1
|
Aleshina Y, Lukashev A. Mamastrovirus species are shaped by recombination and can be reliably distinguished in ORF1b genome region. Virus Evol 2025; 11:veaf006. [PMID: 39989717 PMCID: PMC11842974 DOI: 10.1093/ve/veaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/30/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
Astroviruses are a diverse group of small non-enveloped positive sense single-stranded RNA viruses that infect animals and birds. More than half of all known genome sequences of mammalian astroviruses are not assigned to provisional species, and the biological mechanisms that could support segregation of astroviruses into species are not well understood. The systematic analysis of recombination in Mamastrovirus genomes available in GenBank was done to identify mechanisms providing genetic distinction between astroviruses. Recombination breakpoints were present in all Mamastrovirus genome regions, but occurred most commonly at the ORF1b/ORF2 junction. Recombination was ubiquitous within, but never between established and putative new species, and may be suggested as an additional species criterion. The current species criterion for the genus Mamastrovirus based on ORF2 amino acid sequence p-distances did not reliably distinguish several established species and was of limited use to identify distinct groups among unclassified astroviruses that were isolated recently, predominantly from cattle and pigs. A 17% nucleotide sequence distance cut-off in ORF1b fairly distinguished the established species and several groups among the unclassified viruses, providing better correspondence between phylogenetic grouping, reproductive isolation and the virus hosts. Sequence distance criteria (17% in nucleotide sequence of ORF1b and 25% in amino acid sequence of ORF2) and the recombination pattern corresponded fairly well as species criteria, but all had minor exclusions among mammalian astroviruses. A combination of these taxonomic criteria supported the established Mamastrovirus species and suggested redefining a few provisional species that were proposed earlier and introducing at least six novel species among recently submitted rat and bovine astroviruses.
Collapse
Affiliation(s)
- Yulia Aleshina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Malaya Pirogovskaya 20/1, Moscow 119435, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow State University 1, building 73, Moscow 119234, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Malaya Pirogovskaya 20/1, Moscow 119435, Russia
| |
Collapse
|
2
|
Zhang S, Gao H, Zhang G, Fang M, Kong Y, Jiang L, Liu Q, Wang P, Liu Y, Li Y. Metavirome analysis of domestic sheep in Shaanxi, Gansu, and Ningxia, China. Front Vet Sci 2024; 11:1508617. [PMID: 39691376 PMCID: PMC11649628 DOI: 10.3389/fvets.2024.1508617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Sheep play an important role in China's agricultural development, but they are also potential hosts for many viruses, some of which have been identified as zoonotic pathogens, which may pose a serious threat to social public health and animal husbandry. Therefore, clarifying the characteristics of viruses in sheep will provide an important basis for the study of pathogenic ecology and viral evolution of viruses carried by sheep. We collected nasal and anal swabs from 688 sheep in 22 counties in Shaanxi, Gansu, and Ningxia, China, between January 2022 and July 2023, and utilized next-generation sequencing technology and bioinformatics approaches to identify the viruses in the samples. A total of 38 virus families carried by sheep were identified, including 12 ssRNA (+) virus families, 2 dsRNA virus families, 8 ssDNA (+) virus families, and 18 dsDNA virus families. Among them, Astroviridae, Coronaviridae, Picornaviridae, and Tobaniviridae in RNA virus families and Herpesviridae, Adenoviridae, and Circoviridae in DNA virus families are all viruses that are frequently detected in most ruminants. Alpha and beta diversity results showed that there was no difference in the overall richness and diversity of RNA and DNA viruses among the three provinces (p > 0.05). The evolutionary analysis demonstrated a tight link between the viral members carried by sheep and other ruminant viruses, implying that these viruses may spread across different species of ruminants. This study established a library of RNA and DNA viruses carried by sheep in the Shaanxi-Gansu-Ningxia region, providing an overview of the viruses present in this population. The findings offer valuable data for further research on virus evolution and monitoring in sheep.
