1
|
Abd-Elhakim YM, Abu-Zeid EH, Ibrahim D, Alhallag KA, Wagih E, Abdelaty AI, Khamis T, Metwally MMM, Ismail TA, Eldoumani H. Moringa oleifera Leaves Powder Mitigates Imidacloprid-Induced Neurobehavioral Disorders and Neurotoxic Reactions in Broiler Chickens by Regulating the Caspase-3/Hsp70/PGC-1α Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8040-8053. [PMID: 40110847 DOI: 10.1021/acs.jafc.5c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
This study investigated the potential neuroprotective role of Moringa oleifera leaf powder (MOLP) dietary supplementation on imidacloprid (IMD)-induced neurobehavioral disturbances, oxidative stress, and apoptosis in broiler chicken brains. In a 6 week trial, 150 day-old commercial meat-type Ross 308 broiler chicks were randomly divided into five equal groups of 30 chicks each. The control and MOLP groups were fed a basal diet and a basal containing diet 25 g MOLP/kg, respectively, for 6 weeks. The IMD group was fed a basal diet for 2 weeks, followed by a basal diet containing 50 mg IMD/kg for 4 weeks. The IMD + MOLP combined group was fed a basal diet for 2 weeks, followed by a basal diet containing both IMD and MOLP for 4 weeks. The MOLP/IMD + MOLP prophylactic group was fed a MOLP-fortified diet for 2 weeks, followed by a basal diet containing both IMD and MOP for 4 weeks. MOLP supplementation effectively reversed IMD-induced reductions in feeding behavior and locomotor activity while decreasing crouching behavior and fearfulness. Dietary MOLP significantly restored the IMD-induced depletion of brain antioxidants while lessening lipid peroxidation, pathological alterations, and Caspase-3 immunoexpression. Yet, the brain AChE content did not change significantly among the experimental groups. However, dietary MOLP significantly reversed IMD-induced apoptotic-related genes (P21 and Caspase-3) upregulation and neuronal development-related genes (BDNF, GLP-1, PGC-1α, and PPARA) downregulation. Notably, the MOLP/IMD + MOLP prophylactic group showed more enhanced neuroprotection than the IMD + MOLP combined group. In conclusion, our study highlighted the IMD neurotoxic effects in broiler chickens and showed, for the first time, the neuroprotective potential of MOLP as a dietary supplement against IMD exposure.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Kholoud A Alhallag
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Eman Wagih
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa I Abdelaty
- Department of Behavior and Management of Animal, Poultry, and Aquatics, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Janicka K, Drabik K, Wengerska K, Rozempolska-Rucińska I. Effect of Stocking Density on Behavioural and Physiological Traits of Laying Hens. Animals (Basel) 2025; 15:604. [PMID: 40003083 PMCID: PMC11852137 DOI: 10.3390/ani15040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
This study analysed stocking density as a major stress factor for laying hens and assessed its impact on selected behavioural and physiological traits of the birds. The study population included 142 birds of the Green-legged Partridge breed (12 males and 132 females). The birds were randomly assigned to three experimental groups of standard, low, and high stocking density, and a modified open-field test was conducted to assess their behavioural traits. The following blood parameters were analysed: corticosterone, cortisol, and testosterone. The behavioural test results demonstrated an impact of stocking density on laying hens' behaviour. The birds kept at a low density exhibited the greatest diversity in behaviour as well as the most frequent and longest locomotion. There were no differences between the groups in terms of stress hormone results. All groups showed a significant decrease in testosterone levels compared to the control. This may suggest that, despite differences in stocking, the structure was established quickly, resulting in decreased competition and, consequently, a positive impact on the birds. When kept in lower-stocking-density groups with a stable structure, birds are less competitive; this stable structure improves their well-being to a greater extent than the stocking density.
Collapse
Affiliation(s)
- Kamila Janicka
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (K.D.); (K.W.); (I.R.-R.)
| | | | | | | |
Collapse
|
3
|
Campbell DLM, Lee C. A review of behavioral testing in decapod shrimp (Caridea) and prawns (Dendrobranchiata) with applications for welfare assessment in aquaculture. PeerJ 2025; 13:e18883. [PMID: 39989749 PMCID: PMC11844257 DOI: 10.7717/peerj.18883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/28/2024] [Indexed: 02/25/2025] Open
Abstract
Evolving societal expectations are driving increasing interest in the welfare of decapod crustaceans, such as prawns and shrimp, grown in aquaculture. A key aspect of understanding an animal's welfare-related needs is through assessing their behavior to determine how the animal is perceiving and interacting with their environment. Behavioral testing has been applied to livestock animals for decades, providing insight into their wants and needs to guide housing structure design and husbandry practices that improve their welfare. This review collated studies that have applied behavioral testing, primarily at the individual level, to decapod shrimp and prawns in the Dendrobranchiata and Caridea sub- and infra-orders respectively. This review aims to understand the types of assessments that can be successfully applied to these taxa, and what the results of testing may be able to inform us about in regard to the welfare of these species. While the sentience capabilities of these decapod taxa is still under debate, the behavioral testing applied to date across varying species demonstrates they exhibit preferences across multiple contexts, individual differences indicative of personality, cognitive capabilities, and behavioral indicators consistent with negative affective states. There is scope to learn from livestock welfare assessment using behavioral testing and increase the research focused on penaeid shrimp and prawn species of aquaculture interest. Application and validation of new behavioral tests can guide system optimization for aquaculture shrimp and prawns in relation to the welfare of the animals.
Collapse
Affiliation(s)
- Dana L. M. Campbell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, New South Wales, Australia
| | - Caroline Lee
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, New South Wales, Australia
| |
Collapse
|
4
|
Sirovnik J. Alleviating isolation stress in chickens: The benefits of home pen playback and mirrors. PLoS One 2025; 20:e0318126. [PMID: 39937821 PMCID: PMC11819468 DOI: 10.1371/journal.pone.0318126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/12/2025] [Indexed: 02/14/2025] Open
Abstract
This study investigated whether the provision of (1) a mirror or (2) video and sound playback of conspecifics in the home pen (i.e., playback) could alleviate stress in socially isolated adult domestic chickens. Thirty adult chickens participated in the study, undergoing three-minute sessions of social isolation over three consecutive days in an arena containing a tray of food treats. Each chicken was exposed to three conditions, one per day, in a semi-randomised order: (1) mirror, (2) playback, and (3) control. Video recordings of the tests were coded for stress-related behaviours, including stress behaviour (i.e., pooled stress vocalisations and escape behaviour), vigilance, feeding, and exploration. Additionally, thermal imaging was used to measure the surface temperatures of the eye and comb. Social isolation elicited mild stress responses, as evidenced by reduced surface eye and comb temperatures along with the exhibition of stress and vigilance behaviours. Both playback and mirror conditions appeared to reduce stress behaviours compared to the control, although the effect of the mirror was not statistically significant. It is possible that the playbacks simulated the presence of a group of calm conspecifics. Vigilance behaviour, however, remained unaffected across conditions. These findings suggest that playback, and to a lesser extent mirrors, may alleviate certain stress-related behaviours in socially isolated adult chickens. As individual variation was high, future research should explore the role of individual differences in stress responses, as well as the long-term effects of repeated exposure to mirrors and playback, along with other environmental variables.
