1
|
Bard NW, Davies TJ, Cronk QCB. Teknonaturalist: A Snakemake Pipeline for Assessing Fungal Diversity From Plant Genome Bycatch. Mol Ecol Resour 2025; 25:e14056. [PMID: 39739202 PMCID: PMC11887601 DOI: 10.1111/1755-0998.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Relatively little is known of the host associations and compatibility of fungal plant pathogens and endophytes. Publicly available plant genomic DNA can be mined to detect incidental fungal DNA, but taxonomic assignment can be challenging due to short lengths and variable discriminative power among different genomic regions and taxa. Here, we introduce a computationally lightweight and accessible Snakemake pipeline for rapid detection and classification (identification and assignment to taxonomic rank) of pathogenic and endophytic fungi (and other fungi associated with plants) that targets the internal transcribed spacer (ITS) region, a fungal barcode standard. We include methods for maximising query sequence length, which gives higher support for ITS1 and ITS2 taxonomic classifications by extending to other fragments of the ITS region and providing taxon-specific local cut-off and confidence scores. We demonstrate our pipeline with a case study using public genomic sequence data for six diverse plant species, including four species within Betula, an ecologically and economically important broadleaved forest tree genus, a shrub and a grass. Our pipeline classified fungi within minutes to a few hours per host individual, with 204 different fungal genera identified at high confidence (≥ 70%). Our pipeline detected and classified pathogenic and endophytic genera known to associate with Betula, and many others with no prior record of association. Our pipeline, leveraging existing sequence data, has several potential applications, including detecting cryptic fungal pathogens and helping characterise the endophytic fungal microbiome, bioprospecting commercially useful fungal species, and determining the plant host range of fungi.
Collapse
Affiliation(s)
- Nicholas W. Bard
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - T. Jonathan Davies
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Forest & Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Quentin C. B. Cronk
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Beaty Biodiversity MuseumUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Dirks AC, Methven AS, Miller AN, Orozco-Quime M, Maurice S, Bonito G, Van Wyk J, Ahrendt S, Kuo A, Andreopoulos W, Riley R, Lipzen A, Chovatia M, Savage E, Barry K, Grigoriev IV, Bradshaw AJ, Martin FM, Arnold AE, James TY. Phylogenomic insights into the taxonomy, ecology, and mating systems of the lorchel family Discinaceae (Pezizales, Ascomycota). Mol Phylogenet Evol 2025; 205:108286. [PMID: 39788220 DOI: 10.1016/j.ympev.2025.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/21/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Lorchels, also known as false morels (Gyromitra sensu lato), are iconic due to their brain-shaped mushrooms and production of gyromitrin, a deadly mycotoxin. Molecular phylogenetic studies have hitherto failed to resolve deep-branching relationships in the lorchel family, Discinaceae, hampering our ability to settle longstanding taxonomic debates and to reconstruct the evolution of toxin production. We generated 75 draft genomes from cultures and ascomata (some collected as early as 1960), conducted phylogenomic analyses using 1542 single-copy orthologs to infer the early evolutionary history of lorchels, and identified genomic signatures of trophic mode and mating-type loci to better understand lorchel ecology and reproductive biology. Our phylogenomic tree was supported by high gene tree concordance, facilitating taxonomic revisions in Discinaceae. We recognized 10 genera across two tribes: tribe Discineae (Discina, Maublancomyces, Neogyromitra, Piscidiscina, and Pseudodiscina) and tribe Gyromitreae (Gyromitra, Hydnotrya, Paragyromitra, Pseudorhizina, and Pseudoverpa); Piscidiscina was newly erected and 26 new combinations were formalized. Paradiscina melaleuca and Marcelleina donadinii formed their own family-level clade sister to Morchellaceae, which merits further taxonomic study. Genome size and CAZyme content were consistent with a mycorrhizal lifestyle for the truffle species (Hydnotrya spp.), whereas the other Discinaceae genera possessed genomic properties of a saprotrophic habit. Lorchels were found to be predominantly heterothallic-either MAT1-1 or MAT1-2-but a single occurrence of colocalized mating-type idiomorphs indicative of homothallism was observed in Gyromitra esculenta strain CBS101906 and requires additional confirmation and follow-up study. Lastly, we confirmed that gyromitrin has a phylogenetically discontinuous distribution, having been detected exclusively in two distantly related genera (Gyromitra and Piscidiscina) belonging to separate tribes. Our genomic dataset will facilitate further investigations into the gyromitrin biosynthesis genes and their evolutionary history. With additional sampling of Geomoriaceae and Helvellaceae-two closely related families with no publicly available genomes-these data will enable comprehensive studies on the independent evolution of truffles and ecological diversification in an economically important group of pezizalean fungi.
Collapse
Affiliation(s)
- Alden C Dirks
- Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Michelle Orozco-Quime
- Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sundy Maurice
- Department of Biosciences, University of Oslo, Blindernveien 31 0316, Oslo, Norway
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Judson Van Wyk
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexander J Bradshaw
- Natural History Museum of Utah and School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst-Nancy, Champenoux, France
| | - A Elizabeth Arnold
- Department of Ecology and Evolutionary Biology, Bio5 Institute, and Gilbertson Mycological Herbarium, University of Arizona, Tucson, AZ 85719, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Sánchez C. Fusarium as a promising fungal genus with potential application in bioremediation for pollutants mitigation: A review. Biotechnol Adv 2024; 77:108476. [PMID: 39536920 DOI: 10.1016/j.biotechadv.2024.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Fusarium is genetically diverse and widely distributed geographically. It is one of the genera with more endophytes (which cause no damage to the host plants). This review highlights the capability of Fusarium species to degrade environmental pollutants and describes the biodegradation pathways of some of the emerging environmental contaminants. Some Fusarium species use metabolic strategies enabling them to efficiently mineralize high concentrations of toxic environmental pollutants. These fungi can degrade hydrocarbons, pesticides, herbicides, dyes, pharmaceutical compounds, explosives, plastics, and plastic additives, among other pollutants, and possess high metal biosorption capabilities. According to data from consulted reports, Fusarium strains showed a percentage of biodegradation of a variety of contaminants ranging between 30 % and 100 % for different tested concentrations (from 1 mg to 10 g/L) in a time range between 10 h and 90 d. Enzymes such as esterase, cutinase, laccase, lignin peroxidase, manganese peroxidase, dehydrogenase, lipase, dioxygenase, and phosphoesterase were detected during the pollutant biodegradation process. Fusarium oxysporum, Fusarium solani, and Fusarium culmorum are the most studied species of this genus. Owing to their metabolic versatility, these fungal species and their enzymes represent promising tools for bioremediation applications to mitigate the adverse effects of environmental pollution.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala 90120, Mexico.
