1
|
Thierry M, Dupont L, Legrand D, Jacob S. Phenotypic and dispersal plasticity are not alternative strategies for organisms to face thermal changes. Proc Biol Sci 2025; 292:20242796. [PMID: 40300624 PMCID: PMC12040457 DOI: 10.1098/rspb.2024.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025] Open
Abstract
To buffer the effects of local environmental changes, organisms may modify their phenotypic traits (i.e. phenotypic plasticity) or disperse towards other potential habitats (i.e. dispersal plasticity). Despite extensive work studying either 'local phenotypic plasticity' or 'dispersal plasticity' independently, little is known about their potential covariation and interplay. These strategies are classically viewed as alternatives. However, this expectation has been challenged by theoretical work suggesting that they may instead evolve together under some environmental contexts. Here, we experimentally quantified morphological, movement and dispersal plasticity in response to thermal changes in 12 strains of the ciliate Tetrahymena thermophila. We showed that phenotypic and dispersal plasticity are not alternative strategies, with half of the strains expressing simultaneously all dimensions of plasticity in response to thermal changes. Furthermore, the extent of morphological and movement plasticity weakly but significantly differed between residents and dispersers. Interestingly, we found no covariation between these different plasticity dimensions, suggesting that they may evolve independently, which pleads for studying which environmental contexts favour the evolution of each. The fact that phenotypic and dispersal plasticity are not alternative strategies and may affect the expression of one another opens interesting perspectives about their joint evolution and the potential consequences of their interplay.
Collapse
Affiliation(s)
- Mélanie Thierry
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3, CNRS, Toulouse, France
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Léonard Dupont
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| |
Collapse
|
2
|
Zheng B, He S, Zhao L, Li J, Du Y, Li Y, Shi J, Wu Z. Does temperature favour the spread of Raphidiopsis raciborskii, an invasive bloom-forming cyanobacterium, by altering cellular trade-offs? HARMFUL ALGAE 2023; 124:102406. [PMID: 37164561 DOI: 10.1016/j.hal.2023.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 05/12/2023]
Abstract
As a tropical filamentous cyanobacterium, Raphidiopsis raciborskii has attracted much attention due to its expansion and toxin production. However, the mechanisms of its expansion to temperate regions have not been studied in detail. To address the potential strategies, the physiological and metabolomic profiles of R. raciborskii FACHB 1096 isolated from a temperate lake in China were determined and measured at different temperatures (10 °C, 15 °C, 20 °C, 25 °C, and 32 °C). The results demonstrated that temperature significantly changed cell viability, chlorophyll a content, specific growth rate, Chl a fluorescence, and filamentous shape of R. raciborskii. Low temperature decreased cell viability, specific growth rate, and photosynthetic efficiency, while the proportion of akinete and carbon fixation per unit cell were significantly increased compared with high temperature (32 °C). A constructed unimodal model indicated that filament length, cell volume, and cell length/width of R. raciborskii were significantly reduced in both high and low temperature environments. Under low-temperature conditions, R. raciborskii suffered different degrees of oxidative damage and produced corresponding antioxidant substances to resist oxidative stress, suggesting that low temperature changes the metabolic level of the cells, causing the cells to gradually switch from development to defense. Metabolomic data further confirmed that temperature change induced shifts in metabolic pathways in R. raciborskii, including starch and sucrose metabolic pathways, glutathione metabolic pathways, and the pentose phosphate pathways (PPP), as well as metabolic pathways related to the tricarboxylic acid (TCA) cycle. Our results indicated that the trade-offs of R. raciborskii cells among the growth, cell size, and metabolites can be significantly regulated by temperature, with broad implications for its global expansion in temperate waterbodies.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuhan He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Du
