1
|
Zawawi NA, Ahmad H, Madatheri R, Fadilah NIM, Maarof M, Fauzi MB. Flavonoids as Natural Anti-Inflammatory Agents in the Atopic Dermatitis Treatment. Pharmaceutics 2025; 17:261. [PMID: 40006628 PMCID: PMC11859288 DOI: 10.3390/pharmaceutics17020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Eczema is a complex autoimmune condition characterised mainly by inflammation and skin lesions along with physical and psychological comorbidities. Although there have been significant advances in understanding the mechanisms behind atopic dermatitis, conventionally available treatments yield inconsistent results and have some unintended consequences. In today's digital age, where knowledge is just a click away, natural-based supplements have been on the rise for a more "natural" treatment towards any type of disease. Natural compounds, particularly derived from medicinal plants, have piqued significant interest in the development of herbal remedies for chronic inflammatory skin conditions. Among many compounds, flavonoids have shown promise in treating eczema due to their strong anti-inflammatory, antioxidant, and anti-allergic properties, making them helpful in preventing allergic reactions, inflammation, and skin irritation. This review highlights the therapeutic potential of flavonoid-based bioactive compounds to manage eczema, emphasising the mechanisms of action. Additionally, providing a comprehensive analysis of the potential of emerging and established compounds, while bridging a gap between traditional and modern medicine. Flavonoids offer a variety of opportunities for further research and innovative formulations that can maximise its full benefits. Further combination of flavonoids with various approaches such as nanoencapsulation for enhanced bioavailability, hydrogel-based delivery systems for a controlled release, and additive manufacturing for personalised topical formulations, could align with future precision medicine needs.
Collapse
Affiliation(s)
- Nurul Ain Zawawi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rajesh Madatheri
- Zitai Regeneration Cell Sdn Bhd, George Town 10200, Pulau Pinang, Malaysia;
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Pharmaceuticals and Pharmacy Practice UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
2
|
Li S, Liu Y. Intestinal absorption mechanism and nutritional synergy promotion strategy of dietary flavonoids: transintestinal epithelial pathway mediated by intestinal transport proteins. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39086266 DOI: 10.1080/10408398.2024.2387320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Dietary flavonoids exhibit a variety of physiological functions in regulating glucose and lipid metabolism, improving cardiovascular function, and enhancing stress resistance. However, poor intestinal absorption limits their health benefits. Previous studies on improving the absorption efficiency of flavonoids have focused on targeted release, enhanced gastrointestinal stability and prolonged retention time in digestive tract. But less attention has been paid to promoting the uptake and transport of flavonoids by intestinal epithelial cells through modulation of transporter protein-mediated pathways. Interestingly, some dietary nutrients have been found to modulate the expression or function of transporter proteins, thereby synergistically or antagonistically affecting flavonoid absorption. Therefore, this paper proposed an innovative regulatory strategy known as the "intestinal transport protein-mediated pathway" to promote intestinal absorption of dietary flavonoids. The flavonoid absorption mechanism in the intestinal epithelium, mediated by intestinal transport proteins, was summarized. The functional differences between the uptake transporter and efflux transporters during flavonoid trans-intestinal cellular transport were discussed. Finally, from the perspective of nutritional synergy promotion of absorption, the feasibility of promoting flavonoid intestinal absorption by regulating the expression/function of transport proteins through dietary nutrients was emphasized. This review provides a new perspective and developing precise dietary nutrient combinations for efficient dietary flavonoid absorption.
