1
|
Ceccarelli DM, Evans RD, Logan M, Jones GP, Puotinen M, Petus C, Russ GR, Srinivasan M, Williamson DH. Physical, biological and anthropogenic drivers of spatial patterns of coral reef fish assemblages at regional and local scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166695. [PMID: 37660823 DOI: 10.1016/j.scitotenv.2023.166695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Species abundance, diversity and community assemblage structure are determined by multiple physical, habitat and management drivers that operate across multiple spatial scales. Here we used a multi-scale coral reef monitoring dataset to examine regional and local differences in the abundance, species richness and composition of fish assemblages in no-take marine reserve (NTMR) and fished zones at four island groups in the Great Barrier Reef Marine Park, Australia. We applied boosted regression trees to quantify the influence of 20 potential drivers on the coral reef fish assemblages. Reefs in two locations, Magnetic Island and the Keppel Islands, had distinctive fish assemblages and low species richness, while the Palm and Whitsunday Islands had similar species composition and higher species richness. Overall, our analyses identified several important physical (temperature, wave exposure) and biological (coral, turf, macroalgal and unconsolidated substratum cover) drivers of inshore reef fish communities, some of which are being altered by human activities. Of these, sea surface temperature (SST) was more influential at large scales, while wave exposure was important both within and between island groups. Species richness declined with increasing macroalgal cover and exposure to cyclones, and increased with SST. Species composition was most strongly influenced by mean SST and percent cover of macroalgae. There was substantial regional variation in the local drivers of spatial patterns. Although NTMR zoning influenced total fish density in some regions, it had negligible effects on fish species richness, composition and trophic structure because of the relatively small number of species targeted by the fishery. These findings show that inshore reef fishes are directly influenced by disturbances typical of the nearshore Great Barrier Reef, highlighting the need to complement global action on climate change with more targeted localised efforts to maintain or improve the condition of coral reef habitats.
Collapse
Affiliation(s)
- Daniela M Ceccarelli
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Geoffrey P Jones
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Caroline Petus
- Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - Garry R Russ
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Maya Srinivasan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - David H Williamson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Great Barrier Reef Marine Park Authority, Townsville, QLD 4811, Australia
| |
Collapse
|
2
|
Bonin L, Bshary R. In the absence of extensive initial training, cleaner wrasse Labroides dimidiatus fail a transitive inference task. PLoS One 2023; 18:e0287402. [PMID: 37352163 PMCID: PMC10289426 DOI: 10.1371/journal.pone.0287402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Transitive inference (TI) is a reasoning capacity that allows individuals to deduce unknown pair relationships from previous knowledge of other pair relationships. Its occurrence in a wide range of animals, including insects, has been linked to their ecological needs. Thus, TI should be absent in species that do not rely on such inferences in their natural lives. We hypothesized that the latter applies to the cleaner wrasse Labroides dimidiatus and tested this with 19 individuals using a five-term series (A > B > C > D > E) experiment. Cleaners first learned to prefer a food-rewarding plate (+) over a non-rewarding plate (-) in four plate pairs that imply a hierarchy from plate A to plate E (A+B-, B+C-, C+D-, D+E-), with the learning order counterbalanced between subjects. We then tested for spontaneous preferences in the unknown pairs BD (transitive inference task) and AE (as a control for anchors), interspersed between trials involving a mix of all known adjacent pairs. The cleaners systematically preferred A over E and showed good performance for A+B- and D+E- trials. Conversely, cleaners did not prefer B over D. These results were unaffected by the reinforcement history, but the order of learning of the different pairs of plates had a main impact on the remembrance of the initial training pairs. Overall, cleaners performed randomly in B+C- and C+D- trials. Thus, a memory constraint may have prevented subjects from applying TI. Indeed, a parallel study on cleaner wrasse provided positive evidence for TI but was achieved following extensive training on the non-adjacent pairs which may have over-ridden the ecological relevance of the task.
Collapse
Affiliation(s)
- Leonore Bonin
- Behavioural Ecology Laboratory, Biology Institute, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland
| | - Redouan Bshary
- Behavioural Ecology Laboratory, Biology Institute, Faculty of Science, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
3
|
Paula JR, Repolho T, Grutter AS, Rosa R. Access to Cleaning Services Alters Fish Physiology Under Parasite Infection and Ocean Acidification. Front Physiol 2022; 13:859556. [PMID: 35755439 PMCID: PMC9213755 DOI: 10.3389/fphys.2022.859556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Cleaning symbioses are key mutualistic interactions where cleaners remove ectoparasites and tissues from client fishes. Such interactions elicit beneficial effects on clients’ ecophysiology, with cascading effects on fish diversity and abundance. Ocean acidification (OA), resulting from increasing CO2 concentrations, can affect the behavior of cleaner fishes making them less motivated to inspect their clients. This is especially important as gnathiid fish ectoparasites are tolerant to ocean acidification. Here, we investigated how access to cleaning services, performed by the cleaner wrasse Labroides dimidiatus, affect individual client’s (damselfish, Pomacentrus amboinensis) aerobic metabolism in response to both experimental parasite infection and OA. Access to cleaning services was modulated using a long-term removal experiment where cleaner wrasses were consistently removed from patch reefs around Lizard Island (Australia) for 17 years or left undisturbed. Only damselfish with access to cleaning stations had a negative metabolic response to parasite infection (maximum metabolic rate—ṀO2Max; and both factorial and absolute aerobic scope). Moreover, after an acclimation period of 10 days to high CO2 (∼1,000 µatm CO2), the fish showed a decrease in factorial aerobic scope, being the lowest in fish without the access to cleaners. We propose that stronger positive selection for parasite tolerance might be present in reef fishes without the access to cleaners, but this might come at a cost, as readiness to deal with parasites can impact their response to other stressors, such as OA.
