and RT‑qPCR, as appropriate. Bioinformatics methods predicted that miR‑93 was sponged by PART1, and matrix metallopeptidase (MMP)2 was targeted by miR‑93, which was further confirmed by dual‑luciferase reporter assay. The levels of miR‑93 and MMP2 were also measured in NP tissues, and further rescue experiments were performed to confirm the role of the PART1/miR‑93/MMP2 pathway in NP cells. PART1 was found to be upregulated in degenerative NP tissues, and siPART1 caused an increase in cell growth ability and ECM synthesis, whereas it decreased cell apoptosis and ECM degradation in NP cells. miR‑93 was downregulated and MMP2 was upregulated in degenerative NP tissues. Rescue experiments indicated that the effects of miR‑93 inhibitor on NP cells were abolished by siPART1, and the effect of miR‑93 mimic on NP cells was rescued by MMP2 overexpression. Thus, the results of the present study demonstrated that PART1 may regulate NP cell degeneration through the miR‑93/MMP2 pathway. These findings indicate a novel signaling axis in NP cells that may be explored for the treatment of IDD.
Collapse
Affiliation(s)
- Dongmei Gao
- Department of Pain Rehabilitation, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Long Hao
- Department of Pain Rehabilitation, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Zilong Zhao
- Department of Pathology, Ankang Central Hospital, Ankang, Shaanxi 725000, P.R. China
| |
Collapse
|
27
|
Li S, Cui Z, Zhao Y, Ma S, Sun Y, Li H, Gao M, Li N, Wang Y, Tong L, Song M, Yin Z. Candidate lncRNA-microRNA-mRNA networks in predicting non-small cell lung cancer and related prognosis analysis. J Cancer Res Clin Oncol 2020; 146:883-896. [PMID: 32124023 DOI: 10.1007/s00432-020-03161-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE The role of non-coding RNA, once thought to be dark matter, is increasingly prominent in cancer. Our article explores the effect of non-coding RNA in lung adenocarcinoma and lung squamous cell carcinoma by mining TCGA public database. METHODS Download the data by applying the official TCGA software. The data were analyzed by R data analysis packages, 'edgeR', 'gplots' and 'survival'. We better illustrate the potential networks of lung cancer genes by constructing ceRNAs, using Cytoscape software. RESULTS We obtained genes which were differentially expressed in lung adenocarcinoma and lung squamous cell carcinoma analysis. Within these differentially expressed genes, we also conducted a survival analysis to find differentially expressed genes associated with prognosis in both lung adenocarcinoma and lung squamous cell carcinoma. Based on genes differentially expressed of both lung adenocarcinoma and lung squamous cell carcinoma, we constructed a ceRNA network to illustrate the mechanism of lung adenocarcinoma and lung squamous cell carcinoma. Our study analyzed genes which were differentially expressed in lung adenocarcinoma and lung squamous cell carcinoma using the TCGA database. CONCLUSION Based on this, the prognosis in both lung squamous cell carcinoma and lung adenocarcinoma was analyzed. We have also constructed a ceRNA network to provide a basis for the study of ceRNA in lung adenocarcinoma and lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Sixuan Li
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhigang Cui
- China Medical University, Shenyang, 110122, China
| | - Yuxin Zhao
- China Medical University, Shenyang, 110122, China
| | - Shuwen Ma
- China Medical University, Shenyang, 110122, China
| | - Yinghui Sun
- China Medical University, Shenyang, 110122, China
| | - Hang Li
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Min Gao
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Na Li
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Ying Wang
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Lianwei Tong
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Mingyang Song
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhihua Yin
- China Medical University, Shenyang, 110122, China.
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
28
|
Ma B, Li Y, Ren Y. Identification of a 6-lncRNA prognostic signature based on microarray re-annotation in gastric cancer. Cancer Med 2019; 9:335-349. [PMID: 31743579 PMCID: PMC6943089 DOI: 10.1002/cam4.2621] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/17/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) remains an important malignancy worldwide with poor prognosis. Long noncoding RNAs (lncRNAs) can markedly affect cancer progression. Moreover, lncRNAs have been proposed as diagnostic or prognostic biomarkers of GC. Therefore, the current study aimed to explore lncRNA‐based prognostic biomarkers for GC. LncRNA expression profiles from the Gene Expression Omnibus (GEO) database were first downloaded. After re‐annotation of lncRNAs, a univariate Cox analysis identified 177 prognostic lncRNA probes in the training set http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254 (n = 225). Multivariate Cox analysis of each lncRNA with clinical characteristics as covariates identified a total of 46 prognostic lncRNA probes. Robust likelihood‐based survival and least absolute shrinkage and selection operator (LASSO) models were used to establish a 6‐lncRNA signature with prognostic value. Receiver operating characteristic (ROC) curve analyses were employed to compare survival prediction in terms of specificity and sensitivity. Patients with high‐risk scores exhibited a significantly worse overall survival (OS) than patients with low‐risk scores (log‐rank test P‐value <.0001), and the area under the ROC curve (AUC) for 5‐year survival was 0.77. A nomogram and forest plot were constructed to compare the clinical characteristics and risk scores by a multivariable Cox regression analysis, which suggested that the 6‐lncRNA signature can independently make the prognosis evaluation of patients. Single‐sample GSEA (ssGSEA) was used to determine the relationships between the 6‐lncRNA signature and biological functions. The internal validation set http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254 (n = 75) and the external validation set http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57303 (n = 70) were successfully used to validate the robustness of our 6‐lncRNA signature. In conclusion, based on the above results, the 6‐lncRNA signature can effectively make the prognosis evaluation of GC patients.
