1
|
Balahbib A, Aguerd O, El Omari N, Benali T, Akhazzane M, Ullah R, Iqbal Z, Zhang W, Shahat AA, Zengin G, Chamkhi I, Bouyahya A. Unlocking the Potential of Origanum Grosii Essential Oils: A Deep Dive into Volatile Compounds, Antioxidant, Antibacterial, and Anti-Enzymatic Properties within Silico Insights. Chem Biodivers 2025; 22:e202401426. [PMID: 39402876 DOI: 10.1002/cbdv.202401426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
The present study aimed to comprehensively characterize the volatile compounds from the aerial parts of Origanum grosii and evaluate their potential as antioxidants and enzyme inhibitors through both in vitro and in silico approaches. The essential oil's volatile constituents were identified using Gas Chromatography-Mass Spectrometry (GC-MS) analysis, revealing carvacrol (31 %), p-cymene (18.59 %), thymol (12.31 %), and ɣ-terpinene (10.89 %) as the major compounds. The antioxidant capacity was measured using three distinct assays. Notably, Origanum grosii essential oil (OGEO) exhibited significant antioxidant activity, with IC50 values of 55.40±2.23, 81.65±3.26, and 98.04±3.87 μg/mL in DPPH, ABTS, and FRAP assays, respectively. The antibacterial activity was evaluated against both Gram-positive and Gram-negative bacterial strains, including Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa IH, and Listeria monocytogenes ATCC 13932. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth microdilution method. The inhibitory effects of OGEO were also assessed against enzymes implicated in human pathologies, including α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase (AChE). OGEO demonstrated notable inhibitory activity with IC50 values of 49.72±1.64, 60.28±2.13, 97.14±5.15, and 119.42±2.97 μg/mL against elastase, α-glucosidase, tyrosinase, and α-amylase, respectively. Additionally, OGEO exhibited anti-AChE and anti-BChE effects, with values of 7.49±0.83 and 1.91±0.77 mg GALAE/g, respectively. The MIC values were 0.125 μg/mL for E. coli, P. aeruginosa, and S. aureus, and 0.25 μg/mL for L. monocytogenes, while MBC values ranged from 0.25 to 0.5 μg/mL. Compared to chloramphenicol (MIC: 8-16 μg/mL, MBC: 32-64 μg/mL), OGEO showed significantly stronger antibacterial effects. In silico analysis further supported the strong binding affinities of the major compounds to the target enzymes. Overall, OGEO shows promise as a natural agent with potential applications in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, 46030, Morocco
| | - Mohamed Akhazzane
- Université Sidi Mohamed Ben Abdellah, Cité de l'innovation, Fès, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, P.O.Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony. Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
2
|
Mrabet A, Annaz H, Abdelfattah B, Ouabou M, Kounnoun A, Cacciola F, Simou A, Bouayad N, Rharrabe K, Khaddor M. Antioxidant, insecticidal, antifeedant, and repellent activities of oregano ( Origanum vulgare). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:382-397. [PMID: 38768067 DOI: 10.1080/09603123.2024.2355292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
This study aimed to assess the antioxidant capacity, the insecticidal, feeding deterrence, repellent effects against Tribolium confusum of the essential oil (EO) and the organic extracts (ME) of Origanum vulgare. The chemical composition of the EO revealed the presence thirty-nine components dominated by carvacrol (81%). With respect to the EO, the ME acted as a potent free radical scavenger with IC50 values of 0.127 and 0.058 mg/mL, respectively. The EO exhibited the most significant toxicity compared to the ME with a mortality of 62 and 20% at 0.08 µL/insect after 24h whereas the EO expressed the highest repellency compared to the ME with a PR of 70 and 38% after 24h. As for feeding deterrence, both samples influenced all nutritional indexes. The findings found in this work might help in the promotion of oregano as natural antioxidant, antifeedant, repellent and insecticide as an alternative to conventional harmful ones.