Collapse
Affiliation(s)
- José Ricardo Paula
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Tiago Repolho
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| |
Collapse
|
4
|
Chan SKN, Suresh S, Munday P, Ravasi T, Bernal MA, Schunter C. The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecol Evol 2022; 12:e8738. [PMID: 35342554 PMCID: PMC8933327 DOI: 10.1002/ece3.8738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluctuations. In this study, we investigated patterns of alternative splicing in the liver of the coral reef fish Acanthochromis polyacanthus in response to the 2016 marine heatwave on the Great Barrier Reef. The differentially spliced (DS; n = 40) genes during the onset of the heatwave (i.e., 29.49°C or +1°C from average) were related to essential cellular functions such as the MAPK signaling system, Ca(2+) binding, and homeostasis. With the persistence of the heatwave for a period of one month (February to March), 21 DS genes were detected, suggesting that acute warming during the onset of the heatwave is more influential on alternative splicing than the continued exposure to elevated temperatures. After the heatwave, the water temperature cooled to ~24.96°C, and fish showed differential splicing of genes related to cyto-protection and post-damage recovery (n = 26). Two-thirds of the DS genes detected across the heatwave were also differentially expressed, revealing that the two molecular mechanisms act together in A. polyacanthus to cope with the acute thermal change. This study exemplifies how splicing patterns of a coral reef fish can be modified by marine heatwaves. Alternative splicing could therefore be a potential mechanism to adjust cellular physiological states under thermal stress and aid coral reef fishes in their response to more frequent acute thermal fluctuations in upcoming decades.
Collapse
Affiliation(s)
- Stanley Kin Nok Chan
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Sneha Suresh
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Phillip Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Moisés A. Bernal
- Department of Biological SciencesCollege of Science and MathematicsAuburn UniversityAuburnAlabamaUSA
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
5
|
Triki Z, Richter XYL, Demairé C, Kurokawa S, Bshary R. Marine cleaning mutualism defies standard logic of supply and demand. Am Nat 2021; 199:455-467. [DOI: 10.1086/718315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
|
7
|
Parrotfish corallivory on stress-tolerant corals in the Anthropocene. PLoS One 2021; 16:e0250725. [PMID: 34499664 PMCID: PMC8428567 DOI: 10.1371/journal.pone.0250725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cumulative anthropogenic stressors on tropical reefs are modifying the physical and community structure of coral assemblages, altering the rich biological communities that depend on this critical habitat. As a consequence, new reef configurations are often characterized by low coral cover and a shift in coral species towards massive and encrusting corals. Given that coral numbers are dwindling in these new reef systems, it is important to evaluate the potential influence of coral predation on these remaining corals. We examined the effect of a key group of coral predators (parrotfishes) on one of the emerging dominant coral taxa on Anthropocene reefs, massive Porites. Specifically, we evaluate whether the intensity of parrotfish predation on this key reef-building coral has changed in response to severe coral reef degradation. We found evidence that coral predation rates may have decreased, despite only minor changes in parrotfish abundance. However, higher scar densities on small Porites colonies, compared to large colonies, suggests that the observed decrease in scarring rates may be a reflection of colony-size specific rates of feeding scars. Reduced parrotfish corallivory may reflect the loss of small Porites colonies, or changing foraging opportunities for parrotfishes. The reduction in scar density on massive Porites suggests that the remaining stress-tolerant corals may have passed the vulnerable small colony stage. These results highlight the potential for shifts in ecological functions on ecosystems facing high levels of environmental stress.
Collapse
|
8
|
Triki Z, Bshary R. Sex differences in the cognitive abilities of a sex-changing fish species Labroides dimidiatus. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210239. [PMID: 34295522 PMCID: PMC8278049 DOI: 10.1098/rsos.210239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Males and females of the same species are known to differ at least in some cognitive domains, but such differences are not systematic across species. As a consequence, it remains unclear whether reported differences generally reflect adaptive adjustments to diverging selective pressures, or whether differences are mere side products of physiological differences necessary for reproduction. Here, we show that sex differences in cognition occur even in a sex-changing species, a protogynous hermaphroditic species where all males have previously been females. We tested male and female cleaner fish Labroides dimidiatus in four cognitive tasks to evaluate their learning and inhibitory control abilities first in an abstract presentation of the tasks, then in more ecologically relevant contexts. The results showed that males were better learners than females in the two learning tasks (i.e. reversal learning as an abstract task and a food quantity assessment task as an ecologically relevant task). Conversely, females showed enhanced abilities compared with males in the abstract inhibitory control task (i.e. detour task); but both sexes performed equally in the ecologically relevant inhibitory control task (i.e. 'audience effect' task). Hence, sex-changing species may offer unique opportunities to study proximate and/or ultimate causes underlying sex differences in cognitive abilities.
