1
|
Zhang S, Chen S, Fu Z, Li F, Chen Q, Ma J, Chen Y, Chen L, Chen J. Integration of digital phenotyping, GWAS, and transcriptomic analysis revealed a key gene for bud size in tea plant ( Camellia sinensis). HORTICULTURE RESEARCH 2025; 12:uhaf051. [PMID: 40271457 PMCID: PMC12015473 DOI: 10.1093/hr/uhaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Indexed: 04/25/2025]
Abstract
Tea plant (Camellia sinensis) is among the most significant beverage crops globally. The size of tea buds not only directly affects the yield and quality of fresh leaves, but also plays a key role in determining the suitability of different types of tea. Analyzing the genetic regulation mechanism of tea bud size is crucial for enhancing tea cultivars and boosting tea yield. In this study, a digital phenotyping technology was utilized to collected morphological characteristics of the apical buds of 280 tea accessions of representative germplasm at the 'two and a bud' stage. Genetic diversity analysis revealed that the length, width, perimeter, and area of tea buds followed a normal distribution and exhibited considerable variation across natural population of tea plants. Comparative transcriptomic analysis of phenotypic extreme materials revealed a strong negative correlation between the expression levels of four KNOX genes and tea bud size. A key candidate gene, CsKNOX6, was confirmed by further genome-wide association studies (GWAS). Its function was preliminarily characterized by heterologous transformation of Arabidopsis thaliana. Overexpression of CsKNOX6 reduced the leaf area in transgenic plants, which initially determined that it is a key gene negatively regulating bud size. These findings enhance our understanding of the role of KNOX genes in tea plants and provide some references for uncovering the genetic regulatory mechanisms behind tea bud size.
Collapse
Affiliation(s)
- Shuran Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Meiling South Road, Hangzhou 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Meiling South Road, Hangzhou 310008, China
| | - Zhilu Fu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Meiling South Road, Hangzhou 310008, China
| | - Fang Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Meiling South Road, Hangzhou 310008, China
| | - Qiyu Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Meiling South Road, Hangzhou 310008, China
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Meiling South Road, Hangzhou 310008, China
| | - Yuanquan Chen
- Guangxi South Subtropical Agricultural Sciences Research Institute, Longzhou County, Chongzuo 532415, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Meiling South Road, Hangzhou 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Meiling South Road, Hangzhou 310008, China
| |
Collapse
|
2
|
Sun W, Chen C, Xu L, Tao L, Tong X, Tian Y, Jiang H, Chen L, Wen H, Liu S, Wei C, Zhu J. Genetic diversity analysis and core collection construction of tea plant from the Yunnan Province of China using ddRAD sequencing. BMC PLANT BIOLOGY 2024; 24:1163. [PMID: 39627747 PMCID: PMC11616295 DOI: 10.1186/s12870-024-05821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024]
Abstract
Tea plants are economically important woody plants that originated in southwestern China. The Yunnan Province in China is regarded as the central origin of tea plants owing to the abundance and diversity of the tea germplasm present in this region. However, there is a lack of knowledge regarding the genetic diversity and evolutionary relationships among tea plants in this region. Here, a total of 266,397 high-quality single nucleotide polymorphisms were obtained using double digest restriction-site associated DNA sequencing from 468 tea accessions collected from Yunnan. The phylogenetic relationship and population structure of the 468 tea accessions revealed remarkable inter- and intraspecific introgression across different sect. Thea species. We found that Camellia taliensis (W. W. Smith) Melchior is the main genetic donor that greatly contributed to the domestication of C. sinensis (L.) O. Kuntze, as evidenced by the frequent generation of genetic intermediates derived from the hybridization between C. sinensis and C. taliensis in Lincang, Xishuangbanna, and Pu'er. Notable genetic differences were observed across the populations from distinct regions of Yunnan. Additionally, the Lancang River may have attenuated the genetic interflow between Lincang and Pu'er. Finally, a core collection of 50 tea accessions was constructed based on the genetic diversity of the 468 tea accessions. Our results provide novel insights into the evolutionary and domestication history of tea plants in Yunnan Province and can facilitate the development of strategies for the conservation, breeding, and utilization of the core collection.