Collapse
Affiliation(s)
- Amena Mrabet
- Laboratory of Physical Chemistry of Materials, Natural Substances and Environment (LAMSE), Chemistry Department, Faculty of Sciences and Techniques of Tangier, Tangier, Morocco
| | - Houssam Annaz
- Research team Agricultural and Aquaculture Engineering. FPL, Abdelmalek Essaadi University, Tetouan, Morocco
- Research team Biotechnology and Biomolecules Engineering. FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
- Research Laboratory Biology, Environment and Sustainable Development. ENS, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bahia Abdelfattah
- Laboratory of Physical Chemistry of Materials, Natural Substances and Environment (LAMSE), Chemistry Department, Faculty of Sciences and Techniques of Tangier, Tangier, Morocco
| | - Mbarek Ouabou
- Laboratory of Biotechnological Valorisation of Microorganisms, Genomics, and Bioinformatics, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Ayoub Kounnoun
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Ayoub Simou
- Laboratory of Physical Chemistry of Materials, Natural Substances and Environment (LAMSE), Chemistry Department, Faculty of Sciences and Techniques of Tangier, Tangier, Morocco
| | - Noureddin Bouayad
- Research team Agricultural and Aquaculture Engineering. FPL, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Kacem Rharrabe
- Research team Biotechnology and Biomolecules Engineering. FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
- Research Laboratory Biology, Environment and Sustainable Development. ENS, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohamed Khaddor
- Laboratory of Physical Chemistry of Materials, Natural Substances and Environment (LAMSE), Chemistry Department, Faculty of Sciences and Techniques of Tangier, Tangier, Morocco
| |
Collapse
|
3
|
Maghsoodi F, Taheri P, Tarighi S. Isolation, characterization and control of Botrytis spp. pathogenic on strawberry in Iran. Heliyon 2025; 11:e42037. [PMID: 39906843 PMCID: PMC11791145 DOI: 10.1016/j.heliyon.2025.e42037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
This study was performed to identify Botrytis species pathogenic on strawberry and investigate effect of Ferula gummosa essential oil (EO) against Botrytis spp. The infected plant samples were collected in Khorasan Razavi province from strawberry fruits with gray mold disease symptoms. Following purification of the fungi, of the 54 isolates, 53 isolates were identified as B. cinerea and 1 isolate belonged to B. pelargonii based on morphological and molecular (ITS and RPB2 sequences) identification. The EO obtained from F. gummosa at 125, 250, 500, 750 and 1000 μg mL-1 concentrations showed significant antifungal effect on mycelial growth of B. cinerea and B. pelargonii in a dose dependent manner. Also, the EO at all concentrations tested strongly inhibited spore germination of B. cinerea and B. pelargonii. Treatment with the EO at EC50 concentration significantly reduced the sclerotia production of B. cinerea and B. pelargonii. Light and electron microscopy observations showed that F. gummosa EO at EC50 concentration caused morphological changes in the fungal structures. This EO reduced the activity of cell wall degrading enzymes, such as cellulase and pectinase produced by both fungal species. A total of 22 compounds were identified in the EO by gas chromatography-mass spectrometry. The major compounds of F. gummosa EO were β-Pinene (% 37.7), γ-Terpinene (% 21) and a-pinene (% 12). Moreover, the F. gummosa EO at 500, 750 and 1000 μg mL-1 concentrations considerably reduced the disease severity and infection of strawberry fruits by B. cinerea and B. pelargonii. According to the results of this study, inhibitory effect of F. gummosa EO was impressive in controlling strawberry postharvest gray mold disease. This is the first report on inhibitory ability of F. gummosa EO against strawberry postharvest gray mold disease, which can be suggested as a preserver coating for the fruits to extend their shelf life during storage period.