| |
Collapse
|
4
|
Stallman JK, Haelewaters D, Koch Bach RA, Brann M, Fatemi S, Gomez-Zapata P, Husbands DR, Jumbam B, Kaishian PJ, Moffitt A, Catherine Aime M. The contribution of tropical long-term studies to mycology. IMA Fungus 2024; 15:35. [PMID: 39529162 PMCID: PMC11552369 DOI: 10.1186/s43008-024-00166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Fungi are arguably the most diverse eukaryotic kingdom of organisms in terms of number of estimated species, trophic and life history strategies, and their functions in ecosystems. However, our knowledge of fungi is limited due to a distributional bias; the vast majority of available data on fungi have been compiled from non-tropical regions. Far less is known about fungi from tropical regions, with the bulk of these data being temporally limited surveys for fungal species diversity. Long-term studies (LTS), or repeated sampling from the same region over extended periods, are necessary to fully capture the extent of species diversity in a region, but LTS of fungi from tropical regions are almost non-existent. In this paper, we discuss the contributions of LTS of fungi in tropical regions to alpha diversity, ecological and functional diversity, biogeography, hypothesis testing, and conservation-with an emphasis on an ongoing tropical LTS in the Pakaraima Mountains of Guyana. We show how these contributions refine our understanding of Fungi. We also show that public data repositories such as NCBI, IUCN, and iNaturalist contain less information on tropical fungi compared to non-tropical fungi, and that these discrepancies are more pronounced in fungi than in plants and animals.
Collapse
Affiliation(s)
- Jeffery K Stallman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47901, USA.
| | - Danny Haelewaters
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Rachel A Koch Bach
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47901, USA
| | - Mia Brann
- Department of Biology, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Samira Fatemi
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Paula Gomez-Zapata
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Dillon R Husbands
- Department of Agriculture, University of Guyana, Turkeyen Campus, Greater Georgetown, Guyana
| | - Blaise Jumbam
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, 20742 MD, USA
| | | | - Ariana Moffitt
- Department of Nutrition Science, Purdue University, West Lafayette, IN, 47901, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47901, USA.
| |
Collapse
|
5
|
Bard NW, Cronk QCB, Davies TJ. Fungal endophytes can modulate plant invasion. Biol Rev Camb Philos Soc 2024; 99:1652-1671. [PMID: 38629189 DOI: 10.1111/brv.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 09/03/2024]
Abstract
Symbiotic organisms may contribute to a host plant's success or failure to grow, its ability to maintain viable populations, and potentially, its probability of establishment and spread outside its native range. Intercellular and intracellular microbial symbionts that are asymptomatic in their plant host during some or all of their life cycle - endophytes - can form mutualistic, commensal, or pathogenic relationships, and sometimes novel associations with alien plants. Fungal endophytes are likely the most common endosymbiont infecting plants, with life-history, morphological, physiological, and plant-symbiotic traits that are distinct from other endophytic guilds. Here, we review the community dynamics of fungal endophytes during the process of plant invasion, and how their functional role may shift during the different stages of invasion: transport, introduction (colonisation), establishment, and spread. Each invasion stage presents distinct ecological filters that an alien plant must overcome to advance to the subsequent stage of invasion. Endophytes can alternately aid the host in overcoming stage-specific filters, or contribute to the barriers imposed by filters (e.g. biotic resistance), thereby affecting invasion pathways. A few fungi can be transported as seed endophytes from their native range and be vertically transmitted to future generations in the non-native range, especially in graminoids. In other plant groups, alien plants mostly acquire endophytes via horizontal transmission from the invaded plant community, and the host endophyte community is shaped by host filtering and biogeographic factors (e.g. dispersal limitation, environmental filtering). Endophytes infecting alien plants (both those transported with their host and those accumulated in the non-native range) may influence invasion success by affecting plant growth, reproduction, environmental tolerance, and pathogen and herbivory defences; however, the direction and magnitude of these effects can be contingent upon the host identity, life stage, ecological conditions, and invasion stage. This context dependence may cause endophytic fungi to shift to a non-endophytic (e.g. pathogenic) functional life stage in the same or different hosts, which can modify alien-native plant community dynamics. We conclude by identifying paths in which alien hosts can exploit the context dependency of endophyte function in novel abiotic and biotic conditions and at the different stages of invasion.
Collapse
Affiliation(s)
- Nicholas W Bard
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
- Beaty Biodiversity Museum, University of British Columbia, 2212 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Forest & Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
6
|
Pushpavathi D, Krishnamurthy YL. Study on endolichenic fungal assemblage in Parmotrema and Heterodermia lichens of Shivamoga, Karnataka. Mol Biol Rep 2024; 51:549. [PMID: 38642168 DOI: 10.1007/s11033-024-09497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Lichen is a symbiotic association of algae and fungi, recognized as a self-sustaining ecosystem that constitutes an indeterminant number of bacteria, actinomycetes, fungi, and protozoa. We evaluated the endolichenic fungal assemblage given the dearth of knowledge on endolichenic fungi (ELFs), particularly from part of the Central Western Ghats, Karnataka, and conducted a phylogenetic analysis of xylariaceous fungi, the most diversified group of fungi using ITS and ITS+Tub2 gene set. RESULTS Out of 17 lichen thalli collected from 5 ecoregions, 42 morphospecies recovered, belong to the class Sordariomycetes, Eurotiomycetes, Dothideomycetes, Leotiomycetes, Saccharomycetes. About 19 and 13 ELF genera have been reported from Parmotrema and Heterodermia thallus. Among the ecoregions EC2 showing highest species diversity (Parmotrema (1-D) = 0.9382, (H) = 2.865, Fisher-α = 8.429, Heterodermia (1-D) = 0.8038, H = 1.894, F-α = 4.57) followed the EC3 and EC1. Xylariales are the predominant colonizer reported from at least one thallus from four ecoregions. The morphotypes ELFX04, ELFX05, ELFX08 and ELFX13 show the highest BLAST similarity (> 99%) with Xylaria psidii, X. feejeensis, X. berteri and Hypoxylon fragiforme respectively. Species delimitation and phylogenetic position reveal the closest relation of Xylariaceous ELFs with plant endophytes. CONCLUSIONS The observation highlights that the deciduous forest harness a high number of endolichenic fungi, a dominant portion of these fungi are non-sporulating and still exist as cryptic. Overall, 8 ELF species recognized based on phylogenetic analysis, including the two newly reported fungi ELFX03 and ELFX06 which are suspected to be new species based on the present evidence. The study proved, that the lichen being rich source to establish fungal diversity and finding new species. Successful amplification of most phylogenetic markers like RPB2, building of comprehensive taxonomic databases and application of multi-omics data are further needed to understand the complex nature of lichen-fungal symbiosis.
