1
|
El-Saadony MT, Salem HM, Attia MM, Yehia N, Abdelkader AH, Mawgod SA, Kamel NM, Alkafaas SS, Alsulami MN, Ahmed AE, Mohammed DM, Saad AM, Mosa WF, Elnesr SS, Farag MR, Alagawany M. Alternatives to antibiotics against coccidiosis for poultry production: the relationship between immunity and coccidiosis management – a comprehensive review. ANNALS OF ANIMAL SCIENCE 2025. [DOI: 10.2478/aoas-2025-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Avian coccidiosis is a protozoan infection caused by numerous Eimeria parasitic species and mainly affects the bird’s gastrointestinal tract and results in a reduction of the bird ‘ability to absorb nutrients, slower growth, with a higher mortality rate. According to recent research, immune-based treatments, such as dietary immunomodulating feed additives and recombinant vaccines, can help the hosts protect themselves from intracellular parasites and reduce inflammatory reactions caused by parasites. Coccidiosis control in the post-antiparasitic stage requires thoroughly investigation of the intricate relationships between the parasites, host defense system, enteroendocrine system, and gut microbiome contributing to coccidian infections. To produce a vaccine, it is crucial to explore the defense mechanism of the intestine’s immune machinery and to identify many effector molecules that act against intracellular parasites. Due to the massive usage of chemical anticoccidial drugs, coccidiosis developed resistant against most commonly used anticoccidials; therefore, numerous researches focused on the usage of safe natural anticoccidials such as probiotics, prebiotics, organic acids, and essential oils to counteract such resistance problem. This review describes how host immunity responds to coccidial infection in chickens and the use of some nonantiparasitic safe natural alternative controls to counter the disease. It would throw the light on the possibility of developing effective therapies against Eimeria to alleviate the detrimental effects of avian coccidiosis.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine , Badr University in Cairo (BUC) , Badr City, Cairo, 11829 , Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute, Agriculture Research Center , Dokki, Giza, 12618 , Egypt
| | - Ahmed H. Abdelkader
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Sara Abdel Mawgod
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Nesma Mohamed Kamel
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry , Department of Chemistry, Faculty of Science, Tanta University , , Egypt
| | - Muslimah N. Alsulami
- Department of Biology, College of Science , University of Jeddah , Jeddah , , Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science , King Khalid University , Abha , , Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department , National Research Centre , Dokki, Giza, 12622 , Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Walid F.A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture , Saba Basha, Alexandria University , Alexandria , , Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture , Fayoum University , Fayoum , Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty , Zagazig University , Zagazig , , Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| |
Collapse
|
2
|
Cuong NC, Haltrich D, Min TT, Nguyen TH, Yamabhai M. Value creation of copra meal mannan into functional manno-oligosaccharides (β-MOS) using the mannanase Bacillus man B (BlMan26B). Sci Rep 2024; 14:22363. [PMID: 39333607 PMCID: PMC11436642 DOI: 10.1038/s41598-024-73255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Agricultural wastes rich in β-mannan are an important environmental problem in tropical and sub-tropical countries. This research aims at dealing with this and investigates the valorization of mannan-rich copra meal from virgin coconut oil manufacturing into mannan-oligosaccharides (β-MOS) by enzymatic hydrolysis using β-mannanase from Bacillus licheniformis (BlMan26B). Lab-scale process, involving pre-treatment and bioconversion steps, were conducted and evaluated. Lyophilized β-MOS was analyzed and its biological activities were assessed. The size of oligosaccharides obtained ranged from dimers to hexamers with 36.7% conversion yields. The prebiotic effects of β-MOS were demonstrated in comparison with commercial inulin and fructo-oligosaccharides (FOS). In vitro toxicity assays of β -MOS on human dermal fibroblasts and monocytes showed no cytotoxic effect. Interestingly, β-MOS at concentrations ranging from 10 to 200 µg/mL also demonstrated potent anti-inflammatory activity against LPS-induced inflammation of human macrophage THP-1 in a dose-dependent manner. However, at high dose, β-MOS could also stimulate inflammation. Therefore, further investigation must be conducted to ensure its efficacy and safe use in the future. These results indicate that β-MOS have the potential to be used as valued-added health-promoting nutraceutical or feed additive after additional in-depth studies. These finding should be applicable for other agricultural wastes rich in mannan as well.
