1
|
Choi TY, Lee SR. Complete plastid genome of Iris orchioides and comparative analysis with 19 Iris plastomes. PLoS One 2024; 19:e0301346. [PMID: 38578735 PMCID: PMC10997070 DOI: 10.1371/journal.pone.0301346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Iris is a cosmopolitan genus comprising approximately 280 species distributed throughout the Northern Hemisphere. Although Iris is the most diverse group in the Iridaceae, the number of taxa is debatable owing to various taxonomic issues. Plastid genomes have been widely used for phylogenetic research in plants; however, only limited number of plastid DNA markers are available for phylogenetic study of the Iris. To understand the genomic features of plastids within the genus, including its structural and genetic variation, we newly sequenced and analyzed the complete plastid genome of I. orchioides and compared it with those of 19 other Iris taxa. Potential plastid markers for phylogenetic research were identified by computing the sequence divergence and phylogenetic informativeness. We then tested the utility of the markers with the phylogenies inferred from the markers and whole-plastome data. The average size of the plastid genome was 152,926 bp, and the overall genomic content and organization were nearly identical among the 20 Iris taxa, except for minor variations in the inverted repeats. We identified 10 highly informative regions (matK, ndhF, rpoC2, ycf1, ycf2, rps15-ycf, rpoB-trnC, petA-psbJ, ndhG-ndhI and psbK-trnQ) and inferred a phylogeny from each region individually, as well as from their concatenated data. Remarkably, the phylogeny reconstructed from the concatenated data comprising three selected regions (rpoC2, ycf1 and ycf2) exhibited the highest congruence with the phylogeny derived from the entire plastome dataset. The result suggests that this subset of data could serve as a viable alternative to the complete plastome data, especially for molecular diagnoses among closely related Iris taxa, and at a lower cost.
Collapse
Affiliation(s)
- Tae-Young Choi
- Department of Biology Education, Chosun University, Gwangju, South Korea
| | - Soo-Rang Lee
- Department of Biology Education, Chosun University, Gwangju, South Korea
| |
Collapse
|
2
|
Long J, He WC, Peng HW, Erst AS, Wang W, Xiang KL. Comparative plastome analysis of the sister genera Ceratocephala and Myosurus (Ranunculaceae) reveals signals of adaptive evolution to arid and aquatic environments. BMC PLANT BIOLOGY 2024; 24:202. [PMID: 38509479 PMCID: PMC10953084 DOI: 10.1186/s12870-024-04891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. RESULTS Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. CONCLUSIONS The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Collapse
Affiliation(s)
- Jing Long
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wen-Chuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya Str. 101, Novosibirsk, 630090, Russia
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
3
|
Yang J, Ye Y, Yi R, Bi D, Zhang S, Han S, Kan X. A new perspective on codon usage, selective pressure, and phylogenetic implications of the plastomes in the Telephium clade (Crassulaceae). Gene 2024; 892:147871. [PMID: 37797779 DOI: 10.1016/j.gene.2023.147871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The Telephium clade of the Crassulaceae family contains many medicinal, ornamental, and ecologically restorative plants. However, the phylogenetic relationships within the clade remain debated, and comprehensive analyses of codon usage and selection pressure in Telephium plastomes are limited. In this study, we assembled and annotated four plastomes and performed extensive analyses. The plastomes exhibited a typical quadripartite structure and high conservation. The lengths ranged from 151,357 bp to 151,641 bp with 134 genes identified. The GC content was the highest within IR, followed by LSC, and lowest in the SSC region. Meanwhile, a unique inversion was observed within the LSC region of Meterostachys sikokianus. Polymorphisms analysis revealed minimum nucleotide diversity in the IR regions, with over ten highly polymorphic regions identified. Phylogenetically, two subclades formed within the monophyletic Telephium clade, with Umbilicus as the sister group to the remaining Hylotelephium subclade members. Notably, no significant positive selection was found among the 79 plastid genes, which showed varying evolutionary patterns. However, 19 genes contained codons under positive selection. The specific functions of these sites require further investigation. Synonymous codon usage was biased and conserved across the tested plastomes, shaped by natural selection, mutations and other factors of varying influence. We also identified 34 taxon-specific codon aversion motifs from 49 plastid genes. Our plastomic analyses elucidate phylogenetic relationships and evolutionary patterns in this medicinal clade, providing a foundation for further research on these ecologically and pharmaceutically important plants.