Collapse
Affiliation(s)
- Bin Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, People's Republic of China
| | - Yongmin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, People's Republic of China
| | - Yupeng Ren
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
29
|
Cao R, Wu Q, Li Q, Yao M, Zhou H. A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma. PeerJ 2019; 7:e7360. [PMID: 31396442 PMCID: PMC6679650 DOI: 10.7717/peerj.7360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common type of head and neck squamous cell carcinoma with an unsatisfactory prognosis. The aim of this study was to identify potential prognostic mRNA biomarkers of OSCC based on analysis of The Cancer Genome Atlas (TCGA). Methods Expression profiles and clinical data of OSCC patients were collected from TCGA database. Univariate Cox analysis and the least absolute shrinkage and selection operator Cox (LASSO Cox) regression were used to primarily screen prognostic biomarkers. Then multivariate Cox analysis was performed to build a prognostic model based on the selected prognostic mRNAs. Nomograms were generated to predict the individual’s overall survival at 3 and 5 years. The model performance was assessed by the time-dependent receiver operating characteristic (ROC) curve and calibration plot in both training cohort and validation cohort (GSE41613 from NCBI GEO databases). In addition, machine learning was used to assess the importance of risk factors of OSCC. Finally, in order to explore the potential mechanisms of OSCC, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was completed. Results Three mRNAs (CLEC3B, C6 and CLCN1) were finally identified as a prognostic biomarker pattern. The risk score was imputed as: (−0.38602 × expression level of CLEC3B) + (−0.20632 × expression level of CLCN1) + (0.31541 × expression level of C6). In the TCGA training cohort, the area under the curve (AUC) was 0.705 and 0.711 for 3- and 5-year survival, respectively. In the validation cohort, AUC was 0.718 and 0.717 for 3- and 5-year survival. A satisfactory agreement between predictive values and observation values was demonstrated by the calibration curve in the probabilities of 3- and 5- year survival in both cohorts. Furthermore, machine learning identified the 3-mRNA signature as the most important risk factor to survival of OSCC. Neuroactive ligand-receptor interaction was most enriched mostly in KEGG pathway analysis. Conclusion A 3-mRNA signature (CLEC3B, C6 and CLCN1) successfully predicted the survival of OSCC patients in both training and test cohort. In addition, this signature was an independent and the most important risk factor of OSCC.
Collapse
Affiliation(s)
- Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Qiqi Wu
- Department of Endodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Qiulan Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Zhou
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
30
|
Liu Y, Ye F. Construction and integrated analysis of crosstalking ceRNAs networks in laryngeal squamous cell carcinoma. PeerJ 2019; 7:e7380. [PMID: 31367490 PMCID: PMC6657684 DOI: 10.7717/peerj.7380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumours of the head and neck. Recent evidence has demonstrated that lncRNAs play important roles in tumour progression and could be used as biomarkers for early diagnosis, prognosis, and potential therapeutic targets. The "competitive endogenous RNA (ceRNA)" hypothesis states that lncRNAs competitively bind to miRNAs through their intramolecular miRNA reaction elements (MREs) to construct a wide range of ceRNA regulatory networks. This study aims to predict the role of ceRNA network in LSCC, for advancing the understanding of underlying mechanisms of tumorigenesis. Material and Methods In this study, the functions of lncRNAs as ceRNAs in LSCC and their prognostic significance were investigated via comprehensive integrated expression profiles data of lncRNAs, mRNAs, and miRNAs obtained from The Cancer Genome Atlas (TCGA). Protein-protein interaction, gene ontology, pathway, and Kaplan-Meier curves analysis were used to profile the expression and function of altered RNAs in LSCC. Results As a result, 889 lncRNAs, 55 miRNAs and 1946 mRNAs were found to be differentially expressed in LSCC. These altered mRNAs were mainly involved in extracellular matrix organization, calcium signaling, and metabolic pathways. To study the regulatory function of lncRNAs, an lncRNA-mediated ceRNA network was constructed. This ceRNA network included 61 lncRNAs, seven miRNAs and seven target mRNAs. Of these RNAs, lncRNAs (TSPEAR-AS, CASK-AS1, MIR137HG, PART1, LSAMP-AS1), miRNA (has-mir-210) and mRNAs (HOXC13, STC2, DIO1, FOXD4L1) had a significant effect on the prognosis of LSCC. Conclusion The results of this study broaden the understanding of the mechanisms by which lncRNAs are involved in tumorigenesis. Furthermore, five lncRNAs (TSPEAR-AS, CASK-AS1, MIR137HG, PART1, LSAMP-AS1) were identified as potential prognostic biomarkers and therapeutic targets for LSCC. These results provide a basis for further experimental and clinical research.
Collapse
Affiliation(s)
- Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Fan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|