Collapse
Affiliation(s)
- Weihua Sun
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Chunlin Chen
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Linlin Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Xiaoyan Tong
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Yiping Tian
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Huibing Jiang
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Linbo Chen
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Huilin Wen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China.
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China.
| |
Collapse
|
3
|
Wang W, Jiao M, Huang X, Liang W, Ma Z, Lu Z, Tian S, Gao X, Fan L, He X, Bao J, Yu Y, Zhang D, Bao L. The auxin-responsive CsSPL9-CsGH3.4 module finely regulates auxin levels to suppress the development of adventitious roots in tea (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2273-2287. [PMID: 39012276 DOI: 10.1111/tpj.16916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The cutting technique is extensively used in tea breeding, with key emphasis on promoting the growth of adventitious roots (ARs). Despite its importance in tea cultivation, the mechanisms underlying AR development in tea remain unclear. In this study, we demonstrated the essential role of auxins in the initiation and progression of AR and established that the application of exogenous 1-naphthaleneacetic acid-enhanced AR formation in tissue-cultured seedlings and cuttings. Then, we found that the auxin-responsive transcription factor CsSPL9 acted as a negative regulator of AR development by reducing the levels of free indole-3-acetic acid (IAA) in tea plants. Furthermore, we identified CsGH3.4 as a downstream target of CsSPL9, which was activated by direct binding to its promoter. CsGH3.4 also inhibited AR development and maintained low levels of free IAA. Thus, these results revealed the inhibitory effect of the auxin-responsive CsSPL9-CsGH3.4 module on AR development by reducing free IAA levels in tea. These findings have significant theoretical and practical value for enhancing tea breeding practices.
Collapse
Affiliation(s)
- Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengmin Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Huang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjuan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhonglian Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhanling Lu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shenyang Tian
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuhua Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Fan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyue He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junhua Bao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Lei X, Li H, Li P, Zhang H, Han Z, Yang B, Duan Y, Njeri NS, Yang D, Zheng J, Ma Y, Zhu X, Fang W. Genome-Wide Association Studies of Biluochun Tea Plant Populations in Dongting Mountain and Comprehensive Identification of Candidate Genes Associated with Core Agronomic Traits by Four Analysis Models. PLANTS (BASEL, SWITZERLAND) 2023; 12:3719. [PMID: 37960075 PMCID: PMC10650078 DOI: 10.3390/plants12213719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
The elite germplasm resources are key to the beautiful appearance and pleasant flavor of Biluochun tea. We collected and measured the agronomic traits of 95 tea plants to reveal the trait diversity and breeding value of Biluochun tea plant populations. The results revealed that the agronomic traits of Biluochun tea plant populations were diverse and had high breeding value. Additionally, we resequenced these tea plant populations to reveal genetic diversity, population structure, and selection pressure. The Biluochun tea plant populations contained two groups and were least affected by natural selection based on the results of population structure and selection pressure. More importantly, four non-synonymous single nucleotide polymorphisms (nsSNPs) and candidate genes associated with (-)-gallocatechin gallate (GCG), (-)-gallocatechin (GC), and caffeine (CAF) were detected using at least two GWAS models. The results will promote the development and application of molecular markers and the utilization of elite germplasm from Biluochun populations.
Collapse
Affiliation(s)
- Xiaogang Lei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Haoyu Li
- Dongshan Agriculture and Forestry Service Station, Suzhou 215100, China; (H.L.); (D.Y.); (J.Z.)
| | - Pingping Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Huan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Bin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Ndombi Salome Njeri
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Daqiang Yang
- Dongshan Agriculture and Forestry Service Station, Suzhou 215100, China; (H.L.); (D.Y.); (J.Z.)
| | - Junhua Zheng
- Dongshan Agriculture and Forestry Service Station, Suzhou 215100, China; (H.L.); (D.Y.); (J.Z.)