Collapse
Affiliation(s)
- Janja Sirovnik
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
5
|
Kappel S, Collins S, Mendl M, Fureix C. Looking out for danger: Theoretical and empirical issues in translating human attention bias tasks to assess animal affective states. Neurosci Biobehav Rev 2025; 169:105980. [PMID: 39667693 DOI: 10.1016/j.neubiorev.2024.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Understanding animal emotional (affective) state is highly relevant to various disciplines (e.g., animal welfare, neuroscience, comparative psychology), and has been significantly advanced by translating affect-induced cognitive bias paradigms rooted in human psychology to non-human animal studies. Attention bias (i.e., preferential attention allocation, AB) tests are increasingly used as more practical substitutes to commonly used judgement bias tests. Yet, evidence that AB reflects affective valence in animals is still limited. We review in-depth the concept of attention and AB described in humans and discuss utilising human-derived AB paradigms for measuring animal affective states. We describe key concepts and functions of attention in humans, before concentrating on the relationship between AB to threat detection and human anxiety. We critically review animal AB studies, discuss methodological discrepancies in such studies, and highlight the need for further experimental refinements. This includes identifying appropriate species-specific test designs and stimuli, modes of presentation (e.g., real-life vs. artificial stimuli), and consideration of subject-related factors (e.g., personality, age). We conclude that experimental limitations currently hamper the validity of AB as a proxy of animal affect and hope that the knowledge gaps highlighted in our review will encourage further research.
Collapse
Affiliation(s)
- Sarah Kappel
- University of Plymouth, School of Biological and Marine Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, UK.
| | - Sarah Collins
- University of Plymouth, School of Biological and Marine Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, UK
| | - Michael Mendl
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, UK
| | - Carole Fureix
- University of Plymouth, School of Biological and Marine Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, UK; University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, UK
| |
Collapse
|
6
|
Ulans A, Brooks GC, Jacobs L. Environmental complexity impacts anxiety in broiler chickens depending on genetic strain and body weight. Sci Rep 2024; 14:17535. [PMID: 39080356 PMCID: PMC11289402 DOI: 10.1038/s41598-024-67965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
The objective was to assess the impact of environmental complexity on affective state (anxiety) in fast- and slow-growing broilers (Gallus gallus domesticus) as they gain weight. Six hundred fast-growing broilers (Ross 708; "fast-growers") and 600 slow-growing broilers (Hubbard Redbro Mini; "slow-growers") were raised in 24 pens with simple (standard; SE) or complex (permanent and temporary enrichments; CE) environments. Six birds/pen underwent the attention bias test on day 23 (fast-growers only), 28-29, 35-36, 42-43, and 56-57 (slow-growers only), with individuals only tested once (n = 576). Proportion of birds feeding, time spent vigilant and latencies to eat and step were recorded. Greater vigilance and longer latencies indicate more anxiety. Slow-growers fed more (p = 0.001), were less vigilant (p = 0.003), and stepped sooner than fast-growers (p = 0.007). For both strains, likelihood of feeding was unrelated to weight in SE, but decreased with increasing weight in CE (p = 0.048). Birds in CE stepped sooner than birds in SE (p = 0.030). Vigilance increased with body weight (p = 0.024). These results indicate that affective state (anxiety) can change as birds gain weight, depending on environmental complexity and genetic strain. Overall, slow-growers showed reduced anxiety compared to fast-growers, across housing treatments or weights.
Collapse
Affiliation(s)
- Alexandra Ulans
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - George C Brooks
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Leonie Jacobs
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
Oke OE, Onagbesan OM. Impacts of access to legume- or grass-based pasture on behaviour, physiological responses and bacterial load of laying hens. Heliyon 2024; 10:e34780. [PMID: 39149081 PMCID: PMC11324940 DOI: 10.1016/j.heliyon.2024.e34780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Despite the plethora of studies on the impacts of access to runs on chickens, there is a paucity of information on the welfare and behavioural repertoire of hens raised in the deep litter houses with or without access to legume- or grass-based pasture. Therefore, this study aimed to evaluate the impact of access to grass or legume pastures by laying hens on behaviour, physiological responses and bacterial load. The study was conducted to evaluate the influence of exposure of egg-type chickens to runs on grass or legume pastures on their welfare and behaviours. The study involved the use of 240 ISA brown pullets from 12 weeks of age and and lasted for 48 weeks. The treatments were deep litter housing with grass-based pasture run (PG), deep litter housing with legume-based pasture run (PL) and deep litter housing without runs (LD) having 80 pullets with four replicates of twenty birds each. Behavioural observations of the hens in each pen were made at 52 weeks of age and tonic immobility was assessed by making the birds lie on their back with their head resting in a U-shaped wooden cradle. The measurements of the respiratory rate and rectal temperature of the hens were assessed at 1:00 p.m. at different laying phases. The gastrointestinal and egg bacterial counts were conducted at 60 weeks of age. Results revealed that the proportion of time spent eating was highest (p < 0.05) in the deep litter housing system, while the legume and grass pasture were similar. The hens spent most of their time standing and eating in the three treatments. However, the time spent standing in PL and PG was similar but significantly higher (p < 0.05) than in LD. Results on tonic immobility duration showed that the time spent by the hens in LD during the reaction was significantly longer than those of the PL and PG in the first, second and third phases of the experiments. However, the time spent by the hens in PL and PG was similar. The rectal temperatures of PL and PG birds were comparable and higher than those of LD during the second phase. On the other hand, there was no difference in the respiratory rate. Plasma triiodothyronine (T3) of the hens did not follow a consistent pattern. The bacterial count in the large intestine in LD and PL was similar but significantly (P < 0.05) higher than that of the PG. It was concluded that access to pasture influenced the behaviours of hens and that tonic immobility duration was shorter in the hens on the pasture, suggesting that access to pasture favoured hens' welfare.