Collapse
Affiliation(s)
- Sinong Zhang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Hui Gao
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Gang Zhang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Min Fang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Yunyi Kong
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Lingling Jiang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Qiang Liu
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Pu Wang
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | - Yanling Liu
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Conservation and Utilization of Biological Resources in Western China, Ministry of Education, Ningxia University, Yinchuan, China
| | | |
Collapse
|
3
|
Zhou Y, Xu P, Huang Y, Wang J, Cui C, Wang Y, Luo Y, Wang X, Xie J, Li F, Wei Z, Chen Y, Ouyang K, Qin Y, Pan Y, Huang W. Identification and Full-Length Sequence Analysis of a Novel Recombinant Goat Astrovirus Genotype in Guangxi, China. Viruses 2024; 16:1213. [PMID: 39205187 PMCID: PMC11359656 DOI: 10.3390/v16081213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Astroviruses are single-stranded, positive-sense RNA viruses capable of infecting humans as well as a wide range of mammalian and avian species, with a length of approximately 6.6-7.7 kb. In this study, 139 goat fecal samples collected from the Guangxi province were used for the RT-PCR detection, and two of these were positive for goat astrovirus, with a positivity rate of 1.44% (2/139). The complete genome sequence of an astrovirus strain and the partial genome sequence of a strain astrovirus, named GX WZ 2023 and GX HC 2023, were amplified and sequenced, and their sequence lengths were 6284 nt and 6213 nt, respectively. Among them, the capsid protein of goat astrovirus GX HC 2023 showed the highest amino acid identity of 95.9% with ovine astrovirus GX, which belonged to the MAstV-2 genotype. However, the closest relative of the GX WZ 2023 strain was found to be the caprine astrovirus Sichuan, with a nucleotide sequence identity of 76.8%. The ORF1ab nonstructural protein of this strain showed the highest amino acid identities of 89.2 and 95.8% with the ovine astrovirus S5.1 and caprine astrovirus G5.1 strains, respectively. However, its ORF2 capsid protein has 68.4% amino acid identity with the bovine astrovirus (BAstV) 16 2021 CHN strain and only 21.9-64% amino acid identity with all available strains of goat astrovirus. The GX WZ 2023 strain was recombined with the Chinese (BAstV 16 2021 CHN) and Japanese bovine strains (BAstV JPN 2015) in the ORF2 region. Therefore, the goat astrovirus GX WZ 2023 is proposed as a new member of the family goat astroviridae based on the species classification criteria of the International Committee on Taxonomy of Viruses. These findings enhance our understanding of the prevalence and genetic evolution of goat astrovirus and provide a scientific basis for future studies of these viruses in other animals.
Collapse
Affiliation(s)
- Yulu Zhou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Pengju Xu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yanhua Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Jie Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Chang Cui
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yanglin Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xiaoling Wang
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Jiang Xie
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Fengmei Li
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yan Pan
- Laboratory for the Prevention and Control of Bovine and Goat Diseases, College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (Z.W.); (Y.C.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
4
|
Boros Á, Pankovics P, László Z, Urbán P, Herczeg R, Gáspár G, Tóth F, Reuter G. The genomic and epidemiological investigations of enteric viruses of domestic caprine ( Capra hircus) revealed the presence of multiple novel viruses related to known strains of humans and ruminant livestock species. Microbiol Spectr 2023; 11:e0253323. [PMID: 37823638 PMCID: PMC10714811 DOI: 10.1128/spectrum.02533-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Compared with other domestic animals, the virome and viral diversity of small ruminants especially in caprine are less studied even of its zoonotic potential. In this study, the enteric virome of caprine was investigated in detail using next-generation sequencing and reverse transcription PCR techniques. The complete or nearly complete genomes of seven novel viruses were determined which show a close phylogenetic relationship to known human and ruminant viruses. The high similarity between the identified caprine tusavirus (family Parvoviridae) and an unassigned CRESS DNA virus with closely related human strains could indicate the (reverse) zoonotic potential of these viruses. Others, like astroviruses (family Astroviridae), enteroviruses, or novel caripiviruses (named after the term caprine picornavirus) of family Picornaviridae found mostly in multiple co-infections in caprine and ovine, could indicate the cross-species transmission capabilities of these viruses between small ruminants.