Collapse
Affiliation(s)
- D Pushpavathi
- Department of PG Studies and Research in Applied Botany, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, 577451, India
| | - Y L Krishnamurthy
- Department of PG Studies and Research in Applied Botany, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, 577451, India.
| |
Collapse
|
7
|
Zhao S, Li Y, Liu F, Song Z, Yang W, Lei Y, Tian P, Zhao M. Dynamic changes in fungal communities and functions in different air-curing stages of cigar tobacco leaves. Front Microbiol 2024; 15:1361649. [PMID: 38567079 PMCID: PMC10985334 DOI: 10.3389/fmicb.2024.1361649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Air curing (AC) plays a crucial role in cigar tobacco leaf production. The AC environment is relatively mild, contributing to a diverse microbiome. Fungi are important components of the tobacco and environmental microbiota. However, our understanding of the composition and function of fungal communities in AC remains limited. Methods In this study, changes in the chemical constituents and fungal community composition of cigar tobacco leaves during AC were evaluated using flow analysis and high-throughput sequencing. Results The moisture, water-soluble sugar, starch, total nitrogen, and protein contents of tobacco leaves exhibited decreasing trends, whereas nicotine showed an initial increase, followed by a decline. As determined by high-throughput sequencing, fungal taxa differed among all stages of AC. Functional prediction showed that saprophytic fungi were the most prevalent type during the AC process and that the chemical composition of tobacco leaves is significantly correlated with saprophytic fungi. Conclusion This study provides a deeper understanding of the dynamic changes in fungal communities during the AC process in cigar tobacco leaves and offers theoretical guidance for the application of microorganisms during the AC process.
Collapse
Affiliation(s)
- Songchao Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering and Technology Research Center of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuanyuan Li
- College of Tobacco Science, Flavors and Fragrance Engineering and Technology Research Center of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Liu
- College of Tobacco Science, Flavors and Fragrance Engineering and Technology Research Center of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhaopeng Song
- College of Tobacco Science, Flavors and Fragrance Engineering and Technology Research Center of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| | - Weili Yang
- Dazhou City Branch of Sichuan Province Tobacco Company, Dazhou, Sichuan, China
| | - Yunkang Lei
- Deyang City Branch of Sichuan Province Tobacco Company, Deyang, Sichaun, China
| | - Pei Tian
- China Tobacco Jiangshu Industry Co., Ltd., Xuzhou Cigarette Factory, Xuzhou, Jiangsu, China
| | - Mingqin Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering and Technology Research Center of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Ali S, Wright AH, Tanney JB, Renaud JB, Sumarah MW. Fungal Endophytes: Discovering What Lies within Some of Canada's Oldest and Most Resilient Grapevines. J Fungi (Basel) 2024; 10:105. [PMID: 38392777 PMCID: PMC10890244 DOI: 10.3390/jof10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Plant diseases and pests reduce crop yields, accounting for global crop losses of 30% to 50%. In conventional agricultural production systems, these losses are typically controlled by applying chemical pesticides. However, public pressure is mounting to curtail agrochemical use. In this context, employing beneficial endophytic microorganisms is an increasingly attractive alternative to the use of conventional chemical pesticides in agriculture. A multitude of fungal endophytes are naturally present in plants, producing enzymes, small peptides, and secondary metabolites due to their bioactivity, which can protect hosts from pathogens, pests, and abiotic stresses. The use of beneficial endophytic microorganisms in agriculture is an increasingly attractive alternative to conventional pesticides. The aim of this study was to characterize fungal endophytes isolated from apparently healthy, feral wine grapes in eastern Canada that have grown without agrochemical inputs for decades. Host plants ranged from unknown seedlings to long-lost cultivars not widely propagated since the 1800s. HPLC-MS was used to identify unique endophyte-derived chemical compounds in the host plants, while dual-culture competition assays showed a range in endophytes' ability to suppress the mycelial growth of Botrytis, which is typically controlled in viticulture with pesticides. Twelve of the most promising fungal endophytes isolated were identified using multilocus sequencing and morphology, while DNA barcoding was employed to identify some of their host vines. These fungal endophyte isolates, which consisted of both known and putative novel strains, belonged to seven genera in six families and five orders of Ascomycota. Exploring the fungal endophytes in these specimens may yield clues to the vines' survival and lead to the discovery of novel biocontrol agents.