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Manan A, Roytrakul S, Charoenlappanit S, Poolpak T, Ounjai P, Kruatrachue M, Yang KM, Pokethitiyook P. Glyphosate metabolism in Tetrahymena thermophila: A shotgun proteomic analysis approach. ENVIRONMENTAL TOXICOLOGY 2023; 38:867-882. [PMID: 36602419 DOI: 10.1002/tox.23735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/11/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides in the world. However, because of its overuse and resistance to degradation, high levels of glyphosate residues in the environment are reported. Therefore, this study aimed to investigate the effects of glyphosate on proteomic aspects of Tetrahymena thermophila and their uses as bioindicators of freshwater ecosystem. First, an acute toxicity test was performed to determine the median inhibition concentration (IC50 ). The toxicity test results showed that glyphosate inhibited the growth (proliferation) of T. thermophila. The 96 h-IC50 value of glyphosate was 171 mg L-1 . No visible changes in aggregation behavior and cell morphology were observed under glyphosate exposure. In addition, the effects of low and high dose glyphosate concentrations (77.5 mg L-1 , 171 mg L-1 ) on the proteomic changes of T. thermophila was investigated using a label-free shotgun proteomic approach. A total of 3191 proteins were identified, 2791 proteins were expressed in the control, 2651 proteins were expressed in 77.5 mg L-1 glyphosates, and 3012 proteins were expressed in 171 mg L-1 glyphosates. Under glyphosate exposure at both low and high dose glyphosate, 400 unique proteins were upregulated. The majority of these proteins was classified as proteins associated with oxidative stress response and intracellular transport indicating the shifts in the internal metabolism. Proteomics revealed that the glyphosate metabolism by T. thermophila is a multi-step process involving several enzymes, which can be divided into four phases, including modification (phase I), conjugation (phase II), transport (phase III), and degradation (phase IV). The accumulation of various biochemical reactions contributes to overall glyphosate resistance. With the proteomics approach, we have found that T. thermophila was equipped with glyphosate detoxification and degradation mechanisms.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, Indonesia
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
4
|
Raffard A, Campana JLM, Legrand D, Schtickzelle N, Jacob S. Resident-Disperser Differences and Genetic Variability Affect Communities in Microcosms. Am Nat 2023; 201:363-375. [PMID: 36848519 DOI: 10.1086/722750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractDispersal is a key process mediating ecological and evolutionary dynamics. Its effects on the dynamics of spatially structured systems, population genetics, and species range distribution can depend on phenotypic differences between dispersing and nondispersing individuals. However, scaling up the importance of resident-disperser differences to communities and ecosystems has rarely been considered, in spite of intraspecific phenotypic variability being an important factor mediating community structure and productivity. Here, we used the ciliate Tetrahymena thermophila, in which phenotypic traits are known to differ between residents and dispersers, to test (i) whether these resident-disperser differences affect biomass and composition in competitive communities composed of four other Tetrahymena species and (ii) whether these effects are genotype dependent. We found that dispersers led to a lower community biomass compared with residents. This effect was highly consistent across the 20 T. thermophila genotypes used, despite intraspecific variability in resident-disperser phenotypic differences. We also found a significant genotypic effect on biomass production, showing that intraspecific variability has consequences for communities. Our study suggests that individual dispersal strategy can scale up to community productivity in a predictable way, opening new perspectives to the functioning of spatially structured ecosystems.
Collapse
|
5
|
Suryanto ME, Vasquez RD, Roldan MJM, Chen KHC, Huang JC, Hsiao CD, Tsao CC. Establishing a High-Throughput Locomotion Tracking Method for Multiple Biological Assessments in Tetrahymena. Cells 2022; 11:2326. [PMID: 35954170 PMCID: PMC9367449 DOI: 10.3390/cells11152326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Protozoa are eukaryotic, unicellular microorganisms that have an important ecological role, are easy to handle, and grow rapidly, which makes them suitable for ecotoxicity assessment. Previous methods for locomotion tracking in protozoa are largely based on software with the drawback of high cost and/or low operation throughput. This study aimed to develop an automated pipeline to measure the locomotion activity of the ciliated protozoan Tetrahymena thermophila using a machine learning-based software, TRex, to conduct tracking. Behavioral endpoints, including the total distance, velocity, burst movement, angular velocity, meandering, and rotation movement, were derived from the coordinates of individual cells. To validate the utility, we measured the locomotor activity in either the knockout mutant of the dynein subunit DYH7 or under starvation. Significant reduction of locomotion and alteration of behavior was detected in either the dynein mutant or in the starvation condition. We also analyzed how Tetrahymena locomotion was affected by the exposure to copper sulfate and showed that our method indeed can be used to conduct a toxicity assessment in a high-throughput manner. Finally, we performed a principal component analysis and hierarchy clustering to demonstrate that our analysis could potentially differentiate altered behaviors affected by different factors. Taken together, this study offers a robust methodology for Tetrahymena locomotion tracking in a high-throughput manner for the first time.