Collapse
Affiliation(s)
- Fatemeh Maghsoodi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Tarighi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Khwaza V, Aderibigbe BA. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics (Basel) 2025; 14:68. [PMID: 39858354 PMCID: PMC11761885 DOI: 10.3390/antibiotics14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Essential oils (EOs) are gaining ground and have been intensively studied due to their widespread use in the pharmaceutical, food, and cosmetics industries. The essential components of EOs have been recognized for diverse therapeutic activities and have gained significant attention for their potential antibacterial activities. Despite the popularity of EOs and potent biological properties, their bioactive components and their derivatives are still not comprehensively characterized. This review explores the antibacterial efficacy of selected EO components and their derivatives, focusing on monoterpenes chosen (i.e., carvacrol, menthol, and thymol) and phenylpropanoids (i.e., cinnamaldehyde and eugenol). Furthermore, this review highlights recent advancements in developing derivatives of these EO components, which have shown improved antibacterial activity with reduced toxicity. By summarizing recent studies, this review reveals the potential of these natural compounds and their derivatives as promising candidates for pharmaceuticals, food preservation, and as alternatives to synthetic antibiotics in combating bacterial resistance.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa
| |
Collapse
|
5
|
Zhang Y, Zhang K, Bao Z, Hao J, Ma X, Jia C, Liu M, Wei D, Yang S, Qin J. A Novel Preservative Film with a Pleated Surface Structure and Dual Bioactivity Properties for Application in Strawberry Preservation due to Its Efficient Apoptosis of Pathogenic Fungal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18027-18044. [PMID: 39078084 DOI: 10.1021/acs.jafc.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Botrytis cinerea (B. cinerea) and Colletotrichum gloeosporioides (C. gloeosporioides) were isolated from the decaying strawberry tissue. The antifungal properties of Monarda didyma essential oil (MEO) and its nanoemulsion were confirmed, demonstrating complete inhibition of the pathogens at concentrations of 0.45 μL/mL (0.37 mg/mL) and 10 μL/mL, respectively. Thymol, a primary component of MEO, was determined as an antimicrobial agent with IC50 values of 34.51 (B. cinerea) and 53.40 (C. gloeosporioides) μg/mL. Hippophae rhamnoides oil (HEO) was confirmed as a potent antioxidant, leading to the development of a thymol-HEO-chitosan film designed to act as an antistaling agent. The disease index and weight loss rate can be reduced by 90 and 60%, respectively, with nutrients also being well-preserved, offering an innovative approach to preservative development. Studies on the antifungal mechanism revealed that thymol could bind to FKS1 to disrupt the cell wall, causing the collapse of mitochondrial membrane potential and a burst of reactive oxygen species.
Collapse
Affiliation(s)
- Yanxin Zhang
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Kehan Zhang
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhenyan Bao
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jianan Hao
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaoyun Ma
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyuan Liu
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Dongsheng Wei
- Department of Biology, Institute of Wood Science, University of Hamburg, Hamburg 21031, Germany
| | - Shengxiang Yang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Jianchun Qin
- College of Plant Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
- Shenzhen Research Institute of Jilin University, Shenzhen 518066, China
| |
Collapse
|
6
|
Tian Y, Wang J, Lan Q, Liu Y, Zhang J, Liu L, Su X, Islam R. Biocontrol Mechanisms of Three Plant Essential Oils Against Phytophthora infestans Causing Potato Late Blight. PHYTOPATHOLOGY 2024; 114:1502-1514. [PMID: 39023506 DOI: 10.1094/phyto-06-23-0216-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 μl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.
Collapse
Affiliation(s)
- Yongqiang Tian
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianglai Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Qingqing Lan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinfeng Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lu Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xu Su
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
7
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
8
|
Nunes AP, Dos Santos YM, da Silva Sanfelice RA, Concato-Lopes VM, Silva TF, Tomiotto-Pellissier F, Lazarin-Bidoia D, Machado RRB, de Barros LD, Garcia JL, Conchon-Costa I, Pavanelli WR, Kobayashi RKT, de Freitas Barbosa B, Ferro EAV, Costa IN. Essential oil of oregano (Origanum vulgare L.) reduces infection and proliferation of Toxoplasma gondii in BeWo cells with induction of autophagy and death of tachyzoites through a mechanism similar to necrosis. Parasitol Res 2024; 123:217. [PMID: 38772951 DOI: 10.1007/s00436-024-08231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 μg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.
