1
|
Gonan S, Vallortigara G, Chiandetti C. When sounds come alive: animacy in the auditory sense. Front Psychol 2024; 15:1498702. [PMID: 39526129 PMCID: PMC11543492 DOI: 10.3389/fpsyg.2024.1498702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the interest in animacy perception, few studies have considered sensory modalities other than vision. However, even everyday experience suggests that the auditory sense can also contribute to the recognition of animate beings, for example through the identification of voice-like sounds or through the perception of sounds that are the by-products of locomotion. Here we review the studies that have investigated the responses of humans and other animals to different acoustic features that may indicate the presence of a living entity, with particular attention to the neurophysiological mechanisms underlying such perception. Specifically, we have identified three different auditory animacy cues in the existing literature, namely voicelikeness, consonance, and acoustic motion. While the first two characteristics are clearly exclusive to the auditory sense and indicate the presence of an animate being capable of producing vocalizations or harmonic sounds-with the adaptive value of consonance also being exploited in musical compositions in which the musician wants to convey certain meanings-acoustic movement is, on the other hand, closely linked to the perception of animacy in the visual sense, in particular to self-propelled and biological motion stimuli. The results presented here support the existence of a multifaceted auditory sense of animacy that is shared by different distantly related species and probably represents an innate predisposition, and also suggest that the mechanisms underlying the perception of living things may all be part of an integrated network involving different sensory modalities.
Collapse
Affiliation(s)
- Stefano Gonan
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | |
Collapse
|
2
|
Di Stefano N, Vuust P, Brattico E. Consonance and dissonance perception. A critical review of the historical sources, multidisciplinary findings, and main hypotheses. Phys Life Rev 2022; 43:273-304. [PMID: 36372030 DOI: 10.1016/j.plrev.2022.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Revealed more than two millennia ago by Pythagoras, consonance and dissonance (C/D) are foundational concepts in music theory, perception, and aesthetics. The search for the biological, acoustical, and cultural factors that affect C/D perception has resulted in descriptive accounts inspired by arithmetic, musicological, psychoacoustical or neurobiological frameworks without reaching a consensus. Here, we review the key historical sources and modern multidisciplinary findings on C/D and integrate them into three main hypotheses: the vocal similarity hypothesis (VSH), the psychocultural hypothesis (PH), and the sensorimotor hypothesis (SH). By illustrating the hypotheses-related findings, we highlight their major conceptual, methodological, and terminological shortcomings. Trying to provide a unitary framework for C/D understanding, we put together multidisciplinary research on human and animal vocalizations, which converges to suggest that auditory roughness is associated with distress/danger and, therefore, elicits defensive behavioral reactions and neural responses that indicate aversion. We therefore stress the primacy of vocality and roughness as key factors in the explanation of C/D phenomenon, and we explore the (neuro)biological underpinnings of the attraction-aversion mechanisms that are triggered by C/D stimuli. Based on the reviewed evidence, while the aversive nature of dissonance appears as solidly rooted in the multidisciplinary findings, the attractive nature of consonance remains a somewhat speculative claim that needs further investigation. Finally, we outline future directions for empirical research in C/D, especially regarding cross-modal and cross-cultural approaches.
Collapse
Affiliation(s)
- Nicola Di Stefano
- Institute for Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Royal Academy of Music Aarhus/Aalborg (RAMA), 8000 Aarhus, Denmark.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Royal Academy of Music Aarhus/Aalborg (RAMA), 8000 Aarhus, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70122 Bari, Italy.
| |
Collapse
|
3
|
Di Cesare M, Tonacci A, Bondi D, Verratti V, Prete G, Malatesta G, Pietrangelo T. Neurovegetative and Emotional Modulation Induced by Mozart's Music. Neuropsychobiology 2022; 81:322-332. [PMID: 35753309 DOI: 10.1159/000525360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Since decades, the "Mozart effect" has been studied. However, the diverse effects of Mozart's music components have not been yet defined. Authors aimed to identify a differential response to short-term exposure to Mozart's music, or to its rhythmic signature only, on subjective and objective measures. METHODS The Mozart Sonata in A major K 331 (Mozart), the same piece consisting only of beat (Destructured), and duration-matched silence were administered to 25 healthy young adults, stood supine in a relaxing setting. The Italian Mood Scale questionnaire was administered before and after each listening. Heart rate variability (HRV) metrics were calculated from ECG recording, and breath flow was registered during experiments. RESULTS After Destructured, there was no change of fatigue and tension. After Mozart, fatigue was significantly reduced (and a tendency appeared for tension), whereas vigor was not. Breathing rate tended to be higher during Mozart. The nonlinear parameter HFD of HRV analysis, even though not significantly, was slightly lower during Destructured; Poincaré plots SD1 and SD2 tended to be lower during Mozart. DISCUSSION/CONCLUSION Mozart's music may allow to maintain arousal during relaxing condition. Psychological response of music and physiological dynamics were not necessarily entangled. Musical pieces based on individual physiological signature may lead musical psychological interventions.