Collapse
Affiliation(s)
- Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
4
|
Yan R, Gu L, Qu L, Wang X, Hu G. New Insights into Phylogenetic Relationship of Hydrocotyle (Araliaceae) Based on Plastid Genomes. Int J Mol Sci 2023; 24:16629. [PMID: 38068952 PMCID: PMC10706649 DOI: 10.3390/ijms242316629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrocotyle, belonging to the Hydrocotyloideae of Araliaceae, consists of 95 perennial and 35 annual species. Due to the lack of stable diagnostic morphological characteristics and high-resolution molecular markers, the phylogenetic relationships of Hydrocotyle need to be further investigated. In this study, we newly sequenced and assembled 13 whole plastid genomes of Hydrocotyle and performed comparative plastid genomic analyses with four previously published Hydrocotyle plastomes and phylogenomic analyses within Araliaceae. The plastid genomes of Hydrocotyle exhibited typical quadripartite structures with lengths from 152,659 bp to 153,669 bp, comprising a large single-copy (LSC) region (83,958-84,792 bp), a small single-copy (SSC) region (18,585-18,768 bp), and a pair of inverted repeats (IRs) (25,058-25,145 bp). Each plastome encoded 113 unique genes, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Comparative analyses showed that the IR boundaries of Hydrocotyle plastomes were highly similar, and the coding and IR regions exhibited more conserved than non-coding and single-copy (SC) regions. A total of 2932 simple sequence repeats and 520 long sequence repeats were identified, with specificity in the number and distribution of repeat sequences. Six hypervariable regions were screened from the SC region, including four intergenic spacers (IGS) (ycf3-trnS, trnS-rps4, petA-psbJ, and ndhF-rpl32) and two coding genes (rpl16 and ycf1). Three protein-coding genes (atpE, rpl16, and ycf2) were subjected to positive selection only in a few species, implying that most protein-coding genes were relatively conserved during the plastid evolutionary process. Plastid phylogenomic analyses supported the treatment of Hydrocotyle from Apiaceae to Araliaceae, and topologies with a high resolution indicated that plastome data can be further used in the comprehensive phylogenetic research of Hydrocotyle. The diagnostic characteristics currently used in Hydrocotyle may not accurately reflect the phylogenetic relationships of this genus, and new taxonomic characteristics may need to be evaluated and selected in combination with more comprehensive molecular phylogenetic results.
Collapse
Affiliation(s)
- Rongrong Yan
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Li Gu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Qu
- Institute of Medicinal Plant Development Yunnan Branch, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| | - Xiaoyu Wang
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Guoxiong Hu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Yang T, Wu Z, Tie J, Qin R, Wang J, Liu H. A Comprehensive Analysis of Chloroplast Genome Provides New Insights into the Evolution of the Genus Chrysosplenium. Int J Mol Sci 2023; 24:14735. [PMID: 37834185 PMCID: PMC10572340 DOI: 10.3390/ijms241914735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Chrysosplenium, a perennial herb in the family Saxifragaceae, prefers to grow in low light and moist environments and is divided into two sections of Alternifolia and Oppositifolia based on phyllotaxy. Although there has been some progress in the phylogeny of Chrysosplenium over the years, the phylogenetic position of some species is still controversial. In this study, we assembled chloroplast genomes (cp genomes) of 34 Chrysosplenium species and performed comparative genomic and phylogenetic analyses in combination with other cp genomes of previously known Chrysosplenium species, for a total of 44 Chrysosplenium species. The comparative analyses revealed that cp genomes of Chrysosplenium species were more conserved in terms of genome structure, gene content and arrangement, SSRs, and codon preference, but differ in genome size and SC/IR boundaries. Phylogenetic analysis showed that cp genomes effectively improved the phylogenetic support and resolution of Chrysosplenium species and strongly supported Chrysosplenium species as a monophyletic taxon and divided into three branches. The results also showed that the sections of Alternifolia and Oppositifolia were not monophyletic with each other, and that C. microspermum was not clustered with other Chrysosplenium species with alternate leaves, but with C. sedakowii into separate branches. In addition, we identified 10 mutational hotspot regions that could serve as potential DNA barcodes for Chrysosplenium species identification. In contrast to Peltoboykinia, the clpP and ycf2 genes of Chrysosplenium were subjected to positive selection and had multiple significant positive selection sites. We further detected a significant positive selection site on the petG gene between the two sections of Chrysosplenium. These evolutionary characteristics may be related to the growth environment of Chrysosplenium species. This study enriches the cp genomes of Chrysosplenium species and provides a reference for future studies on its evolution and origin.