Collapse
Affiliation(s)
- Zegni Triki
- Institute of Zoology, Stockholm University, Stockholm 106 91, Sweden
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
9
|
Triki Z, Emery Y, Teles MC, Oliveira RF, Bshary R. Brain morphology predicts social intelligence in wild cleaner fish. Nat Commun 2020; 11:6423. [PMID: 33349638 PMCID: PMC7752907 DOI: 10.1038/s41467-020-20130-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022] Open
Abstract
It is generally agreed that variation in social and/or environmental complexity yields variation in selective pressures on brain anatomy, where more complex brains should yield increased intelligence. While these insights are based on many evolutionary studies, it remains unclear how ecology impacts brain plasticity and subsequently cognitive performance within a species. Here, we show that in wild cleaner fish (Labroides dimidiatus), forebrain size of high-performing individuals tested in an ephemeral reward task covaried positively with cleaner density, while cerebellum size covaried negatively with cleaner density. This unexpected relationship may be explained if we consider that performance in this task reflects the decision rules that individuals use in nature rather than learning abilities: cleaners with relatively larger forebrains used decision-rules that appeared to be locally optimal. Thus, social competence seems to be a suitable proxy of intelligence to understand individual differences under natural conditions.
Collapse
Affiliation(s)
- Zegni Triki
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden.
| | - Yasmin Emery
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisboa, Portugal
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
10
|
Triki Z, Levorato E, McNeely W, Marshall J, Bshary R. Population densities predict forebrain size variation in the cleaner fish Labroides dimidiatus. Proc Biol Sci 2019; 286:20192108. [PMID: 31744435 PMCID: PMC6892052 DOI: 10.1098/rspb.2019.2108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
The 'social brain hypothesis' proposes a causal link between social complexity and either brain size or the size of key brain parts known to be involved in cognitive processing and decision-making. While previous work has focused on comparisons between species, how social complexity affects plasticity in brain morphology at the intraspecific level remains mostly unexplored. A suitable study model is the mutualist 'cleaner' fish Labroides dimidiatus, a species that removes ectoparasites from a variety of 'client' fishes in iterative social interactions. Here, we report a positive relationship between the local density of cleaners, as a proxy of both intra- and interspecific sociality, and the size of the cleaner's brain parts suggested to be associated with cognitive functions, such as the diencephalon and telencephalon (that together form the forebrain). In contrast, the size of the mesencephalon, rhombencephalon, and brain stem, assumed more basal in function, were independent of local fish densities. Selective enlargement of brain parts, that is mosaic brain adjustment, appears to be driven by population density in cleaner fish.
Collapse
Affiliation(s)
- Zegni Triki
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Elena Levorato
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - William McNeely
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
11
|
Atta CJ, Coker DJ, Sinclair-Taylor TH, DiBattista JD, Kattan A, Monroe AA, Berumen ML. Conspicuous and cryptic reef fishes from a unique and economically important region in the northern Red Sea. PLoS One 2019; 14:e0223365. [PMID: 31671103 PMCID: PMC6822765 DOI: 10.1371/journal.pone.0223365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022] Open
Abstract
Al Wajh Bank in the northern Red Sea contains an extensive coral reef system that potentially supports a novel fish community. The large (1500km2) and shallow (< 40m depth) lagoon experiences greater temperature and salinity fluctuations, as well as higher turbidity, than most other Red Sea reefs. Since these conditions often influence coral community structure and introduce physiological challenges to its resident organisms, changes in reef-associated fishes are expected. We present critical baseline data on fish biodiversity and benthic composition for the Al Wajh Bank. Underwater visual census of conspicuous fishes and standardized collections of cryptobenthic fishes were combined to provide a comprehensive assessment of these fish communities. We documented 153 fish species and operational taxonomic units, including undescribed species, within 24 families on reefs largely dominated by hard coral and soft sediment (39% and 32% respectively). The families Pomacentridae and Gobiidae contributed the most towards fish diversity and abundance. Bray-Curtis dissimilarity distances among sampled sites suggest a distinctive fish community within the lagoon, and coefficients of variation for each species show high variation in their distribution across the lagoon. Species accumulation curves predict that additional sampling would document many more species throughout Al Wajh. Our findings provide the most extensive biodiversity survey of fishes from this region to date and record the condition of the reef prior to major coastal development planned to occur in the near future.
Collapse
Affiliation(s)
- Calder J. Atta
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Darren J. Coker
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tane H. Sinclair-Taylor
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joseph D. DiBattista
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Alexander Kattan
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alison A. Monroe
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|