Collapse
Affiliation(s)
- Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - A Harrison Wright
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - Joey B Tanney
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada
| | - Justin B Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| |
Collapse
|
9
|
Rajtar NN, Kielsmeier-Cook JC, Held BW, Toapanta-Alban CE, Ordonez ME, Barnes CW, Blanchette RA. Diverse Xylaria in the Ecuadorian Amazon and their mode of wood degradation. BOTANICAL STUDIES 2023; 64:30. [PMID: 37878199 PMCID: PMC10600087 DOI: 10.1186/s40529-023-00403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Xylaria is a diverse and ecologically important genus in the Ascomycota. This paper describes the xylariaceous fungi present in an Ecuadorian Amazon Rainforest and investigates the decay potential of selected Xylaria species. Fungi were collected at Yasuní National Park, Ecuador during two collection trips to a single hectare plot divided into a 10-m by 10-m grid, providing 121 collection points. All Xylaria fruiting bodies found within a 1.2-m radius of each grid point were collected. Dried fruiting bodies were used for culturing and the internal transcribed spacer region was sequenced to identify Xylaria samples to species level. Agar microcosms were used to assess the decay potential of three selected species, two unknown species referred to as Xylaria 1 and Xylaria 2 and Xylaria curta, on four different types of wood from trees growing in Ecuador including balsa (Ochroma pyramidale), melina (Gmelina arborea), saman (Samanea saman), and moral (Chlorophora tinctoria). ANOVA and post-hoc comparisons were used to test for differences in biomass lost between wood blocks inoculated with Xylaria and uninoculated control blocks. Scanning electron micrographs of transverse sections of each wood and assay fungus were used to assess the type of degradation present. RESULTS 210 Xylaria collections were sequenced, with 106 collections belonging to 60 taxa that were unknown species, all with less than 97% match to NCBI reference sequences. Xylaria with sequence matches of 97% or greater included X. aff. comosa (28 isolates), X. cuneata (9 isolates) X. curta and X. oligotoma (7 isolates), and X. apiculta (6 isolates)., All Xylaria species tested were able to cause type 1 or type 2 soft rot degradation in the four wood types and significant biomass loss was observed compared to the uninoculated controls. Balsa and melina woods had the greatest amount of biomass loss, with as much as 60% and 25% lost, respectively, compared to the controls. CONCLUSIONS Xylaria species were found in extraordinary abundance in the Ecuadorian rainforest studied. Our study demonstrated that the Xylaria species tested can cause a soft rot type of wood decay and with the significant amount of biomass loss that occurred within a short incubation time, it indicates these fungi likely play a significant role in nutrient cycling in the Amazonian rainforest.
Collapse
Affiliation(s)
- Nickolas N Rajtar
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | | | - Benjamin W Held
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Maria E Ordonez
- QCAM Fungarium, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, USA
| | - Charles W Barnes
- Forest Health Protection-Region 5, USDA Forest Service, San Bernardino, CA, 92408, USA
| | - Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
10
|
Hoyos LV, Chaves A, Grandezz D, Medina A, Correa J, Ramirez-Castrillon M, Valencia D, Caicedo-Ortega NH. Systematic screening strategy for fungal laccase activity of endophytes from Otoba gracilipes with bioremediation potential. Fungal Biol 2023; 127:1298-1311. [PMID: 37821152 DOI: 10.1016/j.funbio.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023]
Abstract
Fungal laccases are promising for biotechnological applications, including bioremediation and dye biotransformation, due to their high redox potential and broad substrate specificity. However, current bioprospecting methods for identifying laccase-producing fungi can be challenging and time-consuming. For early detection, it was developed a three-step, multi-criteria weighting system that evaluates fungal strains based on: First, the biotransformation capacity of three dyes (i.e., Congo red, brilliant blue G-250, and malachite green), at three different pH values, and with a relative weighting supported for the redox potential of each colorant. The relative decolorization coefficient (RDC), used as th2e first classification criterion, expressed their potential performance. Second, under the same conditions, laccase activity was estimated by observing the different degrees of oxidation of a given substrate. The selection criterion was the relative oxidation coefficient (ROC). Finally, laccase activity was quantified in submerged fermentations using three inducers (i.e., loofah sponge, Tween 80, and veratyl alcohol). This multicriteria screening strategy evaluated sixteen isolated endophytic fungal strains from Otoba gracilipes. The system identified Beltraniopsis sp. ET-17 (at pH values of 5.00 and 5.50) as a promising strain for dye biotransformation, and Phlebia floridensis as the best laccase producer, achieving a high activity of 116 μmol min-1 L-1 with loofah sponge as an inducer. In-vitro testing confirmed the efficacy of P. floridensis, with 53.61 % decolorization of a dye mixture (brilliant blue-Congo red. ratio 1:1) after 15 days of incubation. Thus, with the proposed screening strategy it was possible to highlight two species of interest at an early bioprospecting stage on a Colombian native tree poorly explored.
Collapse
Affiliation(s)
- Laura V Hoyos
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Amada Chaves
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Daniela Grandezz
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Allison Medina
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Jhonatan Correa
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Mauricio Ramirez-Castrillon
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Drochss Valencia
- Omicas Program, Pontificia Universidad Javeriana sede Cali, Calle 18 No. 118-250, Cali, C.P. 760031, Colombia
| | - Nelson H Caicedo-Ortega
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia; Centro BioInc, Universidad Icesi, Cali, Colombia.