Collapse
Affiliation(s)
- Michael Edbert Suryanto
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Ross D. Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines
| | | | - Kelvin H. -C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (K.H.-C.C.); (J.-C.H.)
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (K.H.-C.C.); (J.-C.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center of Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Che-Chia Tsao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan
| |
Collapse
|
6
|
Cayuela H, Jacob S, Schtickzelle N, Verdonck R, Philippe H, Laporte M, Huet M, Bernatchez L, Legrand D. Transgenerational plasticity of dispersal‐related traits in a ciliate: genotype‐dependency and fitness consequences. OIKOS 2022. [DOI: 10.1111/oik.08846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hugo Cayuela
- Dépt de Biologie, Inst. de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Pavillon Charles‐Eugène‐Marchand Québec QC Canada
- Dept of Ecology and Evolution, Univ. of Lausanne Lausanne Switzerland
| | - Staffan Jacob
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Nicolas Schtickzelle
- Univ. Catholique de Louvain, Earth and Life Inst., Biodiversity Research Centre Louvain‐la‐Neuve Belgium
| | - Rik Verdonck
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Hervé Philippe
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
- Dépt de Biochimie, Centre Robert‐Cedergren, Univ. de Montréal Montréal QC Canada
| | - Martin Laporte
- Ministère des Forêts, de la Faune et des Parc (MFFP) du Québec Québec QC Canada
| | - Michèle Huet
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| | - Louis Bernatchez
- Dépt de Biologie, Inst. de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Pavillon Charles‐Eugène‐Marchand Québec QC Canada
| | - Delphine Legrand
- Theoretical and Experimental Ecology Station (UAR 2029), National Centre for Scientific Research (CNRS), Paul Sabatier Univ. (UPS) Moulis France
| |
Collapse
|
7
|
Plastic cell morphology changes during dispersal. iScience 2021; 24:102915. [PMID: 34430806 PMCID: PMC8367785 DOI: 10.1016/j.isci.2021.102915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Dispersal is the movement of organisms from one habitat to another that potentially results in gene flow. It is often plastic, allowing organisms to adjust dispersal movements depending on environmental conditions. A fundamental aim in ecology is to understand the determinants underlying dispersal and its plasticity. We utilized 22 strains of the ciliate Tetrahymena thermophila to determine if different phenotypic dispersal strategies co-exist within a species and which mechanisms underlie this variability. We quantified the cell morphologies impacting cell motility and dispersal. Distinct differences in innate cellular morphology and dispersal rates were detected, but no universally utilized combinations of morphological parameters correlate with dispersal. Rather, multiple distinct and plastic morphological changes impact cilia-dependent motility during dispersal, especially in proficient dispersing strains facing challenging environmental conditions. Combining ecology and cell biology experiments, we show that dispersal can be promoted through plastic motility-associated changes to cell morphology and motile cilia.
Collapse
|
8
|
Zilio G, Nørgaard LS, Petrucci G, Zeballos N, Gougat-Barbera C, Fronhofer EA, Kaltz O. Parasitism and host dispersal plasticity in an aquatic model system. J Evol Biol 2021; 34:1316-1325. [PMID: 34157176 DOI: 10.1111/jeb.13893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the internal condition of infected hosts and define external patch quality. Thus, state-dependent dispersal may be determined by infection status and context-dependent dispersal by the abundance of infected hosts in the population. A prerequisite for such dispersal plasticity to evolve is a genetic basis on which natural selection can act. Using interconnected microcosms, we investigated dispersal in experimental populations of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. For a collection of 20 natural host strains, we found substantial variation in constitutive dispersal and to a lesser degree in dispersal plasticity. First, infection tended to increase or decrease dispersal relative to uninfected controls, depending on strain identity, indicative of state-dependent dispersal plasticity. Infection additionally decreased host swimming speed compared to the uninfected counterparts. Second, for certain strains, there was a weak negative association between dispersal and infection prevalence, such that uninfected hosts dispersed less when infection was more frequent in the population, indicating context-dependent dispersal plasticity. Future experiments may test whether the observed differences in dispersal plasticity are sufficiently strong to be picked up by natural selection. The evolution of dispersal plasticity as a strategy to mitigate parasite effects spatially may have important implications for epidemiological dynamics.