Collapse
Affiliation(s)
- Shuqiong Li
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
3
|
Eirich P, Nesterov P, Shityakov S, Skorb EV, Sander B, Broscheit J, Dandekar T, Jones NG, Engstler M. The release of host-derived antibodies bound to the variant surface glycoprotein (VSG) of Trypanosoma brucei cannot be explained by pH-dependent conformational changes of the VSG dimer. OPEN RESEARCH EUROPE 2024; 4:87. [PMID: 38903703 PMCID: PMC11187536 DOI: 10.12688/openreseurope.16783.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 06/22/2024]
Abstract
Background Trypanosoma brucei is a protozoan parasite that evades the mammalian host's adaptive immune response by antigenic variation of the highly immunogenic variant surface glycoprotein (VSG). VSGs form a dense surface coat that is constantly recycled through the endosomal system. Bound antibodies are separated in the endosome from the VSG and destroyed in the lysosome. For VSGs it has been hypothesized that pH-dependent structural changes of the VSG could occur in the more acidic environment of the endosome and hence, facilitate the separation of the antibody from the VSG. Methods We used size exclusion chromatography, where molecules are separated according to their hydrodynamic radius to see if the VSG is present as a homodimer at both pH values. To gain information about the structural integrity of the protein we used circular dichroism spectroscopy by exposing the VSG in solution to a mixture of right- and left-circularly polarized light and analysing the absorbed UV spectra. Evaluation of protein stability and molecular dynamics simulations at different pH values was performed using different computational methods. Results We show, for an A2-type VSG, that the dimer size is only slightly larger at pH 5.2 than at pH 7.4. Moreover, the dimer was marginally more stable at lower pH due to the higher affinity (ΔG = 353.37 kcal/mol) between the monomers. Due to the larger size, the predicted epitopes were more exposed to the solvent at low pH. Moderate conformational changes (ΔRMSD = 0.35 nm) in VSG were detected between the dimers at pH 5.2 and pH 7.4 in molecular dynamics simulations, and no significant differences in the protein secondary structure were observed by circular dichroism spectroscopy. Conclusions Thus, the dissociation of anti-VSG-antibodies in endosomes cannot be explained by changes in pH.
Collapse
Affiliation(s)
- Patrick Eirich
- Department of Cell & Developmental Biology, Biocentre, University of Würzburg, Würzburg, Bavaria, 97074, Germany
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University Hospital, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Pavel Nesterov
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Saint Petersburg, Saint Petersburg, 191002, Russian Federation
| | - Sergey Shityakov
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University Hospital, University of Würzburg, Würzburg, Bavaria, 97080, Germany
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Saint Petersburg, Saint Petersburg, 191002, Russian Federation
- Department of Bioinformatics, Biocentre, University of Würzburg, Würzburg, Bavaria, 97074, Germany
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Saint Petersburg, Saint Petersburg, 191002, Russian Federation
| | - Bodo Sander
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Jens Broscheit
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University Hospital, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocentre, University of Würzburg, Würzburg, Bavaria, 97074, Germany
| | - Nicola G. Jones
- Department of Cell & Developmental Biology, Biocentre, University of Würzburg, Würzburg, Bavaria, 97074, Germany
| | - Markus Engstler
- Department of Cell & Developmental Biology, Biocentre, University of Würzburg, Würzburg, Bavaria, 97074, Germany
| |
Collapse
|
4
|
Meng D, Deng X, Wu Y, Wu J, Zhang Y, Zhang J, Zhao Y, Che Y. Corilagin ameliorates macrophages inflammation in atherosclerosis through TLR4-NFκB/MAPK pathway. Heliyon 2023; 9:e16960. [PMID: 37383215 PMCID: PMC10293685 DOI: 10.1016/j.heliyon.2023.e16960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Corilagin, a polyphenolic tannic acid compound, showed significant anti-inflammatory activity in atherosclerotic mice. The present study aimed to evaluate the effect and mechanism of corilagin in atherosclerosis by in vivo, in vitro and in molecular docking strategies analysis. An atherosclerotic model was established by feeding ApoE-/- mice a high-fat diet. Murine RAW264.7 macrophages were cultured and induced with lipopolysaccharide (LPS). Treatment with corilagin had a marked inhibitory effect on the plaque area and lipid accumulation in atherosclerotic mice. Corilagin decreased the expression of iNOS and promoted the expression of CD206 in aortic plaque, as well as inhibited the production of proinflammatory factors in HFD-fed ApoE-/- mice and LPS-induced RAW264.6 cell. Corilagin also obviously inhibited the expression of TLR4, reduced the phosphorylation of the JNK, the protein expressions of p38 and NF-κB pathway. In addition, corilagin markedly diminished the nuclear translocation of NF-κBp65. Similarly, molecular docking study suggested that hydrogen bonds were detected between the corilagin and the five proteins (TLR4, Myd88, p65, P38, and JNK) with a significant "CDOCKER energy". These results showed that the antiatherosclerotic effect of corilagin against M1 macrophage polarization and inflammation via suppression the activation of TLR4-NFκB/MAPK signaling pathway. Therefore, corilagin could be a promising lead compound to develop drugs for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Da Meng
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Xin Deng