| |
Collapse
|
11
|
Vandegrift R, Newman DS, Dentinger BTM, Batallas-Molina R, Dueñas N, Flores J, Goyes P, Jenkinson TS, McAlpine J, Navas D, Policha T, Thomas DC, Roy BA. Richer than Gold: the fungal biodiversity of Reserva Los Cedros, a threatened Andean cloud forest. BOTANICAL STUDIES 2023; 64:17. [PMID: 37410314 DOI: 10.1186/s40529-023-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Globally, many undescribed fungal taxa reside in the hyperdiverse, yet undersampled, tropics. These species are under increasing threat from habitat destruction by expanding extractive industry, in addition to global climate change and other threats. Reserva Los Cedros is a primary cloud forest reserve of ~ 5256 ha, and is among the last unlogged watersheds on the western slope of the Ecuadorian Andes. No major fungal survey has been done there, presenting an opportunity to document fungi in primary forest in an underrepresented habitat and location. Above-ground surveys from 2008 to 2019 resulted in 1760 vouchered collections, cataloged and deposited at QCNE in Ecuador, mostly Agaricales sensu lato and Xylariales. We document diversity using a combination of ITS barcode sequencing and digital photography, and share the information via public repositories (GenBank & iNaturalist). RESULTS Preliminary identifications indicate the presence of at least 727 unique fungal species within the Reserve, representing 4 phyla, 17 classes, 40 orders, 101 families, and 229 genera. Two taxa at Los Cedros have recently been recommended to the IUCN Fungal Red List Initiative (Thamnomyces chocöensis Læssøe and "Lactocollybia" aurantiaca Singer), and we add occurrence data for two others already under consideration (Hygrocybe aphylla Læssøe & Boertm. and Lamelloporus americanus Ryvarden). CONCLUSIONS Plants and animals are known to exhibit exceptionally high diversity and endemism in the Chocó bioregion, as the fungi do as well. Our collections contribute to understanding this important driver of biodiversity in the Neotropics, as well as illustrating the importance and utility of such data to conservation efforts. RESUMEN Antecedentes: A nivel mundial muchos taxones fúngicos no descritos residen en los trópicos hiper diversos aunque continúan submuestreados. Estas especies están cada vez más amenazadas por la destrucción del hábitat debido a la expansión de la industria extractivista además del cambio climático global y otras amenazas. Los Cedros es una reserva de bosque nublado primario de ~ 5256 ha y se encuentra entre las últimas cuencas hidrográficas no explotadas en la vertiente occidental de los Andes ecuatorianos. Nunca antes se ha realizado un estudio de diversidad micológica en el sitio, lo que significa una oportunidad para documentar hongos en el bosque primario, en hábitat y ubicación subrepresentatadas. El presente estudio recopila información entre el 2008 y 2019 muestreando material sobre todos los sustratos, reportando 1760 colecciones catalogadas y depositadas en el Fungario del QCNE de Ecuador, en su mayoría Agaricales sensu lato y Xylariales; además se documenta la diversidad mediante secuenciación de códigos de barras ITS y fotografía digital, la información está disponible en repositorios públicos digitales (GenBank e iNaturalist). RESULTADOS La identificación preliminar indica la presencia de al menos 727 especies únicas de hongos dentro de la Reserva, que representan 4 filos, 17 clases, 40 órdenes, 101 familias y 229 géneros. Recientemente dos taxones en Los Cedros se recomendaron a la Iniciativa de Lista Roja de Hongos de la UICN (Thamnomyces chocöensis Læssøe y "Lactocollybia" aurantiaca Singer) y agregamos datos de presencia de otros dos que ya estaban bajo consideración (Hygrocybe aphylla Læssøe & Boertm. y Lamelloporus americanus Ryvarden). CONCLUSIONES Se sabe que plantas y animales exhiben una diversidad y endemismo excepcionalmente altos en la bioregión del Chocó y los hongos no son la excepción. Nuestras colecciones contribuyen a comprender este importante promotor de la biodiversidad en el Neotrópico además de ilustrar la importancia y utilidad de dichos datos para los esfuerzos de conservación.
Collapse
Affiliation(s)
- R Vandegrift
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA.
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador.
| | - D S Newman
- , Glorieta, NM, USA
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - B T M Dentinger
- Biology Department and Natural History Museum, University of Utah, Salt Lake City, Utah, USA
| | - R Batallas-Molina
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - N Dueñas
- Departamento de Investigación de Mycomaker, Quito, Ecuador
| | - J Flores
- Departamento de Investigación de Reino Fungi, Quito, Ecuador
| | - P Goyes
- Microbiology Institute-Universidad San Francisco de Quito, Quito, Ecuador
| | - T S Jenkinson
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | - J McAlpine
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| | - D Navas
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - T Policha
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| | - D C Thomas
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
- Bayreuth Center of Ecology and Research, University of Bayreuth, Bayreuth, Bayern, DE, Germany
| | - B A Roy
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| |
Collapse
|
12
|
Philpott M, Liew ECY, van der Merwe MM, Mertin A, French K. The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia. J Fungi (Basel) 2023; 9:706. [PMID: 37504695 PMCID: PMC10381327 DOI: 10.3390/jof9070706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seed fungal endophytes play a crucial role in assisting the overall health and success of their host plant; however, little is known about the factors that influence the diversity and composition of these endophytes, particularly with respect to how they change over time and within urban environments. Using culturing techniques, morphological analyses, and Sanger sequencing, we identified the culturable seed fungal endophytes of Banksia ericifolia at two urban and two natural sites in Sydney, New South Wales, Australia. A total of 27 Operational Taxonomic Units were obtained from 1200 seeds. Older cones were found to contain, on average, more colonised endophytes than younger cones. Species richness was also significantly influenced by cone age, with older cones being more speciose. Between urban and natural sites, the overall community composition did not change, although species richness and diversity were greatest at urban sites. Understanding how these endophytes vary in time and space may help provide an insight into the transmission pathways used and the potential role they play within the development and survival of the seed. This knowledge may also be crucial for restoration purposes, especially regarding the need to consider endophyte viability in ex situ seed collection and storage in seed-banking practices.
Collapse
Affiliation(s)
- Merize Philpott
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Edward C Y Liew
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Marlien M van der Merwe
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Allison Mertin
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Kristine French
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Colón Carrión N, Troche CL, Arnold AE. Communities of endophytic fungi in a Puerto Rican rainforest vary along a gradient of disturbance due to Hurricane Maria. Ecol Evol 2022; 12:e9618. [PMID: 36532133 PMCID: PMC9750846 DOI: 10.1002/ece3.9618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Increases in the frequency and intensity of hurricanes influence the structure, function, and resilience of Caribbean forests. Trees in such forests harbor diverse fungal endophytes within leaves and roots. Fungal endophytes often are important for plant health and stress responses, but how their communities are impacted by hurricanes is not well known. We measured forest disturbance in Carite State Forest in Puerto Rico ca. 16 months after the passage of Hurricane Maria, a Category 4 storm. In three sites, each comprising three plots representing a local gradient of hurricane disturbance, we evaluated soil chemistry and used culture-free analyses to measure richness, phylogenetic diversity, and composition of endophyte communities in leaves and roots. We found that endophyte richness did not vary significantly among plant families or as a function of soil chemistry. Instead, leaf endophytes peaked in richness and decreased in phylogenetic diversity at intermediate levels of disturbance. Root endophytes did not show such variation, but both leaf- and root endophyte communities differed in species composition as a function of disturbance across the forest. Locations with less disturbance typically hosted distinctive assemblages of foliar endophytes, whereas more disturbed locations had more regionally homogeneous endophyte communities. Together, our results show that changes in endophyte richness and phylogenetic diversity can be detected in aboveground tissues more than a year after major storms. In turn, pervasive shifts in endophyte community composition both aboveground and belowground suggest a subtle and lasting effect of hurricanes that merits further study, potentially contributing to the promotion of spatially heterogeneous endophyte assemblages at a landscape scale in these diverse island forests.