Collapse
Affiliation(s)
- Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China;
| | - Jun Tie
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
| | - Jiangqing Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.); (J.T.); (R.Q.)
| |
Collapse
|
6
|
Yan R, Geng Y, Jia Y, Xiang C, Zhou X, Hu G. Comparative analyses of Linderniaceae plastomes, with implications for its phylogeny and evolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1265641. [PMID: 37828930 PMCID: PMC10565954 DOI: 10.3389/fpls.2023.1265641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Introduction The recently established Linderniaceae, separated from the traditionally defined Scrophulariaceae, is a taxonomically complicated family. Although previous phylogenetic studies based on a few short DNA markers have made great contributions to the taxonomy of Linderniaceae, limited sampling and low resolution of the phylogenetic tree have failed to resolve controversies between some generic circumscriptions. The plastid genome exhibits a powerful ability to solve phylogenetic relationships ranging from shallow to deep taxonomic levels. To date, no plastid phylogenomic studies have been carried out in Linderniaceae. Methods In this study, we newly sequenced 26 plastid genomes of Linderniaceae, including eight genera and 25 species, to explore the phylogenetic relationships and genome evolution of the family through plastid phylogenomic and comparative genomic analyses. Results The plastid genome size of Linderniaceae ranged from 152,386 bp to 154,402 bp, exhibiting a typical quartile structure. All plastomes encoded 114 unique genes, comprising 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The inverted repeat regions were more conserved compared with the single-copy regions. A total of 1803 microsatellites and 1909 long sequence repeats were identified, and five hypervariable regions (petN-psbM, rps16-trnQ, rpl32-trnL, rpl32, and ycf1) were screened out. Most protein-coding genes were relatively conserved, with only the ycf2 gene found under positive selection in a few species. Phylogenomic analyses confirmed that Linderniaceae was a distinctive lineage and revealed that the presently circumscribed Vandellia and Torenia were non-monophyletic. Discussion Comparative analyses showed the Linderniaceae plastomes were highly conservative in terms of structure, gene order, and gene content. Combining morphological and molecular evidence, we supported the newly established Yamazakia separating from Vandellia and the monotypic Picria as a separate genus. These findings provide further evidence to recognize the phylogenetic relationships among Linderniaceae and new insights into the evolution of the plastid genomes.
Collapse
Affiliation(s)
- Rongrong Yan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yanfei Geng
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuhuan Jia
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Chunlei Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xinxin Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Guoxiong Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Polivanova OB, Tiurin KN, Sivolapova AB, Goryunova SV, Zhevora SV. Influence of Increased Radiation Background on Antioxidative Responses of Helianthus tuberosus L. Antioxidants (Basel) 2023; 12:antiox12040956. [PMID: 37107330 PMCID: PMC10135547 DOI: 10.3390/antiox12040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
As a result of the accident at the Chornobyl Nuclear Power Plant, significant territories were exposed to ionizing radiation. Some isotopes, such as 137Cs, are capable of making a significant impact on living organisms in the long-term perspective. The generation of reactive oxygen species is one mechanism by which ionizing radiation affects living organisms, initiating mechanisms of antioxidant protection. In this article, the effect of increased ionizing radiation on the content of non-enzymatic antioxidants and the activity of antioxidant defense enzymes of Helianthus tuberosum L. was studied. This plant is widely distributed in Europe and characterized by high adaptability to abiotic factors. We found that the activity of antioxidant defense enzymes, such as catalase and peroxidase, weakly correlated with radiation exposure. The activity of ascorbate peroxidase, on the contrary, is strongly positively correlated with radiation exposure. The samples growing on the territory with constant low exposure to ionizing radiation were also characterized by an increased concentration of ascorbic acid and water-soluble phenolic compounds compared to the controls. This study may be useful for understanding the mechanisms underlying the adaptive reactions of plants under prolonged exposure to ionizing radiation.