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| |
Collapse
|
5
|
Li JW, Li H, Liu ZW, Wang YX, Chen Y, Yang N, Hu ZH, Li T, Zhuang J. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107704. [PMID: 37086694 DOI: 10.1016/j.plaphy.2023.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tea plants have a long cultivation history in the world, and the beverage (tea) made from its leaves is well known in the world. Due to the characteristics of self-incompatibility, long-term natural and artificial hybridization, tea plants have a very complex genetic background, which make the classification of tea plants unclear. Molecular marker, one type of genetic markers, has the advantages of stable inheritance, large amount of information, and high reliability. The development of molecular marker has facilitated the understanding of complex tea germplasm resources. So far, molecular markers had played important roles in the study of the origin and evolution, the preservation and identification of tea germplasms, and the excellent cultivars breeding of tea plants. However, the information is scattered, making it difficult to understand the advance of molecular markers in tea plants. In this paper, we summarized the development process and types of molecular markers in tea plants. In addition, the application advance of these molecular markers in tea plants was reviewed. Perspectives of molecular markers in tea plants were also systematically provided and discussed. The elaboration of molecular markers in this paper should help us to renew understanding of its application in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Chen Y, Niu S, Deng X, Song Q, He L, Bai D, He Y. Genome-wide association study of leaf-related traits in tea plant in Guizhou based on genotyping-by-sequencing. BMC PLANT BIOLOGY 2023; 23:196. [PMID: 37046207 PMCID: PMC10091845 DOI: 10.1186/s12870-023-04192-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Studying the genetic characteristics of tea plant (Camellia spp.) leaf traits is essential for improving yield and quality through breeding and selection. Guizhou Plateau, an important part of the original center of tea plants, has rich genetic resources. However, few studies have explored the associations between tea plant leaf traits and single nucleotide polymorphism (SNP) markers in Guizhou. RESULTS In this study, we used the genotyping-by-sequencing (GBS) method to identify 100,829 SNP markers from 338 accessions of tea germplasm in Guizhou Plateau, a region with rich genetic resources. We assessed population structure based on high-quality SNPs, constructed phylogenetic relationships, and performed genome-wide association studies (GWASs). Four inferred pure groups (G-I, G-II, G-III, and G-IV) and one inferred admixture group (G-V), were identified by a population structure analysis, and verified by principal component analyses and phylogenetic analyses. Through GWAS, we identified six candidate genes associated with four leaf traits, including mature leaf size, texture, color and shape. Specifically, two candidate genes, located on chromosomes 1 and 9, were significantly associated with mature leaf size, while two genes, located on chromosomes 8 and 11, were significantly associated with mature leaf texture. Additionally, two candidate genes, located on chromosomes 1 and 2 were identified as being associated with mature leaf color and mature leaf shape, respectively. We verified the expression level of two candidate genes was verified using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and designed a derived cleaved amplified polymorphism (dCAPS) marker that co-segregated with mature leaf size, which could be used for marker-assisted selection (MAS) breeding in Camellia sinensis. CONCLUSIONS In the present study, by using GWAS approaches with the 338 tea accessions population in Guizhou, we revealed a list of SNPs markers and candidate genes that were significantly associated with four leaf traits. This work provides theoretical and practical basis for the genetic breeding of related traits in tea plant leaves.