Collapse
Affiliation(s)
- Giacomo Zilio
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | - Louise S Nørgaard
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France.,School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Giovanni Petrucci
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | - Nathalie Zeballos
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France.,CEFE, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | | | | | - Oliver Kaltz
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Tan H, Hirst AG, Atkinson D, Kratina P. Body size and shape responses to warming and resource competition. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hanrong Tan
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Andrew G. Hirst
- School of Animal, Rural and Environmental Sciences Nottingham Trent University Southwell UK
- Centre for Ocean Life National Institute for Aquatic ResourcesTechnical University of Denmark Lyngby Denmark
| | - David Atkinson
- Department of Evolution, Ecology and Behaviour University of Liverpool Liverpool UK
| | - Pavel Kratina
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| |
Collapse
|
10
|
Renault D. A Review of the Phenotypic Traits Associated with Insect Dispersal Polymorphism, and Experimental Designs for Sorting out Resident and Disperser Phenotypes. INSECTS 2020; 11:insects11040214. [PMID: 32235446 PMCID: PMC7240479 DOI: 10.3390/insects11040214] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
Abstract
Dispersal represents a key life-history trait with several implications for the fitness of organisms, population dynamics and resilience, local adaptation, meta-population dynamics, range shifting, and biological invasions. Plastic and evolutionary changes of dispersal traits have been intensively studied over the past decades in entomology, in particular in wing-dimorphic insects for which literature reviews are available. Importantly, dispersal polymorphism also exists in wing-monomorphic and wingless insects, and except for butterflies, fewer syntheses are available. In this perspective, by integrating the very latest research in the fast moving field of insect dispersal ecology, this review article provides an overview of our current knowledge of dispersal polymorphism in insects. In a first part, some of the most often used experimental methodologies for the separation of dispersers and residents in wing-monomorphic and wingless insects are presented. Then, the existing knowledge on the morphological and life-history trait differences between resident and disperser phenotypes is synthetized. In a last part, the effects of range expansion on dispersal traits and performance is examined, in particular for insects from range edges and invasion fronts. Finally, some research perspectives are proposed in the last part of the review.
Collapse
Affiliation(s)
- David Renault
- Université de Rennes 1, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution) UMR 6553, F-35000 Rennes, France; ; Tel.: +33-(0)2-2323-6627
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris CEDEX 05, France
| |
Collapse
|
11
|
Laurent E, Schtickzelle N, Jacob S. Fragmentation mediates thermal habitat choice in ciliate microcosms. Proc Biol Sci 2020; 287:20192818. [PMID: 31992166 DOI: 10.1098/rspb.2019.2818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitat fragmentation is expected to reduce dispersal movements among patches as a result of increased inter-patch distances. Furthermore, since habitat fragmentation is expected to raise the costs of moving among patches in the landscape, it should hamper the ability or tendency of organisms to perform informed dispersal decisions. Here, we used microcosms of the ciliate Tetrahymena thermophila to test experimentally whether habitat fragmentation, manipulated through the length of corridors connecting patches differing in temperature, affects habitat choice. We showed that a twofold increase of inter-patch distance can as expected hamper the ability of organisms to choose their habitat at immigration. Interestingly, it also increased their habitat choice at emigration, suggesting that organisms become choosier in their decision to either stay or leave their patch when obtaining information about neighbouring patches gets harder. This study points out that habitat fragmentation might affect not only dispersal rate but also the level of non-randomness of dispersal, with emigration and immigration decisions differently affected. These consequences of fragmentation might considerably modify ecological and evolutionary dynamics of populations facing environmental changes.
Collapse
Affiliation(s)
- Estelle Laurent
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| | - Nicolas Schtickzelle
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| | - Staffan Jacob
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|