Collapse
Affiliation(s)
- Oksana B Polivanova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
- Department of Biotechnology, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
| | - Kirill N Tiurin
- Laboratory of Systemic Genomics and Plant Mobilomics, Moscow Institute of Physics and Technology, Institutsky Lane, 9, 141701 Dolgoprudny, Russia
- Laboratory of Marker and Genomic Plant Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str., 42, 127550 Moscow, Russia
| | - Anastasia B Sivolapova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| | - Svetlana V Goryunova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| | - Sergey V Zhevora
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| |
Collapse
|
8
|
Chen J, Zang Y, Shang S, Yang Z, Liang S, Xue S, Wang Y, Tang X. Chloroplast genomic comparison provides insights into the evolution of seagrasses. BMC PLANT BIOLOGY 2023; 23:104. [PMID: 36814193 PMCID: PMC9945681 DOI: 10.1186/s12870-023-04119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zang
- Ministry of Natural Resources, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Qingdao, Shandong, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Kamra K, Jung J, Kim JH. A phylogenomic study of Iridaceae Juss. based on complete plastid genome sequences. FRONTIERS IN PLANT SCIENCE 2023; 14:1066708. [PMID: 36844099 PMCID: PMC9948625 DOI: 10.3389/fpls.2023.1066708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The plastid genome has proven to be an effective tool for examining deep correlations in plant phylogenetics, owing to its highly conserved structure, uniparental inheritance, and limited variation in evolutionary rates. Iridaceae, comprising more than 2,000 species, includes numerous economically significant taxa that are frequently utilized in food industries and medicines and for ornamental and horticulture purposes. Molecular studies on chloroplast DNA have confirmed the position of this family in the order Asparagales with non-asparagoids. The current subfamilial classification of Iridaceae recognizes seven subfamilies-Isophysioideae, Nivenioideae, Iridoideae, Crocoideae, Geosiridaceae, Aristeoideae, and Patersonioideae-which are supported by limited plastid DNA regions. To date, no comparative phylogenomic studies have been conducted on the family Iridaceae. We assembled and annotated (de novo) the plastid genomes of 24 taxa together with seven published species representing all the seven subfamilies of Iridaceae and performed comparative genomics using the Illumina MiSeq platform. The plastomes of the autotrophic Iridaceae represent 79 protein-coding, 30 tRNA, and four rRNA genes, with lengths ranging from 150,062 to 164,622 bp. The phylogenetic analysis of the plastome sequences based on maximum parsimony, maximum likelihood, and Bayesian inference analyses suggested that Watsonia and Gladiolus were closely related, supported by strong support values, which differed considerably from recent phylogenetic studies. In addition, we identified genomic events, such as sequence inversions, deletions, mutations, and pseudogenization, in some species. Furthermore, the largest nucleotide variability was found in the seven plastome regions, which can be used in future phylogenetic studies. Notably, three subfamilies-Crocoideae, Nivenioideae, and Aristeoideae-shared a common ycf2 gene locus deletion. Our study is a preliminary report of a comparative study of the complete plastid genomes of 7/7 subfamilies and 9/10 tribes, elucidating the structural characteristics and shedding light on plastome evolution and phylogenetic relationships within Iridaceae. Additionally, further research is required to update the relative position of Watsonia within the tribal classification of the subfamily Crocoideae.
Collapse
Affiliation(s)
| | | | - Joo-Hwan Kim
- Department of Life Sciences, Gachon University, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
10
|
Sandoval-Padilla I, Zamora-Tavares MDP, Ruiz-Sánchez E, Pérez-Alquicira J, Vargas-Ponce O. Characterization of the plastome of Physaliscordata and comparative analysis of eight species of Physalis sensu stricto. PHYTOKEYS 2022; 210:109-134. [PMID: 36760406 PMCID: PMC9836641 DOI: 10.3897/phytokeys.210.85668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/07/2022] [Indexed: 06/18/2023]
Abstract
In this study, we sequenced, assembled, and annotated the plastome of Physaliscordata Mill. and compared it with seven species of the genus Physalis sensu stricto. Sequencing, annotating, and comparing plastomes allow us to understand the evolutionary mechanisms associated with physiological functions, select possible molecular markers, and identify the types of selection that have acted in different regions of the genome. The plastome of P.cordata is 157,000 bp long and presents the typical quadripartite structure with a large single-copy (LSC) region of 87,267 bp and a small single-copy (SSC) region of 18,501 bp, which are separated by two inverted repeat (IRs) regions of 25,616 bp each. These values are similar to those found in the other species, except for P.angulata L. and P.pruinosa L., which presented an expansion of the LSC region and a contraction of the IR regions. The plastome in all Physalis species studied shows variation in the boundary of the regions with three distinct types, the percentage of the sequence identity between coding and non-coding regions, and the number of repetitive regions and microsatellites. Four genes and 10 intergenic regions show promise as molecular markers and eight genes were under positive selection. The maximum likelihood analysis showed that the plastome is a good source of information for phylogenetic inference in the genus, given the high support values and absence of polytomies. In the Physalis plastomes analyzed here, the differences found, the positive selection of genes, and the phylogenetic relationships do not show trends that correspond to the biological or ecological characteristics of the species studied.