Collapse
Affiliation(s)
| | | | - A. Elizabeth Arnold
- School of Plant SciencesUniversity of ArizonaTucsonArizonaUSA
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
14
|
Gaytán Á, Abdelfattah A, Faticov M, Moreira X, Castagneyrol B, Van Halder I, De Frenne P, Meeussen C, Timmermans BGH, Ten Hoopen JPJG, Rasmussen PU, Bos N, Jaatinen R, Pulkkinen P, Söderlund S, Gotthard K, Pawlowski K, Tack AJM. Changes in the foliar fungal community between oak leaf flushes along a latitudinal gradient in Europe. JOURNAL OF BIOGEOGRAPHY 2022; 49:2269-2280. [PMID: 36636040 PMCID: PMC9828548 DOI: 10.1111/jbi.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 06/17/2023]
Abstract
Aim Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities. Location A latitudinal gradient spanning c. 20 degrees in latitude in Europe. Taxa The foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur. Methods We examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding. Results Species composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude. Conclusions Changes in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%-22% of the small- and large-scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space-for-time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics.
Collapse
Affiliation(s)
- Álvaro Gaytán
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
| | - Maria Faticov
- Department of BiologySherbrooke UniversitySherbrookeQuebecCanada
| | | | | | | | | | | | | | | | - Pil U. Rasmussen
- The National Research Centre for the Working EnvironmentCopenhagenDenmark
| | - Nick Bos
- Section for Ecology and EvolutionUniversity of CopenhagenCopenhagenDenmark
| | - Raimo Jaatinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationLäyliäinenFinland
| | - Pertti Pulkkinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationLäyliäinenFinland
| | - Sara Söderlund
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Karl Gotthard
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Bolin Center for Climate ResearchStockholm UniversityStockholmSweden
| |
Collapse
|
15
|
Dueñas JF, Hempel S, Homeier J, Suárez JP, Rillig MC, Camenzind T. Root associated fungal lineages of a tropical montane forest show contrasting sensitivities to the long-term addition of nitrogen and phosphorus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:775-784. [PMID: 36085412 DOI: 10.1111/1758-2229.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Root associated fungal (RAF) communities can exert strong effects on plant communities and are potentially sensitive to shifts in soil fertility. As increased atmospheric nitrogen (N) and phosphorus (P) deposition can alter the nutrient balance in natural ecosystems, we assessed the response of RAF communities to a fertilization experiment deployed on a highly diverse Andean forest. The stand level fine root fraction was sampled after 7 years of systematic N and P additions and RAF communities were characterized by a deep sequencing approach. We expected that fertilization will enhance competition of fungal taxa for limiting nutrients, thus eliciting diversity reductions and alterations in the structure of RAF communities. Fertilization treatments did not reduce RAF richness but affected community composition. At the phylum level fertilization reduced richness exclusively among Glomeromycota. In contrast, N and P additions (alone or in combination) altered the composition of several fungal phyla. The lack of a generalized response to long-term fertilization among RAF lineages suggests that most of these lineages will not be directly and immediately affected by the increasing rates of atmospheric N and P deposition expected for this region by 2050.
Collapse
Affiliation(s)
- Juan F Dueñas
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefan Hempel
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Juan Pablo Suárez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
16
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
17
|
Metabolic Diversity of Xylariaceous Fungi Associated with Leaf Litter Decomposition. J Fungi (Basel) 2022; 8:jof8070701. [PMID: 35887457 PMCID: PMC9324366 DOI: 10.3390/jof8070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Fungi in the family Xylariaceae are primary agents of leaf litter decomposition. However, the diversity of carbon source utilization by xylariaceous fungi and the relative effects on this from environmental and phylogenetic factors are largely unknown. This study assessed the metabolic diversity and redundancy of xylariaceous fungi, associated with leaf litter decomposition, by measuring their in vitro capacity to utilize multiple carbon sources. The work identified the relative influences of geographic and climatic sources, as well as the taxonomic and phylogenetic relatedness, of the fungi. Using Biolog EcoPlateTM, 43 isolates belonging to Nemania, Xylaria, Nodulisporium, Astrocystis, and Hypoxylon, isolated from Castanopsis sieboldii leaf litter at eight sites in Japan, were found to have the capacity to utilize a variety of carbohydrates, amino acids/amines, carboxylic acids, and polymers. The genera of xylariaceous fungi and their origins significantly affected their metabolic diversity and utilization of carbon sources. Variation partitioning demonstrated that dissimilarities in carbon utilization among fungal isolates were mostly attributable to site differences, especially climatic factors: mean annual temperature and precipitation, and maximum snow depth. Moreover, xylariaceous isolates that originated from adjacent sites tended to have similar patterns of carbon source utilization, suggesting metabolic acclimation to local environmental conditions.