Collapse
Affiliation(s)
- O E Oke
- Animal Physiology Department, Federal University of Agriculture Abeokuta, Nigeria
- Centre of Excellence in Avian Sciences, University of Lome, Togo
| | - O M Onagbesan
- Animal Physiology Department, Federal University of Agriculture Abeokuta, Nigeria
- Centre of Excellence in Avian Sciences, University of Lome, Togo
| |
Collapse
|
8
|
Ferreira VHB, Seressia J, Même N, Bernard J, Pinard-van der Laan MH, Calenge F, Lecoeur A, Hedlund L, Jensen P, Guesdon V, Calandreau L. Early and late cognitive and behavioral aspects associated with range use in free-range laying hens (Gallus gallus domesticus). Poult Sci 2024; 103:103813. [PMID: 38759569 PMCID: PMC11107457 DOI: 10.1016/j.psj.2024.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
Individual differences in free-range chicken systems are important factors influencing how birds use the range (or not), even if individuals are reared in the same environmental conditions. Here, we investigated how various aspects of the birds' behavioral and cognitive tendencies, including their optimism/pessimism, cognitive flexibility, sociability, and exploration levels, are associated with range use and how they may change over time (before and after range access). To achieve this, 100 White Leghorn laying hen chicks underwent three distinct behavioral/cognitive tests-the cognitive bias test, the detour test, and the multivariate test-prior to gaining access to the range, between 9 and 39 days of age. After range access was allowed (from day 71), birds' range use was evaluated over 7 nonconsecutive days (from 74-91 days of age). Subsequently, a subset of birds, classified as high rangers (n = 15) and low rangers (n = 15) based on their range use, underwent retesting on the same three previous tests between 94 and 108 days of age. Our results unveiled a negative correlation trend between birds' evaluation of the ambiguous cue and their subsequent range use (rho = -0.19, p = 0.07). Furthermore, low rangers were faster to learn the detour task (χ2 = 7.34, df = 1, p = 0.006), coupled with increased sociability during the multivariate test (rho = -0.23, p = 0.02), contrasting with their high-ranging counterparts, who displayed more exploratory behaviors (F[1,27] = 3.64, p = 0.06). These behavioral patterns fluctuated over time (before and after range access); however, conclusively attributing these changes to birds' aging and development or the access to the range remains challenging. Overall, our results corroborate that behavioral and cognitive individual differences may be linked to range use and offer novel perspectives on the early behavioral and cognitive traits that may be linked to range use. These findings may serve as a foundation for adapting environments to meet individual needs and improve animal welfare in the future.
Collapse
Affiliation(s)
| | - Jeanne Seressia
- CNRS, IFCE, INRAE, UMR PRC, Université de Tours, Nouzilly, France
| | | | | | | | - Fanny Calenge
- INRAE, AgroParisTech, UMR GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Lecoeur
- INRAE, AgroParisTech, UMR GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Louise Hedlund
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping Universtiy, Linköping, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping Universtiy, Linköping, Sweden
| | - Vanessa Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | | |
Collapse
|
9
|
Chen S, Liu J, Luo S, Xing L, Li W, Gong L. The Effects of Bacillus amyloliquefaciens SC06 on Behavior and Brain Function in Broilers Infected by Clostridium perfringens. Animals (Basel) 2024; 14:1547. [PMID: 38891594 PMCID: PMC11171150 DOI: 10.3390/ani14111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Poultry studies conducted on Clostridium perfringens (CP) mainly focus on the effects of intestinal health and productive performance. Notably, the probiotic Bacillus amyloliquefaciens SC06 (BaSC06) is known to play a role in preventing bacterial infection. However, whether CP could induce the changes in brain function and behaviors and whether BaSC06 could play roles in these parameters is yet to be reported. The aim of this study was to evaluate the effects of BaSC06 on stress-related behaviors and gene expression, as well as the brain morphology and mRNA sequence of the hypothalamus in broiler chickens. A total of 288 one-day-old chicks were randomly divided into four groups: (1) a control group with no treatment administered or infection; (2) birds treated with the BaSC06 group; (3) a CP group; and (4) a BaSC06 plus CP (Ba_CP) group. The results showed that stress and fear-related behaviors were significantly induced by a CP infection and decreased due to the treatment of BaSC06. CP infection caused pathological damage to the pia and cortex of the brain, while BaSC06 showed a protective effect. CP significantly inhibited hypothalamic GABA and promoted HTR1A gene expression, while BaSC06 promoted GABA and decreased HTR1A gene expression. The different genes were nearly found between the comparisons of control vs. Ba group and Ba vs. CP group, while there were a great number of different genes between the comparisons of control vs. Ba_CP as well as CP vs. Ba_CP. Several different gene expression pathways were found that were related to disease, energy metabolism, and nervous system development. Our results will help to promote poultry welfare and health, as well as provide insights into probiotics to replace antibiotics and reduce resistance in the chicken industry.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Jinling Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Shuyan Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Weifen Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| |
Collapse
|
10
|
Tamta K, Kumar A, Arya H, Arya S, Maurya RC. Neuronal plasticity in hippocampal neurons due to chronic mild stress and after stress removal in postnatal chicks. J Anat 2024; 244:831-860. [PMID: 38153009 PMCID: PMC11021661 DOI: 10.1111/joa.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
The avian dorsomedial surface of the cerebral hemisphere is occupied by the hippocampal complex (HCC), which plays an important role in learning, memory, cognitive functions, and regulating instinctive behavior patterns. The objective of the study was to evaluate the effect of chronic mild stress (CMS) in 4, 6, and 8 weeks and after chronic stress removal (CSR) in 6 and 8 weeks, on neuronal plasticity in HCC neurons of chicks through the Golgi-Cox technique. Further, behavioral study and open field test were conducted to test of exploration or of anxiety. The study revealed that the length of CMS and CSR groups shows a similar pattern as in nonstressed (NS) chicks, while weight shows nonsignificant decrease due to CMS as compared to NS and after CSR. The behavioral test depicts that the CMS group took more time to reach the food as compared to the NS and CSR groups. Due to CMS, the dendritic field of multipolar neurons shows significant decrease in 4 weeks, but in 6- and 8-week-old chicks, the multipolar, pyramidal, and stellate neurons depict significant decrease, whereas after CSR all neurons show significant increase in 8-week-old chicks. In 4- and 8-week-old chicks, all neurons depict significant decrease in their spine number, whereas in 6 weeks only multipolar neurons show significant decrease, but after CSR significant increase in 8-week-old chicks was observed. The study revealed that HCC shows continuous neuronal plasticity, which plays a significant role in normalizing and re-establishing the homeostasis in animals to survive.