Collapse
Affiliation(s)
- Isaac Sandoval-Padilla
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - María del Pilar Zamora-Tavares
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Eduardo Ruiz-Sánchez
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Jessica Pérez-Alquicira
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
- Laboratorio Nacional de Identificación y Caracterización Vegetal A(LaniVeg), Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoCONACYTMexico CityMexico
| | - Ofelia Vargas-Ponce
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| |
Collapse
|
11
|
Comparative Analysis of the Complete Chloroplast Genomes in Allium Section Bromatorrhiza Species (Amaryllidaceae): Phylogenetic Relationship and Adaptive Evolution. Genes (Basel) 2022; 13:genes13071279. [PMID: 35886061 PMCID: PMC9324613 DOI: 10.3390/genes13071279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/03/2022] Open
Abstract
With the development of molecular sequencing approaches, many taxonomic and phylogenetic problems of the genus Allium L. have been solved; however, the phylogenetic relationships of some subgenera or sections, such as section Bromatorrhiza, remain unresolved, which has greatly impeded our full understanding of the species relationships among the major clades of Allium. In this study, the complete chloroplast (cp) genomes of nine species in the Allium sect. Bromatorrhiza were determined using the Illumina paired-end sequencing, the NOVOPlasty de novo assembly strategy, and the PGA annotation method. The results showed that the cp genome exhibited high conservation and revealed a typical circular tetrad structure. Among the sect. Bromatorrhiza species, the gene content, SSRs, codon usage, and RNA editing site were similar. The genome structure and IR regions’ fluctuation were investigated while genes, CDSs, and non-coding regions were extracted for phylogeny reconstruction. Evolutionary rates (Ka/Ks values) were calculated, and positive selection analysis was further performed using the branch-site model. Five hypervariable regions were identified as candidate molecular markers for species authentication. A clear relationship among the sect. Bromatorrhiza species were detected based on concatenated genes and CDSs, respectively, which suggested that sect. Bromatorrhiza is monophyly. In addition, there were three genes with higher Ka/Ks values (rps2, ycf1, and ycf2), and four genes (rpoC2, atpF, atpI, and rpl14) were further revealed to own positive selected sites. These results provide new insights into the plastome component, phylogeny, and evolution of Allium species.
Collapse
|
12
|
Wang Y, Wang G, Zhou Z, Zong Y, Wang L, Yang S, Zhang Y, Sun X. Transcriptome analysis for genes involved in fructan biosynthesis in the Jerusalem artichoke ( Helianthus tuberosus L.). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2098056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- Ying Wang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Gui Wang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Zhenjie Zhou
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
| | - Lihui Wang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Shipeng Yang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Yaqi Zhang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Xuemei Sun
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| |
Collapse
|
13
|
Comparative Analyses of Chloroplast Genomes Provide Comprehensive Insights into the Adaptive Evolution of Paphiopedilum (Orchidaceae). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An elucidation of how the selection pressures caused by habitat environments affect plant plastid genomes and lead to the adaptive evolution of plants, is a very intense area of research in evolutionary biology. The genus Paphiopedilum is a predominant group of orchids that includes over 66 species with high horticultural and ornamental value. However, owing to the destructive exploitation and habitat deterioration of wild germplasm resources of Paphiopedilum, it needs more molecular genetic resources and studies on this genus. The chloroplast is cytoplasmically inherited and often used in evolutionary studies. Thus, for this study, we newly sequenced, assembled and annotated five chloroplast genomes of the Paphiopedilum species. The size of these genomes ranged from 155,886 bp (P. henryanum) to 160,503 bp (P. ‘GZSLKY’ Youyou) and they contained 121–122 genes, which consisted of 76 protein coding genes, eight ribosomal RNAs, and 37–38 transfer RNAs. Combined with the other 14 Paphiopedilum species, the characteristics of the repeat sequences, divergent hotspot regions, and the condo usage bias were evaluated and identified, respectively. The gene transfer analysis showed that some fragments of the ndh and ycf gene families were shared by both the chloroplast and nucleus. Although the genomic structure and gene content was conserved, there was a significant boundary shift caused by the inverted repeat (IR) expansion and small single copy (SSC) contraction. The lower GC content and loss of ndh genes could be the result of adaptive evolutionary responses to its unique habitats. The genes under positive selection, including accD, matK, psbM, rpl20, rps12, ycf1, and ycf2 might be regarded as potential candidate genes for further study, which significantly contribute to the adaptive evolution of Paphiopedilum.