Collapse
Grants
- 179306, 4693955, FF3-304-66-12-200(H31), FF6-614-66-24-38(H) Thailand Science Research and Innovation (TSRI), National Science, Research and Innovation Fund (NRSF)
- 179306, 4693955, FF3-304-66-12-200(H31), FF6-614-66-24-38(H) Thailand Science Research and Innovation (TSRI), National Science, Research and Innovation Fund (NRSF)
- RGJ-Ph.D/0108/2552 The Royal Golden Jubilee scholarship
- RGJ-Ph.D/0108/2552 The Royal Golden Jubilee scholarship
- Full-time 66/12/2024 Suranaree University of Technology
- FWF Projects P 37092 and P 35611 Austrian Science Fund
- FSUT3-304-63-12-3 Forthcoming Research to Industry Convergence
Collapse
Affiliation(s)
- Nguyen Cao Cuong
- Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Hue, 530000, Thua Thien Hue, Vietnam
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, Vienna, 1190, Austria
| | - Thae Thae Min
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, Vienna, 1190, Austria.
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
3
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
4
|
Nath S, Kango N. Optimized production and characterization of endo-β-mannanase by Aspergillus niger for generation of prebiotic mannooligosaccharides from guar gum. Sci Rep 2024; 14:14015. [PMID: 38890382 PMCID: PMC11637063 DOI: 10.1038/s41598-024-63803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Optimized production of Aspergillus niger ATCC 26011 endo-β-mannanase (ManAn) on copra meal resulted in 2.46-fold increase (10,028 U/gds). Purified ManAn (47 kDa) showed high affinity towards guar gum (GG) as compared to konjac gum and locust bean gum with Km 2.67, 3.25 and 4.07 mg/mL, respectively. ManAn efficiently hydrolyzed GG and liberated mannooligosaccharides (MOS). Changes occurring in the rheological and compositional aspects of GG studied using Differential scanning calorimetry (DSC), Thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) revealed increased thermal stability and crystallinity of the partially hydrolyzed guar gum (PHGG). Parametric optimization of the time and temperature dependent hydrolysis of GG (1% w/v) with 100 U/mL of ManAn at 60 °C and pH: 5.0 resulted in 12.126 mg/mL of mannotetraose (M4) in 5 min. Enhanced growth of probiotics Lactobacilli and production of short chain fatty acids (SCFA) that inhibited enteropathogens, confirmed the prebiotic potential of PHGG and M4.
Collapse
Affiliation(s)
- Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
7
|
Characteristics and bioactive properties of agro-waste and yeast derived manno-oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Sathitkowitchai W, Sathapondecha P, Angthong P, Srimarut Y, Malila Y, Nakkongkam W, Chaiyapechara S, Karoonuthaisiri N, Keawsompong S, Rungrassamee W. Isolation and Characterization of Mannanase-Producing Bacteria for Potential Synbiotic Application in Shrimp Farming. Animals (Basel) 2022; 12:ani12192583. [PMID: 36230324 PMCID: PMC9558954 DOI: 10.3390/ani12192583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Prebiotics such as mannan-oligosaccharides (MOS) are a promising approach to improve performance and disease resistance in shrimp. To improve prebiotic utilization, we investigated the potential probiotics and their feasibility of synbiotic use in vitro. Two bacterial isolates, Man26 and Man122, were isolated from shrimp intestines and screened for mannanase, the enzyme for mannan digestion. The crude mannanase from both isolates showed optimal activities at pH 8 with optimum temperatures at 60 °C and 50 °C, respectively. The enzymes remained stable at pH 8−10 for 3 h (>70% relative activity). The thermostability range of Man26 was 20−40 °C for 20 min (>50%), while that of Man122 was 20−60 °C for 30 min (>50%). The Vmax of Man122 against locust bean gum substrate was 41.15 ± 12.33 U·mg−1, six times higher than that of Man26. The Km of Man26 and Man122 were 18.92 ± 4.36 mg·mL−1 and 34.53 ± 14.46 mg·mL−1, respectively. With the addition of crude enzymes, reducing sugars of copra meal, palm kernel cake, and soybean meal were significantly increased (p < 0.05), as well as protein release. The results suggest that Man26 and Man122 could potentially be used in animal feeds and synbiotically with copra meal to improve absorption and utilization of feedstuffs.