Collapse
|
18
|
Hill R, Buggs RJ, Vu DT, Gaya E. Lifestyle Transitions in Fusarioid Fungi are Frequent and Lack Clear Genomic Signatures. Mol Biol Evol 2022; 39:msac085. [PMID: 35484861 PMCID: PMC9051438 DOI: 10.1093/molbev/msac085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The fungal genus Fusarium (Ascomycota) includes well-known plant pathogens that are implicated in diseases worldwide, and many of which have been genome sequenced. The genus also encompasses other diverse lifestyles, including species found ubiquitously as asymptomatic-plant inhabitants (endophytes). Here, we produced structurally annotated genome assemblies for five endophytic Fusarium strains, including the first whole-genome data for Fusarium chuoi. Phylogenomic reconstruction of Fusarium and closely related genera revealed multiple and frequent lifestyle transitions, the major exception being a monophyletic clade of mutualist insect symbionts. Differential codon usage bias and increased codon optimisation separated Fusarium sensu stricto from allied genera. We performed computational prediction of candidate secreted effector proteins (CSEPs) and carbohydrate-active enzymes (CAZymes)-both likely to be involved in the host-fungal interaction-and sought evidence that their frequencies could predict lifestyle. However, phylogenetic distance described gene variance better than lifestyle did. There was no significant difference in CSEP, CAZyme, or gene repertoires between phytopathogenic and endophytic strains, although we did find some evidence that gene copy number variation may be contributing to pathogenicity. Large numbers of accessory CSEPs (i.e., present in more than one taxon but not all) and a comparatively low number of strain-specific CSEPs suggested there is a limited specialisation among plant associated Fusarium species. We also found half of the core genes to be under positive selection and identified specific CSEPs and CAZymes predicted to be positively selected on certain lineages. Our results depict fusarioid fungi as prolific generalists and highlight the difficulty in predicting pathogenic potential in the group.
Collapse
Affiliation(s)
- Rowena Hill
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Richard J.A. Buggs
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Dang Toan Vu
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
| |
Collapse
|
19
|
An Integrative View of the Phyllosphere Mycobiome of Native Rubber Trees in the Brazilian Amazon. J Fungi (Basel) 2022; 8:jof8040373. [PMID: 35448604 PMCID: PMC9025378 DOI: 10.3390/jof8040373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
The rubber tree, Hevea brasiliensis, is a neotropical Amazonian species. Despite its high economic value and fungi associated with native individuals, in its original area in Brazil, it has been scarcely investigated and only using culture-dependent methods. Herein, we integrated in silico approaches with novel field/experimental approaches and a case study of shotgun metagenomics and small RNA metatranscriptomics of an adult individual. Scientific literature, host fungus, and DNA databases are biased to fungal taxa, and are mainly related to rubber tree diseases and in non-native ecosystems. Metabarcoding retrieved specific phyllospheric core fungal communities of all individuals, adults, plantlets, and leaves of the same plant, unravelling hierarchical structured core mycobiomes. Basidiomycotan yeast-like fungi that display the potential to produce antifungal compounds and a complex of non-invasive ectophytic parasites (Sooty Blotch and Flyspeck fungi) co-occurred in all samples, encompassing the strictest core mycobiome. The case study of the same adult tree (previously studied using culture-dependent approach) analyzed by amplicon, shotgun metagenomics, and small RNA transcriptomics revealed a high relative abundance of insect parasite-pathogens, anaerobic fungi and a high expression of Trichoderma (a fungal genus long reported as dominant in healthy wild rubber trees), respectively. Altogether, our study unravels new and intriguing information/hypotheses of the foliar mycobiome of native H. brasiliensis, which may also occur in other native Amazonian trees.
Collapse
|
20
|
Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-021-00495-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Osono T, Matsuoka S, Hirose D. Diversity and host recurrence of fungi associated with the bleached leaf litter in a subtropical forest. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Itagaki H, Hosoya T. Lifecycle of Pyrenopeziza protrusa ( Helotiales, Dermateaceae sensu lato) in Magnolia obovata revealed by field observation and molecular quantification. MYCOSCIENCE 2021; 62:373-381. [PMID: 37090175 PMCID: PMC9721505 DOI: 10.47371/mycosci.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Fungi exhibit saprophytic, parasitic, and symbiotic lifestyles, and flexibly switching between them by the environmental changes and host conditions. However, only a few studies have elucidated the detailed changes in fungal DNA or morphology, including the formation of reproductive structures along with lifestyle switching. We hypothesized that Pyrenopeziza protrusa, which occurs abundantly and specifically on Magnolia obovata as a saprophyte, is also associated with living hosts and switches its lifestyles as part of its lifecycle. To elucidate this hypothesis, we periodically sampled the fresh/fallen leaves of M. obovata to observe the seasonal occurrence of reproductive structures for the isolation and detection/quantification of P. protrusa DNA with newly developed species-specific primers. The isolation frequency and amount of P. protrusa DNA drastically increased in the fresh leaves just before defoliation in autumn, but remained high in fallen leaves from autumn to spring. Abundant production of conidiomata and apothecia was also observed in the fallen leaves with increasing DNA content. These results clarified a large part of the lifecycle of P. protrusa, suggesting that the lifestyle is switched from symbiotic to saprophytic stage by significantly increasing the amount of DNA in response to host conditions according to the seasonal variations.
Collapse
Affiliation(s)
- Hiyori Itagaki
- Department of Biological Science, Graduate School of Science, The University of Tokyo
| | | |
Collapse
|
23
|
Feng JW, Liu WT, Chen JJ, Zhang CL. Biogeography and Ecology of Magnaporthales: A Case Study. Front Microbiol 2021; 12:654380. [PMID: 34025609 PMCID: PMC8134742 DOI: 10.3389/fmicb.2021.654380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
The order Magnaporthales belongs to Sordariomycetes, Ascomycota. Magnaporthales includes five families, namely Ceratosphaeriaceae, Pseudohalonectriaceae, Ophioceraceae, Pyriculariaceae, and Magnaporthaceae. Most Magnaporthales members are found in Poaceae plants and other monocotyledonous herbaceous plants ubiquitously as plant pathogens or endophytic fungi, and some members are found in decaying wood or dead grass as saprophytic fungi. Therefore, studying the biogeography and ecology of Magnaporthales is of great significance. Here, we described the biodiversity of endophytic Magnaporthales fungi from Poaceae at three latitudes in China and conducted a meta-analysis of the geography and ecology of Magnaporthales worldwide. We found that Magnaporthales is a dominant order in the endophytic fungi of Poaceae. More than half of the endophytic Magnaporthales fungi have a taxonomically uncertain placement. Notably, few endophytic fungi are grouped in the clusters with known saprophytic or pathogenic Magnaporthales fungi, indicating that they may have saprophytic and parasitic differentiation in nutritional modes and lifestyles. The meta-analysis revealed that most species of Magnaporthales have characteristic geographical, host, and tissue specificity. The geographical distribution of the three most studied genera, namely Gaeumannomyces, Magnaporthiopsis, and Pyricularia, in Magnaporthales may depend on the distribution of their hosts. Therefore, studies on the endophytic fungal Magnaporthales from monocotyledonous plants, including Poaceae, in middle and low latitudes will deepen our understanding of the biogeography and ecology of Magnaporthales.