Collapse
|
14
|
Jiang H, Tian J, Yang J, Dong X, Zhong Z, Mwachala G, Zhang C, Hu G, Wang Q. Comparative and phylogenetic analyses of six Kenya Polystachya (Orchidaceae) species based on the complete chloroplast genome sequences. BMC PLANT BIOLOGY 2022; 22:177. [PMID: 35387599 PMCID: PMC8985347 DOI: 10.1186/s12870-022-03529-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polystachya Hook. is a large pantropical orchid genus (c. 240 species) distributed in Africa, southern Asia and the Americas, with the center of diversity in Africa. Previous studies on species of this genus have not obtained the complete chloroplast genomes, structures and variations. Additionally, the phylogenetic position of the genus in the Orchidaceae is still controversial and uncertain. Therefore, in this study, we sequenced the complete plastomes of six Kenya Polystachya species based on genome skimming, subjected them to comparative genomic analysis, and reconstructed the phylogenetic relationships with other Orchidaceae species. RESULTS The results exhibited that the chloroplast genomes had a typical quadripartite structure with conserved genome arrangement and moderate divergence. The plastomes of the six Polystachya species ranged from 145,484 bp to 149,274 bp in length and had an almost similar GC content of 36.9-37.0%. Gene annotation revealed 106-109 single-copy genes. In addition, 19 genes are duplicated in the inverted regions, and 16 genes each possessd one or more introns. Although no large structural variations were observed among the Polystachya plastomes, about 1 kb inversion was found in Polystachya modesta and all 11 ndh genes in the Polystachya plastomes were lost or pseudogenized. Comparative analysis of the overall sequence identity among six complete chloroplast genomes confirmed that for both coding and non-coding regions in Polystachya, SC regions exhibit higher sequence variation than IRs. Furthermore, there were various amplifications in the IR regions among the six Polystachya species. Most of the protein-coding genes of these species had a high degree of codon preference. We screened out SSRs and found seven relatively highly variable loci. Moreover, 13 genes were discovered with significant positive selection. Phylogenetic analysis showed that the six Polystachya species formed a monophyletic clade and were more closely related to the tribe Vandeae. Phylogenetic relationships of the family Orchidaceae inferred from the 85 chloroplast genome sequences were generally consistent with previous studies and robust. CONCLUSIONS Our study is the initial report of the complete chloroplast genomes of the six Polystachya species, elucidates the structural characteristics of the chloroplast genome of Polystachya, and filters out highly variable sequences that can contribute to the development of DNA markers for use in the study of genetic variability and evolutionary studies in Polystachya. In addition, the phylogenetic results strongly support that the genus of Polystachya is a part of the tribe Vandeae.
Collapse
Affiliation(s)
- Hui Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Tian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jiaxin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Geoffrey Mwachala
- East African Herbarium, National Museums of Kenya, P.O. Box 45166, Nairobi, 00100, Kenya
| | - Caifei Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingfeng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Yu J, Xia M, Wang Y, Chi X, Xu H, Chen S, Zhang F. Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Chen J, Zang Y, Shang S, Liang S, Zhu M, Wang Y, Tang X. Comparative Chloroplast Genomes of Zosteraceae Species Provide Adaptive Evolution Insights Into Seagrass. FRONTIERS IN PLANT SCIENCE 2021; 12:741152. [PMID: 34630493 PMCID: PMC8495015 DOI: 10.3389/fpls.2021.741152] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 05/29/2023]
Abstract
Seagrasses are marine flowering plants found in tropical and sub-tropical areas that live in coastal regions between the sea and land. All seagrass species evolved from terrestrial monocotyledons, providing the opportunity to study plant adaptation to sea environments. Here, we sequenced the chloroplast genomes (cpGenomes) of three Zostera species, then analyzed and compared their cpGenome structures and sequence variations. We also performed a phylogenetic analysis using published seagrass chloroplasts and calculated the selection pressure of 17 species within seagrasses and nine terrestrial monocotyledons, as well as estimated the number of shared genes of eight seagrasses. The cpGenomes of Zosteraceae species ranged in size from 143,877 bp (Zostera marina) to 152,726 bp (Phyllospadix iwatensis), which were conserved and displayed similar structures and gene orders. Additionally, we found 17 variable hotspot regions as candidate DNA barcodes for Zosteraceae species, which will be helpful for studying the phylogenetic relationships and interspecies differences between seagrass species. Interestingly, nine genes had positive selection sites, including two ATP subunit genes (atpA and atpF), two ribosome subunit genes (rps4 and rpl20), two DNA-dependent RNA polymerase genes (rpoC1 and rpoC2), as well as accD, clpP, and ycf2. These gene regions may have played key roles in the seagrass adaptation to diverse environments. The Branch model analysis showed that seagrasses had a higher rate of evolution than terrestrial monocotyledons, suggesting that seagrasses experienced greater environmental pressure. Moreover, a branch-site model identified positively selected sites (PSSs) in ccsA, suggesting their involvement in the adaptation to sea environments. These findings are valuable for further investigations on Zosteraceae cpGenomes and will serve as an excellent resource for future studies on seagrass adaptation to sea environments.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiling Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Darshetkar AM, Maurya S, Lee C, Bazarragchaa B, Batdelger G, Janchiv A, Jeong EJ, Choi S, Choudhary RK, Kim SY. Plastome analysis unveils Inverted Repeat (IR) expansion and positive selection in Sea Lavenders ( Limonium, Plumbaginaceae, Limonioideae, Limonieae). PHYTOKEYS 2021; 175:89-107. [PMID: 33867801 PMCID: PMC8032645 DOI: 10.3897/phytokeys.175.61054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 05/25/2023]
Abstract
The genus Limonium, commonly known as Sea Lavenders, is one of the most species-rich genera of the family Plumbaginaceae. In this study, two new plastomes for the genus Limonium, viz. L. tetragonum and L. bicolor, were sequenced and compared to available Limonium plastomes, viz. L. aureum and L. tenellum, to understand the gene content and structural variations within the family. The loss of the rpl16 intron and pseudogenisation of rpl23 was observed. This study reports, for the first time, expansion of the IRs to include the ycf1 gene in Limonium plastomes, incongruent with previous studies. Two positively selected genes, viz. ndhF and ycf2, were identified. Furthermore, putative barcodes are proposed for the genus, based on the nucleotide diversity of four Limonium plastomes.