Collapse
Affiliation(s)
- Kavita Tamta
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| | - Adarsh Kumar
- Department of Applied Sciences, Dr. K. N. Modi University, Newai-Tonk, India
| | - Hemlata Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| | - Shweta Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
| | - Ram Chandra Maurya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| |
Collapse
|
11
|
Jiang S, Fu Y, Cheng HW. Daylight exposure and circadian clocks in broilers: part I-photoperiod effect on broiler behavior, skeletal health, and fear response. Poult Sci 2023; 102:103162. [PMID: 37924580 PMCID: PMC10654592 DOI: 10.1016/j.psj.2023.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
The aim of this study was to examine effects of various daylight exposure during the 24-h light-dark (L-D) cycle on growth performance, skeletal health, and welfare state in broilers. Environmental photoperiod and related circadian clock, the 24-h L-D cycle, are important factors in maintaining productive performance, pathophysiological homeostasis, and psychological reaction in humans and animals. Currently, various lighting programs as management tools for providing a satisfactory environmental condition have been used in commercial broiler production. Four hundred thirty-two 1-day-old Rose 308 broiler chicks were assigned to 24 pens (18 birds/pen). The pens were randomly assigned to 1 of 4 thermal and lighting control rooms, then the birds were exposed to (n = 6): 1) 12L, 2) 16L, 3) 18L, or 4) 20L at 15 d of age. Lighting program effects on bird body weight, behavioral patterns, bone health, and stress levels were evaluated from d 35 to d 45, respectively. The birds of 12L as well as 16L groups, reared under short photoperiods close to the natural 24-h L-D cycle, had improved production performance, leg bone health, and suppressed stress reaction compared to the birds of both 18L and 20L groups. Especially, 12L birds had heavier final body weight and averaged daily weight gain (P < 0.05), higher BMD and BMC with longer and wider femur (P < 0.05), lower H/L ratio (P < 0.05), and more birds reached the observer during the touch test (P < 0.05) but spent shorter latency during the tonic immobility test (P < 0.05). Taken together, the data suggest that supplying 12 h as well as 16L of daily light improves performance and health while decreasing stress levels in broilers, making it a potentially suitable approach for broiler production.
Collapse
Affiliation(s)
- Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Heng-Wei Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Anderson MG, Johnson AM, Jacobs L, Ali ABA. Influence of Perch-Provision Timing on Anxiety and Fearfulness in Laying Hens. Animals (Basel) 2023; 13:3003. [PMID: 37835608 PMCID: PMC10572007 DOI: 10.3390/ani13193003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Perches can enhance laying hen welfare, but their effectiveness might be age-dependent. We investigated early and late perch access effects on anxiety and fear in pullets through attention bias (AB) and tonic immobility (TI) tests. Pullets (n = 728) were raised with or without multi-level perches: CP (continuous perch access: 0-37 weeks), EP (early perch access: 0-17 weeks), LP (late perch access: 17-37 weeks), and NP (no perch access). AB was conducted in weeks 21 and 37 (n = 84/week), and TI was performed in weeks 20, 25, and 37 (n = 112/week). CP hens fed quicker than EP, LP, and NP in AB at weeks 21 and 37 (p ≤ 0.05). CP and NP feeding latencies were stable, while EP and LP fed faster at week 37 (p ≤ 0.05). CP had the shortest TI at week 20 (p < 0.05). CP and LP had the shortest TI in weeks 25 and 37 (all p ≤ 0.05). Unlike NP, CP reduced anxiety and fear. Adding perches during laying (LP) raised anxiety at week 21, adapting by week 37, and removing pre-laying perches (EP) worsened fear at weeks 20 and 25 and anxiety at week 21, recovering by week 37. Adding or removing perches prior to the lay phase increased fear and anxiety, an effect that disappeared by week 37 of age. Our study indicates that continuous perch access benefits animal welfare compared to no perch access at all.
Collapse
Affiliation(s)
- Mallory G. Anderson
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (M.G.A.); (A.M.J.)
| | - Alexa M. Johnson
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (M.G.A.); (A.M.J.)
| | - Leonie Jacobs
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Ahmed B. A. Ali
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (M.G.A.); (A.M.J.)
- Animal Behavior and Management, Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
13
|
Alindekon S, Rodenburg TB, Langbein J, Puppe B, Wilmsmeier O, Louton H. Setting the stage to tag "n" track: a guideline for implementing, validating and reporting a radio frequency identification system for monitoring resource visit behavior in poultry. Poult Sci 2023; 102:102799. [PMID: 37315427 PMCID: PMC10404737 DOI: 10.1016/j.psj.2023.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Passive radio frequency identification (RFID) can advance poultry behavior research by enabling automated, individualized, longitudinal, in situ, and noninvasive monitoring; these features can usefully extend traditional approaches to animal behavior monitoring. Furthermore, since the technology can provide insight into the visiting patterns of tagged animals at functional resources (e.g., feeders), it can be used to investigate individuals' welfare, social position, and decision-making. However, the lack of guidelines that would facilitate implementing an RFID system for such investigations, describing it, and establishing its validity undermines this technology's potential for advancing poultry science. This paper aims to fill this gap by 1) providing a nontechnical overview of how RFID functions; 2) providing an overview of the practical applications of RFID technology in poultry sciences; 3) suggesting a roadmap for implementing an RFID system in poultry behavior research; 4) reviewing how validation studies of RFID systems have been done in farm animal behavior research, with a focus on terminologies and procedures for quantifying reliability and validity; and 5) suggesting a way to report on an RFID system deployed for animal behavior monitoring. This guideline is aimed mainly at animal scientists, RFID component manufacturers, and system integrators who wish to deploy RFID system as an automated tool for monitoring poultry behavior for research purposes. For such a particular application, it can complement indications in classic general standards (e.g., ISO/IEC 18000-63) and provide ideas for setting up, testing, and validating an RFID system and a standard for reporting on its adequacy and technical aspects.
Collapse
Affiliation(s)
- Serge Alindekon
- Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - T Bas Rodenburg
- Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jan Langbein
- Institute of Behavioral Physiology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioral Physiology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Behavioral Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | | | - Helen Louton
- Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
14
|
Tiemann I, Becker S, Fournier J, Damiran D, Büscher W, Hillemacher S. Differences among domestic chicken breeds in tonic immobility responses as a measure of fearfulness. PeerJ 2023; 11:e14703. [PMID: 37033722 PMCID: PMC10081456 DOI: 10.7717/peerj.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/15/2022] [Indexed: 04/07/2023] Open
Abstract
Background One priority for animal welfare is for animals to experience less fear, especially during human contact. For domestic animals, breeds that are less fearful may provide genetic resources to develop strains with improved welfare due to lower susceptibility to fear. Genetic predispositions inherited in these breeds might reflect the large diversity of chicken breeds. The goal of the present study was to systematically test a diverse group of chicken breeds to search for breeds that experience less fear. Methods Nineteen chicken breeds from commercial hybrid lines, native layer-type, meat-type and dual-purpose breeds, ornamental breeds as well as bantam breeds were tested in a standardized tonic immobility (TI) test. Chickens were manually restrained on their back, and the time to first head movement and first leg movement, the duration of TI, as well as the number of attempts needed to induce TI were measured. Results The TI response differed among chicken breeds (p ≤ 0.001) for naïve, mature hens. The median number of attempts required to induce TI ranged from 1 to 2 and did not differ significantly among breeds. Median durations were much more variable, with Lohmann Brown showing shortest durations (6 s, 12 s, 58 s for time to first head movement, first leg movement and total duration of TI, respectively). In contrast, medians reached the maximum of 600 s for all three measures in German Creepers. Repeated tests on the same individuals did not affect attempts needed to induce TI nor TI durations. Breeds clustered into two main groups, with layer-type native breeds and ornamental breeds having longer TI durations, and bantam, dual-purpose and meat-type native breeds having shorter TI durations. Conclusions Our findings provide evidence for substantial variation of fearfulness among breeds. This variation could be linked to the intended use during the breed's specific history. Knowledge and quantitative measurement of these behavioural responses provide the opportunity to improve welfare through selection and future breeding.