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingyi Wu
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Yaqiong Zhang
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - JiaYu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Yi Zhao
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| |
Collapse
|
5
|
Mueed A, Deng Z, Korma SA, Shibli S, Jahangir M. Anticancer potential of flaxseed lignans, their metabolites and synthetic counterparts in relation with molecular targets: current challenges and future perspectives. Food Funct 2023; 14:2286-2303. [PMID: 36820797 DOI: 10.1039/d2fo02208g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lignans are known dietary polyphenols found in cereals, plants and seeds. Flaxseed is one of the major sources of lignans mainly existing in the form of secoisolariciresinol diglucoside (SDG) which can be metabolised by the gut microbes into secoisolariciresinol (SECO) and mammalian lignan (enterodiol and enterolactone) that are easily absorbed through the intestines. Numerous studies reveal that flaxseed lignans (FLs) can be promising chemotherapeutics/chemopreventive agents. Their anticancer activity can occur through the induction of apoptosis, inhibition of cell proliferation, and the hindering of metastasis and angiogenesis. The anti-carcinogenesis of flaxseed lignans is achieved through multiple molecular mechanisms involving biochemical entities such as cellular kinases, cell cycle mediators, transcription factors, inflammatory cytokines, reactive oxygen species, and drug transporters. This review summarizes the bioavailability of FLs, their anticancer mechanisms in relevance to molecular targets, safety, and the scope of future research. Overall, FLs can be utilized in functional foods, dietary supplements, and pharmaceuticals for the management and prevention of cancers.
Collapse
Affiliation(s)
- Abdul Mueed
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zeyuan Deng
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Mueed A, Ibrahim M, Shibli S, Madjirebaye P, Deng Z, Jahangir M. The fate of flaxseed-lignans after oral administration: A comprehensive review on its bioavailability, pharmacokinetics, and food design strategies for optimal application. Crit Rev Food Sci Nutr 2022; 64:4312-4330. [PMID: 36345888 DOI: 10.1080/10408398.2022.2140643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lignans are one of the most important and abundant phytochemicals found in flaxseed-diets. These have shown to possess several health-benefits, including anticancer, antioxidant, neuroprotective, cardioprotective, and estrogenic-properties etc. The potential of lignans health-promoting effects are circumscribed due to their poor-bioavailability resulting from their bound structure. Recent studies have demonstrated that various food design strategies can enhance the release of bound-lignans from agro-industrial residues, resulting in a higher bioaccessibility and bioavailability. This review focuses primarily on the bioavailability of flaxseed lignans, key factors affecting it and their pharmacokinetics, different strategies to improve the contents of lignans, their release and delivery. Present study will help to deepen our understanding of the applications of lignans and their dietary-supplements in the prevention and treatment of diseases. Several absorption issues of lignans have been observed such as impaired-bioavailability and variability in pharmacokinetics and pharmacodynamics. Therefore, the development of novel strategies for optimizing lignan bioavailability is critical to ensure its successful application, such as the delivery of lignans to biological targets via "targeted designs." In addition, some detailed examination is required to identify and understand the basis of variation in lignans bioavailability caused by interactions with the gastrointestinal system.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Ibrahim
- Department of Forestry, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Philippe Madjirebaye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
GC-MS/MS Quantification of EGFR Inhibitors, β-Sitosterol, Betulinic Acid, (+) Eriodictyol, (+) Epipinoresinol, and Secoisolariciresinol, in Crude Extract and Ethyl Acetate Fraction of Thonningia sanguinea. Molecules 2022; 27:molecules27134109. [PMID: 35807354 PMCID: PMC9268025 DOI: 10.3390/molecules27134109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants are widely used in folk medicine to treat various diseases. Thonningia sanguinea Vahl is widespread in African traditional medicine, and exhibits antioxidant, antibacterial, antiviral, and anticancer activities. T. sanguinea is a source of phytomedicinal agents that have previously been isolated and structurally elucidated. Herein, gas chromatography combined with tandem mass spectrometry (GC-MS/MS) was used to quantify epipinoresinol, β-sitosterol, eriodictyol, betulinic acid, and secoisolariciresinol contents in the methanolic crude extract and its ethyl acetate fraction for the first time. The ethyl acetate fraction was rich in epipinoresinol, eriodictyol, and secoisolariciresinol at concentrations of 2.3, 3.9, and 2.4 mg/g of dry extract, respectively. The binding interactions of these compounds with the epidermal growth factor receptor (EGFR) were computed using a molecular docking study. The results revealed that the highest binding affinities for the EGFR signaling pathway were attributed to eriodictyol and secoisolariciresinol, with good binding energies of −19.93 and −16.63 Kcal/mol, respectively. These compounds formed good interactions with the key amino acid Met 769 as the co-crystallized ligand. So, the ethyl acetate fraction of T. sanguinea is a promising adjuvant therapy in cancer treatments.