Collapse
Affiliation(s)
- Witida Sathitkowitchai
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Pacharaporn Angthong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wuttichai Nakkongkam
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sage Chaiyapechara
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Institute for Global Food Security, Queen’s University Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Correspondence:
| |
Collapse
|
9
|
The Purification and Biochemical Characterization of a Weissella cibaria F1 Derived β-Mannanase for Its Use in the Preparation of Konjac Oligo-Glucomannan with Immunomodulatory Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mannanase with a molecular weight of 33.1 kDa was purified from Weissella cibaria F1. The F1 mannanase contained 289 amino acid residues and shared 70.0% similarity with mannanase from Bacillus subtilis (P55278 (MANB_BACIU)). The optimum reaction conditions of F1 mannanase were 50 °C and pH 6.5. After incubation at pH 4.5–8.0 and 30–60 °C for 2 h, the enzyme activity remained above 60%. The effects of metal ions on mannanase enzyme activity were measured, and Mn2+, Mg2+, and Cu2+ increased enzyme activity. The Km (16.96 ± 0.01 μmol·mL−1) and Vmax (1119.05 ± 0.14 μmol·min−1) values showed that the enzyme exhibited high affinity for locust bean gum. Mannanase was used to hydrolyze konjac glucomannan to produce konjac oligo-glucomannan (KOGM). KOGM increased the proliferation and phagocytosis of RAW264.7 macrophages and enhanced nitric oxide, and cytokine production in macrophages, which showed potent immunostimulatory activity. In this study, the advantages of mannanase derived from lactic acid bacteria were utilized to expand the application of KOGM in the medical field, which is helpful to explore the broad prospects of KOGM in functional food or medicine.
Collapse
|
10
|
Eom SJ, Park J, Kang M, Lee NH, Song K. Use of ultrasound treatment to extract mannan polysaccharide from
Saccharomyces cerevisiae. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Su Jin Eom
- Food Convergence Research Division Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Jong‐Tae Park
- Department of Food Science and Technology Chungnam National University Daejeon Republic of Korea
| | - Min‐Cheol Kang
- Food Convergence Research Division Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Nam Hyouck Lee
- Food Convergence Research Division Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
| | - Kyung‐Mo Song
- Food Convergence Research Division Korea Food Research Institute Wanju‐gun Jeollabuk‐do Republic of Korea
| |
Collapse
|
11
|
Narisetty V, Parhi P, Mohan B, Hakkim Hazeena S, Naresh Kumar A, Gullón B, Srivastava A, Nair LM, Paul Alphy M, Sindhu R, Kumar V, Castro E, Kumar Awasthi M, Binod P. Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective. BIORESOURCE TECHNOLOGY 2022; 346:126590. [PMID: 34953996 DOI: 10.1016/j.biortech.2021.126590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues. These oligosaccharides are functional food supplements that have a positive impact on humans and livestock. Non-digestible oligosaccharides, refered as prebiotics are beneficial for the colonic microbiota inhabiting the f the digestive system. These microbiota plays a crucial role in stimulating the host immune system and other physiological responses. The commonly known prebiotics, galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannanooligosaccharides (MOS), and isomaltooligosaccharides (IOS) are synthesized either through enzymatic or whole cell-mediated approaches using natural or agricultural waste substrates. This review focusses on recent advancements in biological processes, for the synthesis of oligosaccharides using renewable resources (lignocellulosic substrates) for sustainable circular bioeconomy. The work also addresses the limitations associated with the processes and commercialization of the products.