Collapse
Affiliation(s)
- Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Róbert Herczeg
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Gábor Gáspár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Fruzsina Tóth
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
6
|
Wang J, Xu C, Zeng M, Tang C. Diversity of Astrovirus in Goats in Southwest China and Identification of Two Novel Caprine Astroviruses. Microbiol Spectr 2022; 10:e0121822. [PMID: 35862967 PMCID: PMC9430535 DOI: 10.1128/spectrum.01218-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
A total of 232 goat fecal samples (124 diarrheic and 108 nondiarrheic) collected from 12 farms in Southwest China were tested for astrovirus using RT-PCR. A total of 16.9% (21/124) of diarrheic and 20.4% (22/108) of nondiarrheic samples were astrovirus-positive, and no statistical difference was found in the detection rate between healthy and sick goats. Furthermore, 28 obtained complete ORF2 sequences could be classified into six genotypes according to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV). It is worth noting that, in addition to four known caprine astrovirus genotypes (MAstV-33, MAstV-34, Caprine Astrovirus G5.1, and Caprine Astrovirus G3.1), MAstV-13 and MAstV-24 genotypes were identified in goats. Interestingly, five of 19 ORF2 sequences in the Caprine Astrovirus G3.1 genotype showed possible intragenotypic recombination events. Furthermore, nearly complete caprine astrovirus genomes of MAstV-13 and MAstV-24 genotypes were obtained. The genome of the SWUN/ECJK3/2021 strain shared the highest similarity (62.0% to 73.9%) with astrovirus in MAstV-13, and clustered in the so-called human-mink-ovine (HMO) clade, which contained the majority of the neurotropic astrovirus strains. Moreover, the SWUN/LJK2-2/2020 strain showed the highest similarity (69.7% to 78.6%) and the closest genetic relationship to the known porcine and bovine astroviruses in MAstV-24. In conclusion, this study confirmed six genotypes of astrovirus circulating among goats in Southwest China, including MAstV-13 and MAstV-24 genotypes. These findings enhance our knowledge of the prevalence and diversity of astroviruses. IMPORTANCE Caprine astrovirus is a newly emerging virus, and information regarding its prevalence and molecular characteristics remains limited. In this study, six genotypes of astrovirus, including MAstV-13 and MAstV-24, were identified in goats, adding two novel caprine astrovirus genotypes to the four previously known genotypes, thereby enriching the diversity of the caprine astrovirus. Moreover, genomes of MAstV-13 SWUN/ECJK3/2021 and MAstV-24 SWUN/LJK2-2/2020 strains were obtained from goats, which aids in the understanding of the infection spectrum and host range of the two genotypes. This study is the first to demonstrate the presence of neurotropic-like astrovirus (MAstV-13) in goats, which has significant implications for the diagnosis of neurological diseases in goats.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Chenxia Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Mengting Zeng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China
| |
Collapse
|
7
|
A novel Betaretrovirus discovered in cattle with neurological disease and encephalitis. Retrovirology 2021; 18:40. [PMID: 34930327 PMCID: PMC8686636 DOI: 10.1186/s12977-021-00585-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background The majority of emerging infectious diseases in humans are of animal origin, and many of them are caused by neuropathogenic viruses. Many cases of neurological disease and encephalitis in livestock remain etiologically unresolved, posing a constant threat to animal and human health. Thus, continuous extension of our knowledge of the repertoire of viruses prone to infect the central nervous system (CNS) is vital for pathogen monitoring and the early detection of emerging viruses. Using high-throughput sequencing (HTS) and bioinformatics, we discovered a new retrovirus, bovine retrovirus CH15 (BoRV CH15), in the CNS of a cow with non-suppurative encephalitis. Phylogenetic analysis revealed the affiliation of BoRV CH15 to the genus Betaretrovirus. Results BoRV CH15 genomes were identified prospectively and retrospectively by PCR, RT-PCR, and HTS, with targeting of viral RNA and proviral DNA, in six additional diseased cows investigated over a period of > 20 years and of different geographical origins. The virus was not found in brain samples from healthy slaughtered control animals (n = 130). We determined the full-length proviral genomes from six of the seven investigated animals and, using in situ hybridization, identified viral RNA in the cytoplasm of cells morphologically compatible with neurons in diseased brains. Conclusions Further screening of brain samples, virus isolation, and infection studies are needed to estimate the significance of these findings and the causative association of BoRV CH15 with neurological disease and encephalitis in cattle. However, with the full-length proviral sequences of BoRV CH15 genomes, we provide the basis for a molecular clone and further in vitro investigation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12977-021-00585-x.
Collapse
|
8
|
Hierweger MM, Koch MC, Rupp M, Maes P, Di Paola N, Bruggmann R, Kuhn JH, Schmidt-Posthaus H, Seuberlich T. Novel Filoviruses, Hantavirus, and Rhabdovirus in Freshwater Fish, Switzerland, 2017. Emerg Infect Dis 2021; 27:3082-3091. [PMID: 34808081 PMCID: PMC8632185 DOI: 10.3201/eid2712.210491] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
European perch (Perca fluviatilis) are increasingly farmed as a human food source. Viral infections of European perch remain largely unexplored, thereby putting farm populations at incalculable risk for devastating fish epizootics and presenting a potential hazard to consumers. To address these concerns, we applied metatranscriptomics to identify disease-associated viruses in European perch farmed in Switzerland. Unexpectedly, in clinically diseased fish we detected novel freshwater fish filoviruses, a novel freshwater fish hantavirus, and a previously unknown rhabdovirus. Hantavirus titers were high, and we demonstrated virus in macrophages and gill endothelial cells by using in situ hybridization. Rhabdovirus titers in organ samples were low, but virus could be isolated on cell culture. Our data add to the hypothesis that filoviruses, hantaviruses, and rhabdoviruses are globally distributed common fish commensals, pathogens, or both. Our findings shed new light on negative-sense RNA virus diversity and evolution.