Collapse
|
8
|
Morsy MA, Patel SS, Bakrania A, Kandeel M, Nair AB, Shah JN, Akrawi SH, El-Daly M. Ameliorative Effect of a Neoteric Regimen of Catechin plus Cetirizine on Ovalbumin-Induced Allergic Rhinitis in Rats. Life (Basel) 2022; 12:life12060820. [PMID: 35743851 PMCID: PMC9225010 DOI: 10.3390/life12060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022] Open
Abstract
Allergic rhinitis (AR) affects 20–50% of the global population. Available treatments are limited by their adverse effects. We investigated the anti-allergic effects of catechin alone and combined with cetirizine against ovalbumin-induced AR. Rats were sensitized with ovalbumin and received catechin (14 days) and then challenged with aerosolized ovalbumin (1%) to determine AR clinical scores. Histamine, histamine release, and histidine decarboxylase (HDC) activity were determined in blood, peritoneal mast cells, and stomachs, respectively. Vascular permeability and safety were assessed using Evans blue leakage and barbiturate-induced sleeping-time assays, respectively. Catechin and cetirizine binding with HDC was investigated by docking and binding energy analyses. The clinical scores of the combination regimen were superior to either drug alone. All treatments reduced vascular leakage, with no effect on barbiturate-induced sleeping time. Only the catechin-treated rats showed reduced histamine levels and HDC activity. Docking studies revealed that catechin has a 1.34-fold higher extra-precision docking score than L-histidine. The binding energy scores for catechin-HDC, L-histidine-HDC, and histamine-HDC were −50.86, −37.64, and −32.27 kcal/mol, respectively. The binding pattern of catechin was comparable to the standard HDC inhibitor, histidine methyl ester, but with higher binding free energy. Catechin binds the catalytic residue S354, unlike cetirizine. The anti-allergic effects of catechin can be explained by HDC inhibition and possible antihistaminic activity.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
- Correspondence: (M.A.M.); (S.S.P.)
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
- Correspondence: (M.A.M.); (S.S.P.)
| | - Anita Bakrania
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
| | - Jigar N. Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
| | - Mahmoud El-Daly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt;
| |
Collapse
|
9
|
Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci 2022; 298:120463. [DOI: 10.1016/j.lfs.2022.120463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
10
|
Morsy MA, El-Sheikh AAK, Abdel-Hafez SMN, Kandeel M, Abdel-Gaber SA. Paeonol Protects Against Methotrexate-Induced Nephrotoxicity via Upregulation of P-gp Expression and Inhibition of TLR4/NF-κB Pathway. Front Pharmacol 2022; 13:774387. [PMID: 35185559 PMCID: PMC8854802 DOI: 10.3389/fphar.2022.774387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/13/2022] [Indexed: 01/15/2023] Open
Abstract
Methotrexate (MTX) is a well-known anticancer drug that causes nephrotoxicity as a side effect. To investigate the mechanisms by which paeonol, a natural phenolic compound, can protect against MTX-induced nephrotoxicity, paeonol (100 mg/kg/day orally) was given to rats for 10 days, with or without MTX (20 mg/kg once i.p. at day 5). Compared to control, MTX caused nephrotoxic effects manifested by increased serum urea and creatinine and distortion in renal histological architecture, with a significant increase in the mean glomerular diameter and upregulation of kidney injury molecule-1. MTX caused oxidative stress manifested by decreasing reduced glutathione and superoxide dismutase while increasing malondialdehyde and nitric oxide. MTX also induced renal inflammation by upregulating TLR4, NF-κB, and IL-1β and caused apoptosis by induction of caspase 3. Administering paeonol with MTX improved kidney functional and structural parameters, as well as all oxidative, inflammatory, and apoptotic markers tested. Interestingly, both MTX and paeonol increased the expression of the renal efflux transporter P-glycoprotein (P-gp) that helps in MTX elimination, and their drug combination further upregulated renal P-gp. In silico, paeonol was neither a substrate nor an inhibitor of P-gp, suggesting that its effect on P-gp is not on functional but on the expression level. In vitro, paeonol and MTX were administered to colon cancer cells and their combination caused a progressive cellular cytotoxic effect, which was dose-dependent with the increase of paeonol concentration. In conclusion, paeonol protects against MTX-induced nephrotoxicity through antioxidant, anti-inflammatory, and antiapoptotic mechanisms and might potentiate MTX chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