Collapse
Affiliation(s)
- Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Priyanka Parhi
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Binoop Mohan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, E-32004 Ourense, Spain
| | - Anita Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Lakshmi M Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India.
| |
Collapse
|
12
|
High surfactant-tolerant β-mannanase isolated from Dynastes hercules larvae excrement, and identification of its hotspot using site-directed mutagenesis and molecular dynamics simulations. Enzyme Microb Technol 2021; 154:109956. [PMID: 34871822 DOI: 10.1016/j.enzmictec.2021.109956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022]
Abstract
The β-mannanase from Bacillus subtilis HM7 (Man26HM7) isolated from Dynastes hercules larvae excrement was cloned and expressed in Escherichia coli. Biochemical characterization shows that optimal pH and temperature for catalysis are 6.0 and 50 °C, respectively. Man26HM7 displayed excellent surfactant stability by retaining 70% of initial activity in 1%(w/v) SDS, and more than 90% of initial activity in 1%(w/v) Triton X-100 and Tween 80. Results from amino acid sequence alignment and molecular modeling suggest residue 238 of β-mannanase as a hotspot of SDS-tolerance. Mutagenesis at the equivalent residue of another homolog, β-mannanase from Bacillus subtilis CAe24 (Man26CAe24), significantly enhanced the SDS stability of this enzyme. Comparative computational analysis, including molecular docking and molecular dynamics simulation, were then performed to compute the binding free energy of SDS to Man26HM7, Man26CAe24, and variant enzymes. The results suggest that residue 238 of Man26HM7 is involved in SDS binding to the hydrophobic surface of β-mannanase. This study provides not only the promising application of Man26HM7 in detergent and cleaning products but also valuable information for enhancing the surfactant stability of β-mannanase by enzyme engineering.
Collapse
|
13
|
Madlala T, Okpeku M, Adeleke MA. Understanding the interactions between Eimeria infection and gut microbiota, towards the control of chicken coccidiosis: a review. ACTA ACUST UNITED AC 2021; 28:48. [PMID: 34076575 PMCID: PMC8171251 DOI: 10.1051/parasite/2021047] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/14/2021] [Indexed: 12/30/2022]
Abstract
The gastrointestinal tract in poultry harbours a diverse microbial community that serves a crucial role in digestion and protection. Disruption of the gut environment due to Eimeria spp. parasite infection causes an imbalance in intestinal homeostasis, driving the increment of pathogens such as Clostridium species. Coccidiosis infection affects the composition and integrity of gut microbiota, resulting in elevated susceptibility to diseases that pose a serious threat to the overall health and productivity of chickens. Anticoccidial drugs have proven effective in curbing coccidiosis but with concerning drawbacks like drug resistance and drug residues in meat. The exploration of natural alternative strategies such as probiotics and phytochemicals is significant in controlling coccidiosis through modification and restoration of gut microbiota, without inducing drug resistance. Understanding the interaction between Eimeria parasites and gut microbiota is crucial for the control and prevention of coccidiosis, and the development of novel alternative treatments.
Collapse
Affiliation(s)
- Thabile Madlala
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
14
|
Selecká E, Levkut M, Revajová V, Levkutová M, Karaffová V, Ševčíková Z, Herich R, Levkut M. Research Note: Immunocompetent cells in blood and intestine after administration of Lacto-Immuno-Vital in drinking water of broiler chickens. Poult Sci 2021; 100:101282. [PMID: 34214747 PMCID: PMC8258679 DOI: 10.1016/j.psj.2021.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
The understanding of the synbiotics´ impact on the host is incomplete. To improve the knowledge, we study the effect of Lacto-Immuno-Vital synbiotic preparation in chickens on local and systemic immune response by evaluation of immunocompetent cells in the peripheral blood and jejunal mucosa. Hematological method was used for determination of white blood cell count, and flow cytometry for measurement the functions of phagocytes and subpopulation of lymphocytes (CD3, CD4, CD8, IgM, and IgA). Cell Qest programme (Germany) was used for analysing of data obtained from flow cytometer and GraphPad Prism version 4.0 for comparison by paired t test between control and experimental groups. The experiment was conducted in a commercial broiler chicken fattening farm, the birds were handled and sacrificed in a humane manner. A flock of 64,400 one-day-old Hybrid ROSS 308 chickens were included in the 42-d experiment. The chickens were randomly divided into 2 equal groups, experimental and control, and each group of chickens was housed in a different hall while maintaining the same conditions. The chickens in the experimental group (Lactovital) received 500 g of Lacto-Immuno-Vital (Hajduvet Kft., Hungary) in 1,000 L of drinking water. Lacto-Immuno-Vital was administered daily from the first day (D1) to D7 of the experiment. From D 7 to D 22 it was given in a pulsed manner (every third day) at a dose of 300 g in 1,000 L of drinking water. Control group received only the standard diet. For immune analyses 6 randomly chosen chickens from experimental and control group were taken from the halls. The sampling days were set at D 8 and D 22 of the experiment. Samples of peripheral blood were collected from vena subclavia. The chickens were euthanized and whole jejunum was taken during necropsy into Hanks ice solution (pH 7.2–7.3). Administration of Lacto-Immuno-Vital in drinking water of nonstressed broilers during fattening period in commercial production increased phagocytic activity and phagocytic index. The number of IgA+ and CD8+ cells in lamina propria of intestine was decreased in chickens fed diet supplemented with Lacto-Immuno-Vital in drinking water. We suggest that increased phagocytic activity and decreased number of immunocompetent cells in mucosa of intestine was caused by improved systemic and local immune system function.