Collapse
|
9
|
Wang J, Xu C, Zeng M, Yue H, Tang C. Identification of a novel astrovirus in goats in China. INFECTION GENETICS AND EVOLUTION 2021; 96:105105. [PMID: 34619392 DOI: 10.1016/j.meegid.2021.105105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
In this study, a total of 143 fecal samples (107 diarrheic and 36 non-diarrheic) were collected from 11 goat farms in southwest China, and 3.7% of diarrheic and 8.3% of non-diarrheic samples were detected as astrovirus-positive by RT-PCR. A nearly complete astrovirus genomic sequence (SWUN/F4/2019) of 6278 nucleotides (nt), which contained a 6186 bp open reading frame, was successfully obtained. The genome of strain SWUN/F4/2019 shared the highest nt identity (77.0%) and the closest genetic relationship with CapAstV-G5.1. It is worth noting that in the nonstructural protein 1ab, strain SWUN/F4/2019 shared the highest amino acid (aa) identity (93.8%) with strain CapAstV-G5.1; however, its capsid protein shared the highest aa identity (72.7%) with the Sichuan takin astrovirus strain LLT03 and only shared 23.1-64.8% aa identities with all available ovine and caprine astrovirus strains. Interestingly, a region recombination event was predicted in the ORF2 gene of strain SWUN/F4/2019, with CapAstV-G5.1 as the putative major parental strain and CcAstV/roe_deer/SLO/D5-14/2014 as the possible minor parental strain. According to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV), SWUN/F4/2019 may represent a novel astrovirus in goats. To our knowledge, this is the first detection of astrovirus in goats in China and a novel astrovirus strain was identified in goats. These findings increase the understanding of the epidemic and the genetic evolution of astroviruses.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Chenxia Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Mengting Zeng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China.
| |
Collapse
|
10
|
Amimo JO, Machuka EM, Abworo EO, Vlasova AN, Pelle R. Whole Genome Sequence Analysis of Porcine Astroviruses Reveals Novel Genetically Diverse Strains Circulating in East African Smallholder Pig Farms. Viruses 2020; 12:v12111262. [PMID: 33167568 PMCID: PMC7694451 DOI: 10.3390/v12111262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
Astroviruses (AstVs) are widely distributed and are associated with gastroenteritis in human and animals. The knowledge of the genetic diversity and epidemiology of AstVs in Africa is limited. This study aimed to characterize astroviruses in asymptomatic smallholder piglets in Kenya and Uganda. Twenty-four samples were randomly selected from a total of 446 piglets aged below 6 months that were initially collected for rotavirus study and sequenced for whole genome analysis. Thirteen (13/24) samples had contigs with high identity to genus Mamastrovirus. Analysis of seven strains with complete (or near complete) AstV genome revealed variable nucleotide and amino acid sequence identities with known porcine astrovirus (PoAstV) strains. The U083 and K321 strains had nucleotide sequence identities ranging from 66.4 to 75.4% with the known PoAstV2 strains; U460 strain had nucleotide sequence identities of 57.0 to 65.1% regarding the known PoAstV3; and K062, K366, K451, and K456 strains had nucleotide sequence identities of 63.5 to 80% with the known PoAstV4 strains. The low sequence identities (<90%) indicate that novel genotypes of PoAstVs are circulating in the study area. Recombination analysis using whole genomes revealed evidence of multiple recombination events in PoAstV4, suggesting that recombination might have contributed to the observed genetic diversity. Linear antigen epitope prediction and a comparative analysis of capsid protein of our field strains identified potential candidate epitopes that could help in the design of immuno-diagnostic tools and a subunit vaccine. These findings provide new insights into the molecular epidemiology of porcine astroviruses in East Africa.
Collapse
Affiliation(s)
- Joshua O. Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00625, Kenya
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, 1168 Madison Avenue, Wooster, OH 44961, USA;
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.O.A.); (R.P.)
- Correspondence:
| | - Eunice M. Machuka
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.O.A.); (R.P.)
| | - Edward O. Abworo
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.O.A.); (R.P.)
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, 1168 Madison Avenue, Wooster, OH 44961, USA;
| | - Roger Pelle
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.O.A.); (R.P.)
| |
Collapse
|