Collapse
Affiliation(s)
- Yanjun Chen
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Suzhen Niu
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Xinyue Deng
- School of Architecture, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Qinfei Song
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Limin He
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Dingchen Bai
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| | - Yingqin He
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province People’s Republic of China
| |
Collapse
|
7
|
Zhao Z, Song Q, Bai D, Niu S, He Y, Qiao D, Chen Z, Li C, Luo J, Li F. Population structure analysis to explore genetic diversity and geographical distribution characteristics of cultivated-type tea plant in Guizhou Plateau. BMC PLANT BIOLOGY 2022; 22:55. [PMID: 35086484 PMCID: PMC8793275 DOI: 10.1186/s12870-022-03438-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/12/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Tea plants originated in southwestern China. Guizhou Plateau is an original center of tea plants, and is rich in germplasm resources. However, the genetic diversity, population structure and distribution characteristics of cultivated-type tea plants in the region are unknown. In this study, we explored the genetic diversity and geographical distribution of cultivated-type tea accessions in Guizhou Plateau. RESULTS We used 112,072 high-quality genotyping-by-sequencing to analyze the genetic diversity, principal components, phylogeny, population structure, and linkage disequilibrium, and develop a core collection of 253 cultivated-type tea plant accessions from Guizhou Plateau. The results showed Genetic diversity of the cultivated-type tea accessions of the Pearl River Basin was significantly higher than that of the cultivated-type tea accessions of the Yangtze River Basin. Three inferred pure groups (CG-1, CG-2 and CG-3) and one inferred admixture group (CG-4), were identified by a population structure analysis, and verified by principal component and phylogenetic analyses. The highest genetic distance and differentiation coefficients were determined for CG-2 vs CG-3. The lower genetic distance and differentiation coefficients were determined for CG-4 vs CG-2 and CG-4 vs CG-3, respectively. We developed a core set and a primary set. The primary and core sets contained 77.0 and 33.6% of all individuals in the initial set, respectively. The primary set may serve as the primary population in genome-wide association studies, while the core collection may serve as the core population in multiple treatment setting studies. CONCLUSIONS The present study demonstrated the genetic diversity and geographical distribution characteristics of cultivated-type tea plants in Guizhou Plateau. Significant differences in genetic diversity and evolutionary direction were detected between the ancient landraces of the Pearl River Basin and the those of the Yangtze River Basin. Major rivers and ancient hubs were largely responsible for the genetic exchange between the Pearl River Basin and the Yangtze River Basin ancient landraces as well as the formation of the ancient hubs evolutionary group. Genetic diversity, population structure and core collection elucidated by this study will facilitate further genetic studies, germplasm protection, and breeding of tea plants.
Collapse
Affiliation(s)
- Zhifei Zhao
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province PR China
| | - Qinfei Song
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province PR China
| | - Dingchen Bai
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province PR China
| | - Suzhen Niu
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province PR China
- lnstitute of Tea Science, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province PR China
| | - Yingqin He
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province PR China
| | - Dahe Qiao
- lnstitute of Tea Science, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province PR China
| | - Zhengwu Chen
- lnstitute of Tea Science, Guizhou Academy of Agricultural Sciences, Guiyang, 550006 Guizhou Province PR China
| | - Caiyun Li
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province PR China
| | - Jing Luo
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province PR China
| | - Fang Li
- College of Tea Science / Tea Engineering Technology Research Center, Guizhou University, Guiyang, 550025 Guizhou Province PR China
| |
Collapse
|
8
|
Chen JD, He WZ, Chen S, Chen QY, Ma JQ, Jin JQ, Ma CL, Moon DG, Ercisli S, Yao MZ, Chen L. TeaGVD: A comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1056891. [PMID: 36518520 PMCID: PMC9742251 DOI: 10.3389/fpls.2022.1056891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 05/05/2023]
Affiliation(s)
- Jie-Dan Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Wei-Zhong He
- Tea Research Institute, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Si Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Qi-Yu Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Jian-Qiang Ma
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Ji-Qiang Jin
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Chun-Lei Ma
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Doo-Gyung Moon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, South Korea
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Ming-Zhe Yao
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
- *Correspondence: Liang Chen, ; Ming-Zhe Yao,
| | - Liang Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
- *Correspondence: Liang Chen, ; Ming-Zhe Yao,
| |
Collapse
|