Collapse
Affiliation(s)
- Inga Tiemann
- Institute of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - Senta Becker
- Institute of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - Jocelyn Fournier
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Daalkhaijav Damiran
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Wolfgang Büscher
- Institute of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - Sonja Hillemacher
- Institute of Agricultural Engineering, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Bonnefous C, Collin A, Guilloteau LA, Guesdon V, Filliat C, Réhault-Godbert S, Rodenburg TB, Tuyttens FAM, Warin L, Steenfeldt S, Baldinger L, Re M, Ponzio R, Zuliani A, Venezia P, Väre M, Parrott P, Walley K, Niemi JK, Leterrier C. Welfare issues and potential solutions for laying hens in free range and organic production systems: A review based on literature and interviews. Front Vet Sci 2022; 9:952922. [PMID: 35990274 PMCID: PMC9390482 DOI: 10.3389/fvets.2022.952922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
In free-range and organic production systems, hens can make choices according to their needs and desires, which is in accordance with welfare definitions. Nonetheless, health and behavioral problems are also encountered in these systems. The aim of this article was to identify welfare challenges observed in these production systems in the EU and the most promising solutions to overcome these challenges. It is based on a review of published literature and research projects complemented by interviews with experts. We selected EU specific information for welfare problems, however, the selected literature regarding solutions is global. Free range use may increase the risk of infection by some bacteria, viruses and parasites. Preventive methods include avoiding contamination thanks to biosecurity measures and strengthening animals' natural defenses against these diseases which can be based on nutritional means with new diet components such as insect-derived products, probiotics and prebiotics. Phytotherapy and aromatherapy can be used as preventive and curative medicine and vaccines as alternatives to antibiotics and pesticides. Bone quality in pullets and hens prevents keel deviations and is favored by exercise in the outdoor range. Free range use also lead to higher exposure to variable weather conditions and predators, therefore shadow, fences and guard animals can be used to prevent heat stress and predation respectively. Granting a free range provides opportunities for the expression of many behaviors and yet many hens usually stay close to the house. Providing the birds with trees, shelters or attractive plants can increase range use. Small flock sizes, early experiences of enrichment and personality traits have also been found to enhance range use. Severe feather pecking can occur in free range production systems, although flocks using the outdoor area have better plumage than indoors. While many prevention strategies are facilitated in free range systems, the influence of genetics, prenatal and nutritional factors in free range hens still need to be investigated. This review provides information about practices that have been tested or still need to be explored and this information can be used by stakeholders and researchers to help them evaluate the applicability of these solutions for welfare improvement.
Collapse
Affiliation(s)
| | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, France
| | | | - Vanessa Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | | | | | - T. Bas Rodenburg
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank A. M. Tuyttens
- ILVO, Instituut voor Landbouw-, Visserij- en Voedingsonderzoek, Melle, Belgium
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Sanna Steenfeldt
- Department of Animal Science, Aarhus University, Aarhus, Denmark
| | | | - Martina Re
- AIAB, Associazone Italiana per l'Agricultura Biologica, Rome, Italy
| | | | - Anna Zuliani
- Veterinari Senza Frontiere Italia, Sede c/o Istituto Zooprofilattico Sperimentale delle Venezie viale dell'Università, Padova, Italy
| | - Pietro Venezia
- Veterinari Senza Frontiere Italia, Sede c/o Istituto Zooprofilattico Sperimentale delle Venezie viale dell'Università, Padova, Italy
| | - Minna Väre
- Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Helsinki, Finland
| | | | - Keith Walley
- Harper Adams University, Newport, United Kingdom
| | - Jarkko K. Niemi
- Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Seinäjoki, Finland
| | - Christine Leterrier
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- *Correspondence: Christine Leterrier
| |
Collapse
|
16
|
Campbell AM, Johnson AM, Persia ME, Jacobs L. Effects of Housing System on Anxiety, Chronic Stress, Fear, and Immune Function in Bovan Brown Laying Hens. Animals (Basel) 2022; 12:1803. [PMID: 35883350 PMCID: PMC9311790 DOI: 10.3390/ani12141803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 01/20/2023] Open
Abstract
The scientific community needs objective measures to appropriately assess animal welfare. The study objective was to assess the impact of housing system on novel physiological and behavioral measurements of animal welfare for laying hens, including secretory and plasma Immunoglobulin (IgA; immune function), feather corticosterone (chronic stress), and attention bias testing (ABT; anxiety), in addition to the well-validated tonic immobility test (TI; fearfulness). To test this, 184 Bovan brown hens were housed in 28 conventional cages (3 birds/cage) and 4 enriched pens (25 birds/pen). Feces, blood, and feathers were collected 4 times between week 22 and 43 to quantify secretory and plasma IgA and feather corticosterone concentrations. TI tests and ABT were performed once. Hens that were from cages tended to show longer TI, had increased feather corticosterone, and decreased secretory IgA at 22 weeks of age. The caged hens fed quicker, and more hens fed during the ABT compared to the penned hens. Hens that were in conventional cages showed somewhat poorer welfare outcomes than the hens in enriched pens, as indicated by increased chronic stress, decreased immune function at 22 weeks of age but no other ages, somewhat increased fear, but reduced anxiety. Overall, these novel markers show some appropriate contrast between housing treatments and may be useful in an animal welfare assessment context for laying hens. More research is needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | - Leonie Jacobs
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (A.M.C.); (A.M.J.); (M.E.P.)
| |
Collapse
|
17
|
Wurtz K, Thodberg K, Berenjian A, Foldager L, Tahamtani F, Riber A. Commercial layer hybrids kept under organic conditions: a comparison of range use, welfare and egg production in two layer strains. Poult Sci 2022; 101:102005. [PMID: 35841633 PMCID: PMC9293655 DOI: 10.1016/j.psj.2022.102005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Outdoor range areas provide laying hens with improved opportunities to perform natural behaviors and increase the available space per bird, however, birds are also exposed to potentially stressful factors including weather and predators. Ability to cope with challenging environments varies between different strains and must be considered to ensure good welfare. The aim of this study was to determine how suitable 2 hybrids, the Dekalb White (DW) and the Bovans Brown (BB), are for organic production with special emphasis on ranging behavior. A total of 1,200 hens were housed according to organic regulations across 12 flocks of 100 birds. Range and shelter use, effect of weather, vegetation cover, egg production and quality, and mortality were assessed in addition to a range of clinical welfare indicators. Initially a greater proportion of DW hens accessed the range. However, after approximately 2 mo, a greater proportion of BB were using the range and venturing further from the house. DW hens were more likely to use the shelters than BB hens (P < 0.001). Vegetation was also worn away to a greater extent in the BB ranges. Weather affected the proportion of hens that went outside, the distance ranged from the popholes, and shelter use. BB hens were found to have better plumage condition (P < 0.001), fewer footpad lesions (P < 0.001), fewer comb wounds (P < 0.001), and lower mortality rates (P = 0.013). Both hybrids experienced keel bone fractures, though DW hens had more at the cranial portion (P < 0.001) and BB at the caudal portion (P < 0.001). DW hens had an earlier onset of lay and higher egg production than BB hens (P < 0.001), though BB hens laid heavier eggs (P < 0.001) with thicker shells (P = 0.001). Overall, BB hens seemed to perform superiorly or equivalently to the DW hens for all variables apart from egg production. These results demonstrate the importance of considering the strain of bird selected for organic production systems in order for the birds to reap the potential benefits that are offered by outdoor access.