Collapse
Affiliation(s)
| | | | | | - Chu-Long Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Hill R, Llewellyn T, Downes E, Oddy J, MacIntosh C, Kallow S, Panis B, Dickie JB, Gaya E. Seed Banks as Incidental Fungi Banks: Fungal Endophyte Diversity in Stored Seeds of Banana Wild Relatives. Front Microbiol 2021; 12:643731. [PMID: 33841366 PMCID: PMC8024981 DOI: 10.3389/fmicb.2021.643731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
Seed banks were first established to conserve crop genetic diversity, but seed banking has more recently been extended to wild plants, particularly crop wild relatives (CWRs) (e.g., by the Millennium Seed Bank (MSB), Royal Botanic Gardens Kew). CWRs have been recognised as potential reservoirs of beneficial traits for our domesticated crops, and with mounting evidence of the importance of the microbiome to organismal health, it follows that the microbial communities of wild relatives could also be a valuable resource for crop resilience to environmental and pathogenic threats. Endophytic fungi reside asymptomatically inside all plant tissues and have been found to confer advantages to their plant host. Preserving the natural microbial diversity of plants could therefore represent an important secondary conservation role of seed banks. At the same time, species that are reported as endophytes may also be latent pathogens. We explored the potential of the MSB as an incidental fungal endophyte bank by assessing diversity of fungi inside stored seeds. Using banana CWRs in the genus Musa as a case-study, we sequenced an extended ITS-LSU fragment in order to delimit operational taxonomic units (OTUs) and used a similarity and phylogenetics approach for classification. Fungi were successfully detected inside just under one third of the seeds, with a few genera accounting for most of the OTUs-primarily Lasiodiplodia, Fusarium, and Aspergillus-while a large variety of rare OTUs from across the Ascomycota were isolated only once. Fusarium species were notably abundant-of significance in light of Fusarium wilt, a disease threatening global banana crops-and so were targeted for additional sequencing with the marker EF1α in order to delimit species and place them in a phylogeny of the genus. Endophyte community composition, diversity and abundance was significantly different across habitats, and we explored the relationship between community differences and seed germination/viability. Our results show that there is a previously neglected invisible fungal dimension to seed banking that could well have implications for the seed collection and storage procedures, and that collections such as the MSB are indeed a novel source of potentially useful fungal strains.
Collapse
Affiliation(s)
- Rowena Hill
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Theo Llewellyn
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Elizabeth Downes
- Department for Environment, Food and Rural Affairs, London, United Kingdom
| | - Joseph Oddy
- Department of Plant Science, Rothamsted Research, Harpenden, United Kingdom
| | - Catriona MacIntosh
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Kallow
- Collections Department, Royal Botanic Gardens, Kew, Millennium Seed Bank, Ardingly, United Kingdom
- Division of Crop Biotechnics, Department of Biosystems, Faculty of Bioscience Engineering, University of Leuven, Leuven, Belgium
| | - Bart Panis
- Bioversity International, Montpellier, France
| | - John B. Dickie
- Collections Department, Royal Botanic Gardens, Kew, Millennium Seed Bank, Ardingly, United Kingdom
| | - Ester Gaya
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| |
Collapse
|
25
|
Vandegrift R. Xylariales (Sordariomycetes, Ascomycota) of the Boston Harbor Islands. Northeast Nat (Steuben) 2021. [DOI: 10.1656/045.025.s907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Roo Vandegrift
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289;
| |
Collapse
|
26
|
Vaz ABM, Fonseca PLC, Silva FF, Quintanilha-Peixoto G, Sampedro I, Siles JA, Carmo A, Kato RB, Azevedo V, Badotti F, Ocampo JA, Rosa CA, Góes-Neto A. Foliar mycoendophytome of an endemic plant of the Mediterranean biome (Myrtus communis) reveals the dominance of basidiomycete woody saprotrophs. PeerJ 2020; 8:e10487. [PMID: 33344092 PMCID: PMC7719295 DOI: 10.7717/peerj.10487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
The true myrtle, Myrtus communis, is a small perennial evergreen tree that occurs in Europe, Africa, and Asia with a circum-Mediterranean geographic distribution. Unfortunately, the Mediterranean Forests, where M. communis occurs, are critically endangered and are currently restricted to small fragmented areas in protected conservation units. In the present work, we performed, for the first time, a metabarcoding study on the spatial variation of fungal community structure in the foliar endophytome of this endemic plant of the Mediterranean biome, using bipartite network analysis as a model. The local bipartite network of Myrtus communis individuals and their foliar endophytic fungi is very low connected, with low nestedness, and moderately high specialization and modularity. Similar network patterns were also retrieved in both culture-dependent and amplicon metagenomics of foliar endophytes in distinct arboreal hosts in varied biomes. Furthermore, the majority of putative fungal endophytes species were basidiomycete woody saprotrophs of the orders Polyporales, Agaricales, and Hymenochaetales. Altogether, these findings suggest a possible adaptation of these wood-decaying fungi to cope with moisture limitation and spatial scarcity of their primary substrate (dead wood), which are totally consistent with the predictions of the viaphytism hypothesis that wood-decomposing fungi inhabit the internal leaf tissue of forest trees in order to enhance dispersal to substrates on the forest floor, by using leaves as vectors and as refugia, during periods of environmental stress.
Collapse
Affiliation(s)
- Aline Bruna M Vaz
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Luize C Fonseca
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe F Silva
- Graduate Program of Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Quintanilha-Peixoto
- Graduate Program of Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Inmaculada Sampedro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, C.S.I.C., Granada, Spain
| | - Jose A Siles
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, C.S.I.C., Granada, Spain
| | - Anderson Carmo
- Department of Genetics, Ecology, and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo B Kato
- Graduate Program of Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juan A Ocampo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, C.S.I.C., Granada, Spain
| | - Carlos A Rosa
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
27
|
|