Collapse
Affiliation(s)
- E Selecká
- Medivet, Školská 457/23, Dobrá Niva, Slovakia
| | - M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - V Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia.
| | - M Levkutová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - V Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - Z Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - R Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia; Institute of Neuroimmunology, Slovak Academy of Science, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| |
Collapse
|
15
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
16
|
Jana UK, Suryawanshi RK, Prajapati BP, Kango N. Prebiotic mannooligosaccharides: Synthesis, characterization and bioactive properties. Food Chem 2020; 342:128328. [PMID: 33257024 DOI: 10.1016/j.foodchem.2020.128328] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Functional oligosaccharides are non-digestible food ingredients that confer numerous health benefits. Among these, mannooligosaccharides (MOS) are emerging prebiotics that have characteristic potential bio-active properties. Microbial mannanases can be used to break down mannan rich agro-residues to yield MOS. Various applications of MOS as health promoting functional food ingredient may open up newer opportunities in food and feed industry. Enzymatic hydrolysis is the widely preferred method over chemical hydrolysis for MOS production. Presently, commercial MOS is being derived from yeast cell wall mannan and is widely used as prebiotic in feed supplements for poultry and aquaculture. Apart from stimulating the growth of probiotic microflora, MOS impart anticancer and immunomodulatory effects by inducing different gene markers in colon cells. This review summarizes recent developments and future prospects of enzymatic synthesis of MOS from various mannans, their structural characteristics and their potential health benefits.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Bhanu Pratap Prajapati
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| |
Collapse
|
17
|
Nopvichai C, Pongkorpsakol P, Wongkrasant P, Wangpaiboon K, Charoenwongpaiboon T, Ito K, Muanprasat C, Pichyangkura R. Galactomannan Pentasaccharide Produced from Copra Meal Enhances Tight Junction Integration of Epithelial Tissue through Activation of AMPK. Biomedicines 2019; 7:biomedicines7040081. [PMID: 31614968 PMCID: PMC6966651 DOI: 10.3390/biomedicines7040081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
Mannan oligosaccharide (MOS) is well-known as an effective fed supplement for livestock to increase their nutrients absorption and health status. Pentasaccharide of mannan (MOS5) was reported as a molecule that possesses the ability to increase tight junction of epithelial tissue, but the structure and mechanism of action remains undetermined. In this study, the mechanism of action and structure of MOS5 were investigated. T84 cells were cultured and treated with MOS5 compared with vehicle and compound C, a 5′-adenosine monophosphate-activated protein kinase (AMPK) inhibitor. The results demonstrated that the ability of MOS5 to increase tight junction integration was inhibited in the presence of dorsomorphine (compound C). Phosphorylation level of AMPK was elevated in MOS5 treated group as determined by Western blot analysis. Determination of MOS5 structure was performed using enzymatic mapping together with 1H, 13C NMR, and 2D-NMR analysis. The results demonstrated that the structure of MOS5 is a β-(1,4)-mannotetraose with α-(1,6)-galactose attached at the second mannose unit from non-reducing end.
Collapse
Affiliation(s)
- Chatchai Nopvichai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pawin Pongkorpsakol
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Preedajit Wongkrasant
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Kazuo Ito
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Division of Preclinical Sciences, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10540, Thailand.
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|