1
|
Huang X, Li Z, Zhang L, Yang Y, Wang Y, Li S, Li G, Feng H, Yang X. miR-205-5p inhibits homocysteine-induced pulmonary microvascular endothelium dysfunction by targeting FOXO1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1456-1466. [PMID: 37491880 PMCID: PMC10520487 DOI: 10.3724/abbs.2023127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 07/27/2023] Open
Abstract
Homocysteine (Hcy) is a risk factor for multiple chronic diseases, and vascular endothelial cell injury has been regarded as the initiating step for this process. miRNAs are involved in Hcy-induced endothelial dysfunction, while the underlying mechanism and roles of miRNAs in pulmonary endothelial dysfunction induced by homocysteine are unknown. Here, we find that miR-205-5p alleviates pulmonary endothelial dysfunction by targeting FOXO1 in CBS +/‒ mice to protect against Hcy-induced pulmonary endothelial dysfunction. Mechanistically, we show that Hcy can lead to DNA hypermethylation of the miR-205-5p promoter due to the increased binding of DNMT1 to its promoter, which contributes to reduction of miR-205-5p expression. In summary, miR-205-5p promoter hypermethylation causes downregulation of miR-205-5p expression, resulting in a reduction in miR-205-5p binding to FOXO1 during homocysteine-induced pulmonary endothelial dysfunction. Our data indicate that miR-205-5p may be a potential therapeutic target against Hcy-induced pulmonary injury.
Collapse
Affiliation(s)
- Xiaobo Huang
- Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Ningxia Medical University (The First People′s Hospital of Yinchuan)Yinchuan750001China
| | - Zhen Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ling Zhang
- Department of PathologyPeople’s Hospital of Ningxia Hui Autonomous RegionYinchuan750004China
| | - Yali Yang
- Department of PathologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yanjia Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Sirui Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | | | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
2
|
Tan A, Li T, Ruan L, Yang J, Luo Y, Li L, Wu X. Knockdown of Malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis. Exp Eye Res 2021; 207:108585. [PMID: 33887222 DOI: 10.1016/j.exer.2021.108585] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR), characterized by intraretinal vessel formation, is a major complication in diabetes. Neovascularization is an important characteristic of DR, but its formation mechanism remains unclear. In this research, Malat1, miR-205-5p, and VEGF-A levels in high glucose (HG) treat-human retinal microvascular endothelial cells (hRMECs) was detected with qRT-PCR. CCK-8 assay, transwell assay, and tube formation assay was applied to access hRMEC viability, migration, and angiogenesis. Expression level of endothelial-mesenchymal transition (EndMT) markers (VE-cadherin, FSP1, and α-SMA) was detected by western blotting assay. Interaction among Malat1, miR-205-5p, and VEGF-A was confirmed by dual-luciferase reporter assay. Furthermore, in vivo DR mouse model was induced, and the effect of Malat1 on DR and EndMT markers was confirmed through hematoxylin-eosin (HE) staining and western blotting. As a result, Malat1 and VEGF-A was upregulated while miR-205-5p was suppressed under HG conditions. Malat1 could sponge miR-205-5p to regulate VEGF-A expression. Malat1 knockdown inhibited hRMEC proliferation, migration, and tube formation by targeting miR-205-5p under HG conditions. Furthermore, inhibition of Malat1 prevented the HG-induced EndMT process. In summary, Malat1 knockdown diminished hRMEC dysfunctions by regulating miR-205-5p/VEGF-A, providing a useful insight for exploring new therapeutic target for DR.
Collapse
Affiliation(s)
- Anjun Tan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Tianrong Li
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Libo Ruan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Jingjing Yang
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Yuanyuan Luo
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrong West Road, Kunming, 650500, Yunnan, China.
| | - Xinan Wu
- The School of Public Health, Kunming Medical University, No. 1168 Chunrong West Road, Kunming, 650500, Yunnan, China.
| |
Collapse
|
3
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
4
|
Dogra S, Hannafon BN. Breast Cancer Microenvironment Cross Talk through Extracellular Vesicle RNAs. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1330-1341. [PMID: 33895121 DOI: 10.1016/j.ajpath.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022]
Abstract
Exploration of extracellular communication has been at the forefront of research efforts in recent years. However, the mechanisms of cell-to-cell communication in complex tissues are poorly understood. What is clear is that cells do not exist in isolation, that they are constantly interacting and communicating with cells in the immediate vicinity and with cells at a distance. Intercellular communication by the release of small extracellular vesicles, called exosomes, loaded with RNAs is one mechanism by which cells communicate. In recent years, research has shown that exosomes, a class of extracellular vesicles, can play a major role in the pathogenesis of breast cancer. Specifically, exosomes have been demonstrated to play a role in promoting primary cancer development, invasion, metastasis, and chemotherapeutic resistance. This review summarizes what is known about the mechanisms of exosome-mediated transfer of RNAs among cells in the breast microenvironment and discusses outstanding questions and the potential for new therapeutic intervention targeted at these interactions.
Collapse
Affiliation(s)
- Samrita Dogra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bethany N Hannafon
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
5
|
miR-205 in Breast Cancer: State of the Art. Int J Mol Sci 2020; 22:ijms22010027. [PMID: 33375067 PMCID: PMC7792793 DOI: 10.3390/ijms22010027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Despite its controversial roles in different cancer types, miR-205 has been mainly described as an oncosuppressive microRNA (miRNA), with some contrasting results, in breast cancer. The role of miR-205 in the occurrence or progression of breast cancer has been extensively studied since the first evidence of its aberrant expression in tumor tissues versus normal counterparts. To date, it is known that the expression of miR-205 in the different subtypes of breast cancer is decreasing from the less aggressive subtype, estrogen receptor/progesterone receptor positive breast cancer, to the more aggressive, triple negative breast cancer, influencing metastasis capability, response to therapy and patient survival. In this review, we summarize the most important discoveries that have highlighted the functional role of this miRNA in breast cancer initiation and progression, in stemness maintenance, in the tumor microenvironment, its potential role as a biomarker and its relevance in normal breast physiology—the still open questions. Finally, emerging evidence reveals the role of some lncRNAs in breast cancer progression as sponges of miR-205. Here, we also reviewed the studies in this field.
Collapse
|
6
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|