- *Correspondence: Mohamed A. Morsy,
| | - Azza A. K. El-Sheikh
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
11
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
12
|
El-Sheikh AAK, Khired Z. Morphine Deteriorates Cisplatin-Induced Cardiotoxicity in Rats and Induces Dose-Dependent Cisplatin Chemoresistance in MCF-7 Human Breast Cancer Cells. Cardiovasc Toxicol 2021; 21:553-562. [PMID: 33796943 DOI: 10.1007/s12012-021-09646-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
Morphine (MOR) is a strong analgesic that is often used in treatment of severe pains during cancer treatment, and thus might be concomitantly used with anticancer drugs as cisplatin (CP). The aim of the current study was to investigate the mechanisms by which MOR can affect CP-induced cardiotoxicity and to explore effects of MOR on the cytotoxic efficacy of CP. MOR (10 mg/kg/day i.p.) was administered to rats for 10 days, with or without 7.5 mg/kg CP single i.p. dose at day 5 of the experiment. In addition, MOR and/or CP were administered to MCF-7 cells to test their cytotoxicity. Compared to control, CP caused cardiotoxic effects manifested by significant increase in serum enzymatic markers; creatine kinase-MB and lactate dehydrogenase, with histopathological cardiac damage. In addition, CP caused cardiac oxidative stress, manifested by significant increased tissue lipid peroxidation product; malondialdehyde and nitric oxide, with significant decrease in tissue antioxidants as reduced glutathione, superoxide dismutase and catalase compared to control. Furthermore, CP significantly increased tissue proinflammatory cytokines; TNF-α and IL-6, as well as upregulated the apoptotic marker; caspase 3 compared to control. MOR/CP combination significantly deteriorated all tested parameters compared to CP alone. In MCF-7 breast cancer cells, administration of MOR in concentrations of 0.1, 1, 10 or 30 μM concomitantly with 1 or 10 μM CP caused dose-dependent reduction in CP-induced cytotoxicity in vitro. In conclusion, MOR administration might deteriorate CP-induced cardiotoxicity during cancer chemotherapy through oxidant, pro-inflammatory and apoptotic mechanisms, and might reduce CP chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
- Department of Pharmacology, Faculty of Medicine, Minia University, El Minia, 61511, Egypt.
| | - Zenat Khired
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
13
|
Scherbakov AM, Stasevich OV, Salnikova DI, Andreeva OE, Mikhaevich EI. Antiestrogenic and antiproliferative potency of secoisolariciresinol diglucoside derivatives on MCF-7 breast cancer cells. Nat Prod Res 2020; 35:6099-6105. [PMID: 33025821 DOI: 10.1080/14786419.2020.1826479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Secoisolariciresinol diglucoside (SDG) is isolated from Linum usitatissimum seeds. The antiproliferative effects of SDG (1) and its derivatives secoisolariciresinol (2) and secoisolariciresinol-4', 4″-diacetate (3) have been evaluated on MCF-7 breast cancer cells and normal breast epithelial line MCF-10A. Lignan 1 has not shown cytotoxic effects on MCF-7 cells, while derivatives 2 and 3 have inhibited cell growth with IC50 values of 25 and 11 µM, respectively. Estrogen receptor alpha is a key growth driver in MCF-7 cells. Compound 1 did not affect the activity of ERα, while derivatives 2 and 3 showed significant antiestrogenic effects. Compounds 2 and 3 caused apoptosis in the MCF-7 line, determined by the cleavage of PARP. SDG derivative 3 enhanced the effect of doxorubicin. SDG derivatives can be considered as promising agents that exhibit a combined antiestrogen and proapoptotic effect in hormone-dependent breast cancer cells.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow, Russia
| | - Olga V Stasevich
- Department of Physical-Chemical Methods for Products Certification, Belarusian State Technological University, Minsk, Belarus
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga E Andreeva
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow, Russia
| | - Ekaterina I Mikhaevich
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|