Collapse
Affiliation(s)
- Margherita Di Cesare
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti- Pescara, Chieti, Italy
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy, Pisa, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti- Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti- Pescara, Chieti, Italy
| |
Collapse
|
4
|
Mrakic-Sposta S, Biagini D, Bondi D, Pietrangelo T, Vezzoli A, Lomonaco T, Di Francesco F, Verratti V. OxInflammation at High Altitudes: A Proof of Concept from the Himalayas. Antioxidants (Basel) 2022; 11:antiox11020368. [PMID: 35204250 PMCID: PMC8869289 DOI: 10.3390/antiox11020368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
High-altitude locations are fascinating for investigating biological and physiological responses in humans. In this work, we studied the high-altitude response in the plasma and urine of six healthy adult trekkers, who participated in a trek in Nepal that covered 300 km in 19 days along a route in the Kanchenjunga Mountain and up to a maximum altitude of 5140 m. Post-trek results showed an unbalance in redox status, with an upregulation of ROS (+19%), NOx (+28%), neopterin (+50%), and pro-inflammatory prostanoids, such as PGE2 (+120%) and 15-deoxy-delta12,14-PGJ2 (+233%). The isoprostane 15-F2t-IsoP was associated with low levels of TAC (−18%), amino-thiols, omega-3 PUFAs, and anti-inflammatory CYP450 EPA-derived mediators, such as DiHETEs. The deterioration of antioxidant systems paves the way to the overload of redox and inflammative markers, as triggered by the combined physical and hypoxic stressors. Our data underline the link between oxidative stress and inflammation, which is related to the concept of OxInflammation into the altitude hypoxia fashion.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (S.M.-S.); (A.V.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
- Correspondence:
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (D.B.); (T.P.)
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (D.B.); (T.P.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (S.M.-S.); (A.V.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy;
| |
Collapse
|
5
|
Committeri G, Bondi D, Sestieri C, Di Matteo G, Piervincenzi C, Doria C, Ruffini R, Baldassarre A, Pietrangelo T, Sepe R, Navarra R, Chiacchiaretta P, Ferretti A, Verratti V. Neuropsychological and Neuroimaging Correlates of High-Altitude Hypoxia Trekking During the "Gokyo Khumbu/Ama Dablam" Expedition. High Alt Med Biol 2022; 23:57-68. [PMID: 35104160 DOI: 10.1089/ham.2021.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Committeri Giorgia, Danilo Bondi, Carlo Sestieri, Ginevra Di Matteo, Claudia Piervincenzi, Christian Doria, Roberto Ruffini, Antonello Baldassarre, Tiziana Pietrangelo, Rosamaria Sepe, Riccardo Navarra, Piero Chiacchiaretta, Antonio Ferretti, and Vittore Verratti. Neuropsychological and neuroimaging correlates of high-altitude hypoxia trekking during the "Gokyo Khumbu/Ama Dablam" expedition. High Alt Med Biol 00:000-000, 2021. Background: Altitude hypoxia exposure may produce cognitive detrimental adaptations and damage to the brain. We aimed at investigating the effects of trekking and hypoxia on neuropsychological and neuroimaging measures. Methods: We recruited two balanced groups of healthy adults, trekkers (n = 12, 6 F and 6 M, trekking in altitude hypoxia) and controls (gender- and age-matched), who were tested before (baseline), during (5,000 m, after 9 days of trekking), and after the expedition for state anxiety, depression, verbal fluency, verbal short-term memory, and working memory. Personality and trait anxiety were also assessed at a baseline level. Neuroimaging measures of cerebral perfusion (arterial spin labeling), white-matter microstructural integrity (diffusion tensor imaging), and resting-state functional connectivity (functional magnetic resonance imaging) were assessed before and after the expedition in the group of trekkers. Results: At baseline, the trekkers showed lower trait anxiety (p = 0.003) and conscientiousness (p = 0.03) than the control group. State anxiety was lower in the trekkers throughout the study (p < 0.001), and state anxiety and depression decreased at the end of the study in both groups (p = 0.043 and p = 0.007, respectively). Verbal fluency increased at the end of the study in both groups (p < 0.001), whereas verbal short-term memory and working memory performance did not change. No significant differences between before and after the expedition were found for neuroimaging measures. Conclusions: We argue that the observed differences in the neuropsychological measures mainly reflect aspecific familiarity and learning effects due to the repeated execution of the same questionnaires and task. The present results thus suggest that detrimental effects on neuropsychological and neuroimaging measures do not necessarily occur as a consequence of short-term exposure to altitude hypoxia up to 5,000 m, especially in the absence of altitude sickness.
Collapse
Affiliation(s)
- Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ginevra Di Matteo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Roberto Ruffini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Riccardo Navarra
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Mazzatenta A, Bondi D, Di Giulio C, Verratti V. Olfactory Response to Altitude Hypoxia: A Pilot Study During a Himalayan Trek. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1375:55-61. [DOI: 10.1007/5584_2021_679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Spence C, Di Stefano N. Crossmodal Harmony: Looking for the Meaning of Harmony Beyond Hearing. Iperception 2022; 13:20416695211073817. [PMID: 35186248 PMCID: PMC8850342 DOI: 10.1177/20416695211073817] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/20/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
The notion of harmony was first developed in the context of metaphysics before being applied to the domain of music. However, in recent centuries, the term has often been used to describe especially pleasing combinations of colors by those working in the visual arts too. Similarly, the harmonization of flavors is nowadays often invoked as one of the guiding principles underpinning the deliberate pairing of food and drink. However, beyond the various uses of the term to describe and construct pleasurable unisensory perceptual experiences, it has also been suggested that music and painting may be combined harmoniously (e.g., see the literature on "color music"). Furthermore, those working in the area of "sonic seasoning" sometimes describe certain sonic compositions as harmonizing crossmodally with specific flavor sensations. In this review, we take a critical look at the putative meaning(s) of the term "harmony" when used in a crossmodal, or multisensory, context. Furthermore, we address the question of whether the term's use outside of a strictly unimodal auditory context should be considered literally or merely metaphorically (i.e., as a shorthand to describe those combinations of sensory stimuli that, for whatever reason, appear to go well together, and hence which can be processed especially fluently).
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, University of Oxford, Oxford, UK
| | - Nicola Di Stefano
- Institute for Cognitive Sciences and Technologies, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|