Collapse
Affiliation(s)
- Angélica Paulina Nunes
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Yasmin Munhoz Dos Santos
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Raquel Arruda da Silva Sanfelice
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Virgínia Marcia Concato-Lopes
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Danielle Lazarin-Bidoia
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Rayanne Regina Beltrame Machado
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Luiz Daniel de Barros
- Department of Veterinary Medicine - Laboratory of Animal Protozoology, State University of Londrina, Londrina, Paraná, Brazil
| | - João Luis Garcia
- Department of Veterinary Medicine - Laboratory of Animal Protozoology, State University of Londrina, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Bellisa de Freitas Barbosa
- Department of Cell Biology, Histology and Embryology - Laboratory of Reproduction Immunophysiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Cell Biology, Histology and Embryology - Laboratory of Reproduction Immunophysiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Idessania Nazareth Costa
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
9
|
Parada J, Tortella G, Seabra AB, Fincheira P, Rubilar O. Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against Botrytis cinerea and Fusarium oxysporum. Antibiotics (Basel) 2024; 13:215. [PMID: 38534650 DOI: 10.3390/antibiotics13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: Botrytis cinerea and Fusarium oxysporum. The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against B. cinerea. The interaction with PYR was additive against both fungi (FIC > 0.5). The B. cinerea biomass was inhibited by 80.9% and 93% using 20 mg L-1 NCuO + 1.56 mg L-1 TEB, and 40 mg L-1 NCuO + 12 µg L-1 IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L-1 NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals.
Collapse
Affiliation(s)
- Javiera Parada
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Paola Fincheira
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
10
|
Li S, Yu Y, Xie P, Zhu X, Yang C, Wang L, Zhang S. Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against Botrytis cinerea. Microorganisms 2024; 12:360. [PMID: 38399764 PMCID: PMC10891807 DOI: 10.3390/microorganisms12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Gray mold caused by Botrytis cinerea is a common postharvest fungal disease in fruit and vegetables. The prevention and treatment of postharvest gray mold has been one of the hot research issues addressed by researchers. This study aimed to investigate the effect of L-methionine and L-arginine on Botrytis cinerea in vitro and on cherry tomato fruit. The results of the in vitro experiment showed that L-methionine and L-arginine had significant inhibitory effects on the mycelial growth and spore germination of Botrytis cinerea, and the inhibitory effects were enhanced with increasing L-methionine or L-arginine concentration. In addition, L-methionine and L-arginine treatment increased the leakage of Botrytis cinerea electrolytes, proteins and nucleic acids. The experiment involving propidium iodide staining and malondialdehyde content assay also confirmed that L-methionine and L-arginine treatment could lead to cell membrane rupture and lipid peroxidation. The results of scanning electron microscopy further verified that the morphology of hyphae was damaged, deformed, dented and wrinkled after treatment with L-methionine or L-arginine. Fruit inoculation experiments displayed that L-methionine and L-arginine treatments significantly inhibited the occurrence and development of gray mold in postharvest cherry tomato. Therefore, treatment with L-methionine or L-arginine might be an effective means to control postharvest gray mold in fruit and vegetables.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (S.L.); (P.X.); (C.Y.)