Collapse
|
18
|
Garnham LC, Clarke C, Løvlie H. How Inhibitory Control Relates to Positive and Negative Affective States in Red Junglefowl. Front Vet Sci 2022; 9:872487. [PMID: 35464350 PMCID: PMC9024352 DOI: 10.3389/fvets.2022.872487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Individual differences in inhibitory control, an aspect of cognition, are found in many species. How this variation links to affective states is not much explored, and could be relevant for welfare. As less fearful, more optimistic, individuals may act more impulsively, inhibitory control could link to less negative, more positive, affective states. Alternatively, poorer inhibitory control could associate with more negative, less positive, affective states, as poorer inhibitory control can result in individuals being less able to adapt to changing environments and more likely to show stereotypies. We here explored in three cohorts (N = 209) of captive red junglefowl, the ancestor of domestic chickens, how inhibitory control associated with affective states. Specifically, we measured inhibitory control with a detour task, and negative and positive affective states with a tonic immobility test and a cognitive judgement bias test, respectively. Cognition and behaviour can differ between ages and sexes. Therefore, we investigated how inhibitory control related to affective states in younger chicks (≈2.5 weeks old), older chicks (≈5 weeks old) and sexually mature adults (≈28 weeks old) of both sexes. In younger chicks, poorer inhibitory control associated with less negative, more positive, affective states. We found no relationship between inhibitory control and affective states in older chicks or adults, nor sex differences regarding how inhibitory control related to affective states. Overall, our results suggest that inhibitory control can link to affective states and that the nature of these links can change over ontogeny.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Charlie Clarke
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Hanne Løvlie
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- *Correspondence: Hanne Løvlie
| |
Collapse
|
19
|
The Impact of Probiotic Bacillus subtilis on Injurious Behavior in Laying Hens. Animals (Basel) 2022; 12:ani12070870. [PMID: 35405859 PMCID: PMC8997090 DOI: 10.3390/ani12070870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Injurious behavior prevention is a critical issue in the poultry industry due to increasing social stress, leading to negative effects on bird production and survivability, consequently enhancing gut microbiota dysbiosis and neuroinflammation via the microbiota–gut–brain axis. Probiotics have been used as potential therapeutic psychobiotics to treat or improve neuropsychiatric disorders or symptoms by boosting cognitive and behavioral processes and reducing stress reactions in humans and various experimental animals. The current data will first report that probiotic Bacillus subtilis reduces stress-induced injurious behavior in laying hens via regulating microbiota–gut–brain function with the potential to be an alternative to beak trimming during poultry egg production. Abstract Intestinal microbiota functions such as an endocrine organ to regulate host physiological homeostasis and behavioral exhibition in stress responses via regulating the gut–brain axis in humans and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism, have been used as dietary supplements or functional foods to target gut microbiota (microbiome) for the prevention or therapeutic treatment of mental diseases including social stress-induced psychiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of the probiotics may present in laying hens due to the intestinal microbiota having a similar function between avian and mammals. In laying hens, some management practices such as hens reared in conventional cages or at a high stocking density may cause stress, leading to injurious behaviors such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing the poultry industry due to negative effects on hen health and welfare with devastating economic consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or reduce injurious behavior in laying hens.
Collapse
|
20
|
Ferreira VHB, Simoni A, Germain K, Leterrier C, Lansade L, Collin A, Mignon-Grasteau S, Le Bihan-Duval E, Guettier E, Leruste H, Løvlie H, Calandreau L, Guesdon V. Foraging Behavior Shows Individual-Consistency Over Time, and Predicts Range Use in Slow-Growing Free-Range Male Broiler Chickens. Front Vet Sci 2022; 9:814054. [PMID: 35198623 PMCID: PMC8858978 DOI: 10.3389/fvets.2022.814054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research on free-range chickens shows that individual behavioral differences may link to range use. However, most of these studies explored individual behavioral differences only at one time point or during a short time window, assessed differences when animals were out of their social group and home environment (barn and range), and in specific tests or situations. Therefore, it is yet unclear how different behaviors relate to range use and how consistent these behaviors are at the individual level. To fill this gap, we here aimed to describe the behavioral budget of slow-growing male broiler chickens (S757N) when in their social group and home environment during the whole rearing period (from the second week of life to the twelfth week, before slaughter), and to relate observed behavioral differences to range use. For this, we followed a sample of individuals in two flocks (n = 60 focal chickens out of 200 chickens per flock), over two seasons, during three periods: before range access (from 14 to 25 days old), during early range access (first weeks of range access, from 37 to 53 days old), and during late range access (last weeks of range access, from 63 to 87 days old). By the end of each period, individual tests of exploration and social motivation were also performed, measuring exploration/activity and sociability propensities. Our results show that foraging (i.e., pecking and scratching at the ground) was the only behavior that correlated to range use for all three rearing periods, independent of the season. Foraging was also the only behavior that showed within-individual consistency from an early age and across the three rearing periods. Foraging may, therefore, serve as a useful behavioral predictor of range use in free-range broiler chickens. Our study increases the knowledge of how behaviors develop and relate to each other in a domesticated and intensely selected species, and improves our understanding of the biology of free-range broiler chickens. These findings can, ultimately, serve as a foundation to increase range use and improve chicken welfare.