Collapse
Affiliation(s)
- Ashwini M. Darshetkar
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
- S.P. Pune University, Pune 411 007, India
| | - Satish Maurya
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
- S.P. Pune University, Pune 411 007, India
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Badamtsetseg Bazarragchaa
- Department of Environment & Forest Resources, Chungnam National University, Daejeon 34134, South Korea
| | - Gantuya Batdelger
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Agiimaa Janchiv
- Department of Biology, Ulaanbaatar State University, Ulaanbaatar 13343, Mongolia
| | - Eun Ju Jeong
- Department of Plants & Biomaterials Science, Gyeongsang National University, Jinju 52725, South Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Ritesh Kumar Choudhary
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
- S.P. Pune University, Pune 411 007, India
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| |
Collapse
|
18
|
Yang Q, Fu GF, Wu ZQ, Li L, Zhao JL, Li QJ. Chloroplast Genome Evolution in Four Montane Zingiberaceae Taxa in China. FRONTIERS IN PLANT SCIENCE 2021; 12:774482. [PMID: 35082807 PMCID: PMC8784687 DOI: 10.3389/fpls.2021.774482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Chloroplasts are critical to plant survival and adaptive evolution. The comparison of chloroplast genomes could provide insight into the adaptive evolution of closely related species. To identify potential adaptive evolution in the chloroplast genomes of four montane Zingiberaceae taxa (Cautleya, Roscoea, Rhynchanthus, and Pommereschea) that inhabit distinct habitats in the mountains of Yunnan, China, the nucleotide sequences of 13 complete chloroplast genomes, including five newly sequenced species, were characterized and compared. The five newly sequenced chloroplast genomes (162,878-163,831 bp) possessed typical quadripartite structures, which included a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted repeat regions (IRa and IRb), and even though the structure was highly conserved among the 13 taxa, one of the rps19 genes was absent in Cautleya, possibly due to expansion of the LSC region. Positive selection of rpoA and ycf2 suggests that these montane species have experienced adaptive evolution to habitats with different sunlight intensities and that adaptation related to the chloroplast genome has played an important role in the evolution of Zingiberaceae taxa.
Collapse
Affiliation(s)
- Qian Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Gao-Fei Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhi-Qiang Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- *Correspondence: Jian-Li Zhao,
| | - Qing-Jun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
19
|
Wu Z, Liao R, Yang T, Dong X, Lan D, Qin R, Liu H. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae). BMC Genomics 2020; 21:621. [PMID: 32912155 PMCID: PMC7488271 DOI: 10.1186/s12864-020-07045-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/01/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Chrysosplenium L. (Saxifragaceae) is a genus of plants widely distributed in Northern Hemisphere and usually found in moist, shaded valleys and mountain slopes. This genus is ideal for studying plant adaptation to low light conditions. Although some progress has been made in the systematics and biogeography of Chrysosplenium, its chloroplast genome evolution remains to be investigated. RESULTS To fill this gap, we sequenced the chloroplast genomes of six Chrysosplenium species and analyzed their genome structure, GC content, and nucleotide diversity. Moreover, we performed a phylogenetic analysis and calculated non-synonymous (Ka) /synonymous (Ks) substitution ratios using the combined protein-coding genes of 29 species within Saxifragales and two additional species as outgroups, as well as a pair-wise estimation for each gene within Chrysosplenium. Compared with the outgroups in Saxifragaceae, the six Chrysosplenium chloroplast genomes had lower GC contents; they also had conserved boundary regions and gene contents, as only the rpl32 gene was lost in four of the Chrysosplenium chloroplast genomes. Phylogenetic analyses suggested that the Chrysosplenium separated to two major clades (the opposite group and the alternate group). The selection pressure estimation (Ka/Ks ratios) of genes in the Chrysosplenium species showed that matK and ycf2 were subjected to positive selection. CONCLUSION This study provides genetic resources for exploring the phylogeny of Chrysosplenium and sheds light on plant adaptation to low light conditions. The lower average GC content and the lacking gene of rpl32 indicated selective pressure in their unique habitats. Different from results previously reported, our selective pressure estimation suggested that the genes related to photosynthesis (such as ycf2) were under positive selection at sites in the coding region.