| |
Collapse
|
11
|
Sánchez-Hernández E, Santiago-Aliste A, Correa-Guimarães A, Martín-Gil J, Gavara-Clemente RJ, Martín-Ramos P. Carvacrol Encapsulation in Chitosan-Carboxymethylcellulose-Alginate Nanocarriers for Postharvest Tomato Protection. Int J Mol Sci 2024; 25:1104. [PMID: 38256176 PMCID: PMC10817085 DOI: 10.3390/ijms25021104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Advancements in polymer science and nanotechnology hold significant potential for addressing the increasing demands of food security, by enhancing the shelf life, barrier properties, and nutritional quality of harvested fruits and vegetables. In this context, biopolymer-based delivery systems present themselves as a promising strategy for encapsulating bioactive compounds, improving their absorption, stability, and functionality. This study provides an exploration of the synthesis, characterization, and postharvest protection applications of nanocarriers formed through the complexation of chitosan oligomers, carboxymethylcellulose, and alginate in a 2:2:1 molar ratio. This complexation process was facilitated by methacrylic anhydride and sodium tripolyphosphate as cross-linking agents. Characterization techniques employed include transmission electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, thermal analysis, and X-ray powder diffraction. The resulting hollow nanospheres, characterized by a monodisperse distribution and a mean diameter of 114 nm, exhibited efficient encapsulation of carvacrol, with a loading capacity of approximately 20%. Their suitability for phytopathogen control was assessed in vitro against three phytopathogens-Botrytis cinerea, Penicillium expansum, and Colletotrichum coccodes-revealing minimum inhibitory concentrations ranging from 23.3 to 31.3 μg·mL-1. This indicates a higher activity compared to non-encapsulated conventional fungicides. In ex situ tests for tomato (cv. 'Daniela') protection, higher doses (50-100 μg·mL-1, depending on the pathogen) were necessary to achieve high protection. Nevertheless, these doses remained practical for real-world applicability. The advantages of safety, coupled with the potential for a multi-target mode of action, further enhance the appeal of these nanocarriers.
Collapse
Affiliation(s)
- Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
| | - Alberto Santiago-Aliste
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
| | - Adriana Correa-Guimarães
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
- Packaging Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Spain;
| | - Jesús Martín-Gil
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
| | - Rafael José Gavara-Clemente
- Packaging Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Spain;
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
| |
Collapse
|
12
|
Cui K, He Y, Wang M, Li M, Jiang C, Wang M, He L, Zhang F, Zhou L. Antifungal activity of Ligusticum chuanxiong essential oil and its active composition butylidenephthalide against Sclerotium rolfsii. PEST MANAGEMENT SCIENCE 2023; 79:5374-5386. [PMID: 37656744 DOI: 10.1002/ps.7751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Peanut stem rot caused by Sclerotium rolfsii is an epidemic disastrous soil-borne disease. Recently, natural products tend to be safe alternative antifungal agents to combat pathogens. RESULTS This work determined the preliminary antifungal activity of 29 essential oils against S. rolfsii and found that Ligusticum chuanxiong essential oil (LCEO) showed the best antifungal activity, with an EC50 value of 81.79 mg L-1 . Sixteen components (98.78%) were identified in LCEO by gas chromatography-mass spectrometry analysis, the majority by volume comprising five phthalides (93.14%). Among these five phthalides, butylidenephthalide was the most effective compound against S. rolfsii. Butylidenephthalide not only exhibited favorable in vitro antifungal activity against the mycelial growth, sclerotia production and germination of S. rolfsi, but also presented efficient in vivo efficacy in the control of peanut stem rot. Seven days after application in the glasshouse, the protective and curative efficacy of butylidenephthalide at 300 mg L-1 (52.02%, 44.88%) and LCEO at 1000 mg L-1 (49.60%, 44.29%) against S. rolfsii were similar to that of the reference fungicide polyoxin at 300 mg L-1 (54.61%, 48.28%). Butylidenephthalide also significantly decreased the oxalic acid and polygalacturonase content of S. rolfsii, suggesting a decreased infection ability on plants. Results of biochemical actions indicated that butylidenephthalide did not have any effect on the cell membrane integrity and permeability but significantly decreased nutrient contents, disrupted the mitochondrial membrane, inhibited energy metabolism and induced reactive oxygen species (ROS) accumulation of S. rolfsii. CONCLUSION Our results could provide an important reference for understanding the application potential and mechanisms of butylidenephthalide in the control of S. rolfsii. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ya He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Min Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaofan Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Meizi Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Fulong Zhang