Collapse
Affiliation(s)
- Vitor Hugo Bessa Ferreira
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
- Vitor Hugo Bessa Ferreira
| | - Arthur Simoni
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | | | - Christine Leterrier
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Léa Lansade
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, France
| | | | | | | | - Hélène Leruste
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
| | - Ludovic Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Vanessa Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
- *Correspondence: Vanessa Guesdon
| |
Collapse
|
21
|
Fear behaviour in turkey poults of fast and slow growing breeds. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Tiemann I, Becker S, Büscher W, Meuser V. Exploring animal genetic resources of the domestic chicken and their behavior in the open field. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Campbell DL, Whitten JM, Slater E, Lee C. Rearing enrichments differentially modified hen personality traits and reduced prediction of range use. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Anderson MG, Campbell AM, Crump A, Arnott G, Newberry RC, Jacobs L. Effect of Environmental Complexity and Stocking Density on Fear and Anxiety in Broiler Chickens. Animals (Basel) 2021; 11:2383. [PMID: 34438839 PMCID: PMC8388751 DOI: 10.3390/ani11082383] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Barren housing and high stocking densities may contribute to negative affective states in broiler chickens, reducing their welfare. We investigated the effects of environmental complexity and stocking density on broilers' attention bias (measure of anxiety) and tonic immobility (measure of fear). In Experiment 1, individual birds were tested for attention bias (n = 60) and in Experiment 2, groups of three birds were tested (n = 144). Tonic immobility testing was performed on days 12 and 26 (n = 36) in Experiment 1, and on day 19 (n = 72) in Experiment 2. In Experiment 1, no differences were observed in the attention bias test. In Experiment 2, birds from high-complexity pens began feeding faster and more birds resumed feeding than from low-complexity pens following playback of an alarm call, suggesting that birds housed in the complex environment were less anxious. Furthermore, birds housed in high-density or high-complexity pens had shorter tonic immobility durations on day 12 compared to day 26 in Experiment 1. In Experiment 2, birds from high-density pens had shorter tonic immobility durations than birds housed in low-density pens, which is contrary to expectations. Our results suggest that birds at 3 weeks of age were less fearful under high stocking density conditions than low density conditions. In addition, results indicated that the complex environment improved welfare of broilers through reduced anxiety.
Collapse
Affiliation(s)
- Mallory G. Anderson
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.G.A.); (A.M.C.)
| | - Andrew M. Campbell
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.G.A.); (A.M.C.)
| | - Andrew Crump
- Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, London WC2A 2AE, UK;
| | - Gareth Arnott
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Ruth C. Newberry
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway;
| | - Leonie Jacobs
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.G.A.); (A.M.C.)
| |
Collapse
|
25
|
Associations between neck plumage and beak darkness, as well as comb size measurements and scores with ranging frequency of Sasso and Green-legged Partridge chickens. Poult Sci 2021; 100:101340. [PMID: 34333386 PMCID: PMC8342781 DOI: 10.1016/j.psj.2021.101340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the intensive genetic selection in modern poultry, variability of domestic fowl phenotypes has remained, especially in breeds adapted to local conditions. The relevance of this variability to the chicken outdoor ranging activities remains unknown. The aim of this study was to investigate if external features were associated with the ranging frequency of the 48 female chickens from each of the 2 breeds: Sasso and Green-legged Partridge. In each of 6 single-breed pens, 8 hens and 2 roosters were housed under conditions of EU requirements for organic meat chicken production, including free access to an outdoor range, from wk 5 to 10 of age. The birds were video-recorded during the experiment to obtain frequencies of individual birds' use of the ranges. Comb size (length and height) was measured using a digital ruler, while the sizes of the dark area of neck plumage and beak were processed and analyzed using ImageJ software. The same traits were scored using direct visual assessment by a trained observer on a scale of 1-3. In addition, the eye color of the bird was recorded. Statistical analysis was conducted independently for each breed using regression models, ANOVAs and Spearman correlations. Significant positive associations between neck plumage (P < 0.01), beak darkness (P = 0.03) measurements, comb length (P < 0.01) and comb height (P < 0.01) and frequency of range use were identified for Sasso. Sasso hens scored with darkest neck plumage (P = 0.03) and biggest comb size (P = 0.04) ranged the most, while their external features were significantly and positively correlated between each other, except beak darkness and comb length. No significant associations between ranging and external features were found in Green-legged Partridge birds, except that their comb height was significantly and positively correlated with neck plumage and beak darkness (r = 0.39 and 0.33, respectively). In some genetic strains, better understanding of the associations between chickens’ external features with ranging behavior could contribute to improve selection programs and bird welfare, assuring production of breeding stock suitable for outdoor conditions.
Collapse
|
26
|
Ferreira VHB, Guesdon V, Calandreau L. How can the research on chicken cognition improve chicken welfare: a perspective review. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1924920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- V. H. B. Ferreira
- JUNIA, Comportement Animal et Systèmes d’Elevage, Lille Cedex, France
| | - V. Guesdon
- JUNIA, Comportement Animal et Systèmes d’Elevage, Lille Cedex, France
| | - L. Calandreau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
27
|
Meuser V, Weinhold L, Hillemacher S, Tiemann I. Welfare-Related Behaviors in Chickens: Characterization of Fear and Exploration in Local and Commercial Chicken Strains. Animals (Basel) 2021; 11:679. [PMID: 33806293 PMCID: PMC7998364 DOI: 10.3390/ani11030679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fear and exploration are crucial traits determining how animals behave in novel situations, and thus, they influence animal welfare. The aim of this study was the characterization of these behavioral traits among different strains to identify interesting alternatives for future poultry production. Whereas the Novel Object Test (NOT) focuses on fear and exploration of novel objects, the Avoidance Distance Test (ADT) addresses this in the context of humans. Here, a commercial hybrid line, a dual-purpose hybrid and a local adapted strain were tested. For the differences between strains and development of fear, Lohmann Brown (n = 714), Lohmann Dual (n = 844) and Rhinelander (n = 458) were observed weekly until maturity. Results show that fear and exploration towards unknown objects and humans are breed-specific (all p < 0.01). Additionally, development of fear in NOT and ADT differed between all three strains (both p < 0.01). The expressions of fear of humans or objects should be regarded as characteristics adapted for different husbandry systems and breeding goals, e.g., high exploratory behavior in aviary or high avoidance of predators in free-ranging husbandry or at least a balanced ratio between fear and exploration. Characterization of behavioral traits among different strains, understanding diversity and integrating these behaviors into future breeding and husbandry systems might reflect the need to preserve local strains and the potential to improve animal welfare.
Collapse
Affiliation(s)
- Verena Meuser
- Institute of Agricultural Engineering, Agricultural Faculty, University of Bonn, 53115 Bonn, Germany; (S.H.); (I.T.)
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Sonja Hillemacher
- Institute of Agricultural Engineering, Agricultural Faculty, University of Bonn, 53115 Bonn, Germany; (S.H.); (I.T.)
| | - Inga Tiemann
- Institute of Agricultural Engineering, Agricultural Faculty, University of Bonn, 53115 Bonn, Germany; (S.H.); (I.T.)