Collapse
Affiliation(s)
- Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Rui Liao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Deqing Lan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
20
|
Abdullah, Henriquez CL, Mehmood F, Carlsen MM, Islam M, Waheed MT, Poczai P, Croat TB, Ahmed I. Complete Chloroplast Genomes of Anthurium huixtlense and Pothos scandens (Pothoideae, Araceae): Unique Inverted Repeat Expansion and Contraction Affect Rate of Evolution. J Mol Evol 2020; 88:562-574. [PMID: 32642873 PMCID: PMC7445159 DOI: 10.1007/s00239-020-09958-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023]
Abstract
The subfamily Pothoideae belongs to the ecologically important plant family Araceae. Here, we report the chloroplast genomes of two species of the subfamily Pothoideae: Anthurium huixtlense (size: 163,116 bp) and Pothos scandens (size: 164,719 bp). The chloroplast genome of P. scandens showed unique contraction and expansion of inverted repeats (IRs), thereby increasing the size of the large single-copy region (LSC: 102,956 bp) and decreasing the size of the small single-copy region (SSC: 6779 bp). This led to duplication of many single-copy genes due to transfer to IR regions from the small single-copy (SSC) region, whereas some duplicate genes became single copy due to transfer to large single-copy regions. The rate of evolution of protein-coding genes was affected by the contraction and expansion of IRs; we found higher mutation rates for genes that exist in single-copy regions as compared to those in IRs. We found a 2.3-fold increase of oligonucleotide repeats in P. scandens when compared with A. huixtlense, whereas amino acid frequency and codon usage revealed similarities. The ratio of transition to transversion mutations was 2.26 in P. scandens and 2.12 in A. huixtlense. Transversion mutations mostly translated in non-synonymous substitutions. The phylogenetic inference of the limited species showed the monophyly of the Araceae subfamilies. Our study provides insight into the molecular evolution of chloroplast genomes in the subfamily Pothoideae and family Araceae.
Collapse
Affiliation(s)
- Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Claudia L Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, USA
| | - Furrukh Mehmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | - Madiha Islam
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, PO Box 7, 00014, Helsinki, Finland.
| | | | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan.
| |
Collapse
|
21
|
Li H, Guo Q, Li Q, Yang L. Long-reads reveal that Rhododendron delavayi plastid genome contains extensive repeat sequences, and recombination exists among plastid genomes of photosynthetic Ericaceae. PeerJ 2020; 8:e9048. [PMID: 32351791 PMCID: PMC7183307 DOI: 10.7717/peerj.9048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/02/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Rhododendron delavayi Franch. var. delavayi is a wild ornamental plant species in Guizhou Province, China. The lack of its plastid genome information seriously hinders the further application and conservation of the valuable resource. METHODS The complete plastid genome of R. delavayi was assembled from long sequence reads. The genome was then characterized, and compared with those of other photosynthetic Ericaceae species. RESULTS The plastid genome of R. delavayi has a typical quadripartite structure, and a length of 202,169 bp. It contains a large number of repeat sequences and shows preference for codon usage. The comparative analysis revealed the irregular recombination of gene sets, including rearrangement and inversion, in the large single copy region. The extreme expansion of the inverted repeat region shortened the small single copy, and expanded the full length of the genome. In addition, consistent with traditional taxonomy, R. delavayi with nine other species of the same family were clustered into Ericaceae based on the homologous protein-coding sequences of the plastid genomes. Thus, the long-read assembly of the plastid genome of R. delavayi would provide basic information for the further study of the evolution, genetic diversity, and conservation of R. delavayi and its relatives.
Collapse
Affiliation(s)
- Huie Li
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qiqiang Guo
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
| | - Qian Li
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Lan Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|