- Institute of Animal Science, Agricultural Faculty, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
28
|
Mohammed A, Mahmoud M, Murugesan R, Cheng HW. Effect of a Synbiotic Supplement on Fear Response and Memory Assessment of Broiler Chickens Subjected to Heat Stress. Animals (Basel) 2021; 11:427. [PMID: 33562225 PMCID: PMC7915859 DOI: 10.3390/ani11020427] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate the effect of a synbiotic containing a probiotic (Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, and Lactobacillus reuteri) and a prebiotic (fructooligosaccharides) on fear response, memory assessment, and selected stress indicators in broilers subjected to heat stress. A total of 360 1-day-old Ross 708 chicks were evenly divided among three treatments: a basal diet mixed with a synbiotic at 0 (G-C), 0.5 (G-0.5X), and 1.0 (G-1.0X) g/kg. After 15 d, the broilers were exposed to 32 °C for 9 h daily until 42 d. The object memory test was conducted at 15 day; touch, novel object, and isolation tests were conducted at 35 day; tonic immobility (TI) took place at 41 day. At 42 day, plasma corticosterone and tryptophan concentrations and heterophile/lymphocyte (H/L) ratios were measured. Compared to controls, synbiotic-fed broilers, regardless of concentration, had a shorter latency to make the first vocalization, with higher vocalization rates during the isolation test (p = 0.001). the G-1.0 group had the lowest H/L ratio (p = 0.001), but higher plasma tryptophan concentrations and a greater number of birds could reach the observer during the touch test (p = 0.001 and 0.043, respectively). The current results indicate that the synbiotic can be used as a growth promoter to reduce the fear response and stress state of heat-stressed broilers.
Collapse
Affiliation(s)
- Ahmed Mohammed
- Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA;
- Department of Animal and Poultry Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Manal Mahmoud
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
| | | | - Heng-wei Cheng
- USDA Agricultural Research Service, 125 South Russell Street, West Lafayette, IN 47907, USA
| |
Collapse
|
29
|
Relationship between Range Use and Fearfulness in Free-Range Hens from Different Rearing Enrichments. Animals (Basel) 2021; 11:ani11020300. [PMID: 33503915 PMCID: PMC7912001 DOI: 10.3390/ani11020300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Inconsistency between the environments of indoor pullet rearing and adult outdoor housing may increase the fearfulness in free-range hens. Rearing enrichments and/or range use may reduce adult fearfulness. Hy-Line Brown® chicks (n = 1700) were reared inside across 16 weeks with three enrichment treatments: weekly changing novel objects, custom-designed perching/navigation structures, or no additional enrichments. Pullets were transferred to a free-range system at 16 weeks of age, with range access provided from 25 weeks. At 62 weeks, 135 hens were selected from the three rearing treatments and two ranging groups (indoor: no ranging and outdoor: daily ranging) based on individual radio-frequency identification tracking. Individual behavioural tests of tonic immobility, emergence, open field, and novel object (pen level) were carried out on hens. Spectrograms of vocalisations were analysed for the open field test, as well as computer vision tracking of hen locomotion. The results showed few effects of rearing treatments, with outdoor rangers less fearful than indoor hens. The latency to step in the open field test negatively correlated with hen feather coverage. These results show that individual variation in ranging behaviours is present even following rearing enrichment treatments, and subsequent range use might be an indicator of bird fearfulness.
Collapse
|
30
|
Howarth ER, Kemp C, Thatcher HR, Szott ID, Farningham D, Witham CL, Holmes A, Semple S, Bethell EJ. Developing and validating attention bias tools for assessing trait and state affect in animals: A worked example with Macaca mulatta. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2020.105198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Long-term access to live black soldier fly larvae (Hermetia illucens) stimulates activity and reduces fearfulness of broilers, without affecting health. Sci Rep 2020; 10:17428. [PMID: 33060745 PMCID: PMC7566458 DOI: 10.1038/s41598-020-74514-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Commercially housed broilers frequently experience limited environmental stimulation and various health issues, compromising their welfare. Providing environmental enrichment can alleviate these problems by facilitating natural behaviour and activity. We investigated the effect of providing live black soldier fly larvae (BSFL) to broilers housed at commercial densities (33 kg/m2) on behaviour, fearfulness, health and performance. One-day-old broilers were distributed over five treatments with eight pens/treatment: a control treatment without BSFL; two treatments where 5% of the daily nutrient intake was replaced with live BSFL, provided four or seven times a day; and two treatments where 10% of the daily dietary intake was replaced with live BSFL provided four times a day or in transparent, movable tubes with holes. In all BSFL treatments foraging behaviour, and thereby broiler activity, was increased. Prolonged access to live BSFL, either by providing larvae seven times a day or in tubes, caused the largest increase in activity while also decreasing the time spend in tonic immobility, indicating reduced fearfulness. Broiler final weight and health were not affected. Overall, long-term access to live BSFL seems most effective in improving broiler welfare by facilitating natural behaviour and reducing fearfulness, without hindering broiler performance and health.
Collapse
|
32
|
Range use is related to free-range broiler chickens’ behavioral responses during food and social conditioned place preference tests. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Campbell DLM, Dyall TR, Downing JA, Cohen-Barnhouse AM, Lee C. Rearing Enrichments Affected Ranging Behavior in Free-Range Laying Hens. Front Vet Sci 2020; 7:446. [PMID: 32923462 PMCID: PMC7457029 DOI: 10.3389/fvets.2020.00446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
Within Australia, free-range systems are prevalent, but pullets destined for range access are reared indoors. This mismatch between rearing and layer housing may hinder adaptation to the free-range environment. Rearing enrichments could enhance pullet development. A total of 1,386 Hy-Line Brown® chicks were reared inside an experimental facility across 16 weeks with 3 enrichment treatments including (1) a control group with standard floor-housing, (2) a novelty group providing novel objects that changed weekly (“novelty” hens), and (3) a structural group with custom-designed H-shaped structures including opaque sides (“structural” hens). At 16 weeks of age, all pullets were leg-banded with microchips and moved to an experimental free-range system with 9 identical pens (n = 3/rearing treatment). From 25 to 64 weeks, individual hen daily ranging behavior was tracked via radio-frequency identification technology and grouped into 6 age periods per rearing treatment. Video footage was used to count the number of hens at different distances on the range for the first 14 days of access, and eggs were assessed for albumen corticosterone concentrations 4 days prior to (n = 450) and 1 week after first range access (n = 450). Across most age periods, the structural hens spent the most time ranging (P ≤ 0.01), the novelty hens showed the fewest number of visits to the range (P < 0.0001), and both enriched hen groups had the longest maximum visit durations (P ≤ 0.02). Range use increased with age across all treatments with only 3% of hens never going outside. All hens were initially slow to use the range area with fewer novelty hens venturing farther onto the range (P ≤ 0.03). The structural hens had higher albumen corticosterone concentrations and variance (both P ≤ 0.004) prior to range access. All hens showed an increase in albumen corticosterone following the first week of range access resulting in no differences between rearing treatments in means (P = 0.92) and variance (P = 0.63). Different enrichments have differing impacts on ranging behavior, but further research is needed to understand the mechanisms of effects, with differences in brain lateralization a potential hypothesis to be tested.
Collapse
Affiliation(s)
- Dana L M Campbell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
| | - Tim R Dyall
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
| | - Jeff A Downing
- School of Life and Environmental Science, Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Andrew M Cohen-Barnhouse
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Caroline Lee
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
| |
Collapse
|
34
|
Social motivation and the use of distal, but not local, featural cues are related to ranging behavior in free-range chickens (Gallus gallus domesticus). Anim Cogn 2020; 23:769-780. [DOI: 10.1007/s10071-020-01389-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/29/2022]
|