- Inner Mongolia Kingbo Biotech Co., Ltd., Bayan Nur, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
13
|
Fincheira P, Jofré I, Espinoza J, Levío-Raimán M, Tortella G, Oliveira HC, Diez MC, Quiroz A, Rubilar O. The efficient activity of plant essential oils for inhibiting Botrytis cinerea and Penicillium expansum: Mechanistic insights into antifungal activity. Microbiol Res 2023; 277:127486. [PMID: 37742453 DOI: 10.1016/j.micres.2023.127486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Botrytis cinerea and Penicillium expansum produce deterioration in fruit quality, causing losses to the food industry. Thus, plant essential oils (EOs) have been proposed as a sustainable alternative for minimizing the application of synthetic fungicides due to their broad-spectrum antifungal properties. This study investigated the efficacy of five EOs in suppressing the growth of B. cinerea and P. expansum and their potential antifungal mechanisms. EOs of Mentha × piperita L., Origanum vulgare L., Thymus vulgaris L., Eucalyptus globules Labill., and Lavandula angustifolia Mill., were screened for both fungi. The results showed that the EO of T. vulgaris and O. vulgare were the most efficient in inhibiting the growth of B. cinerea and P. expansum. The concentration increase of all EO tested increased fungi growth inhibition. Exposure of fungi to EOs of T. vulgaris and O. vulgare increased the pH and the release of constituents absorbing 260 nm and soluble proteins, reflecting membrane permeability alterations. Fluorescence microscopic examination revealed that tested EOs produce structural alteration in cell wall component deposition, decreasing the hypha width. Moreover, propidium iodide and Calcein-AM stains evidenced the loss of membrane integrity and reduced cell viability of fungi treated with EOs. Fungi treated with EOs decreased the mitochondria activity and the respiratory process. Therefore, these EOs are effective antifungal agents against B. cinerea and P. expansum, which is attributed to changes in the cell wall structure, the breakdown of the cell membrane, and the alteration of the mitochondrial activity.
Collapse
Affiliation(s)
- Paola Fincheira
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| | - Ignacio Jofré
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Laboratory of Geomicrobiology, Department of Chemical Sciences and Natural Resources. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Javier Espinoza
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Sciences and Natural Resources. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Marcela Levío-Raimán
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Gonzalo Tortella
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Engineering. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86057-970 Londrina, PR, Brazil
| | - María Cristina Diez
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Engineering. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Andrés Quiroz
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Sciences and Natural Resources. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Olga Rubilar
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Engineering. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| |
Collapse
|
14
|
Hu K, Li R, Mo F, Ding Y, Zhou A, Guo X, Li R, Li M, Ou M, Li M. Natural product osthole can significantly disrupt cell wall integrity and dynamic balance of Fusarium oxysporum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105623. [PMID: 37945232 DOI: 10.1016/j.pestbp.2023.105623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/12/2023]
Abstract
Dendrobium officinale Kimura et Migo is a traditional Chinese herbal medicinal plant. However, the frequent occurrence of soft rot disease (SRD) is one of the most harmful diseases in D. officinale production in recent years, which can seriously affect its yield and quality. In this study, the major pathogenic fungus (SR-1) was isolated from D. officinale with typical symptoms of SRD, and was identified as Fusarium oxysporum through morphological and molecular identification. The biological activities of five natural products were determined against F. oxysporum using a mycelial growth inhibition assay. The results showed that osthole had the highest antifungal activity against F. oxysporum, with an EC50 value of 6.40 mg/L. Scanning electron microscopy (SEM) showed that osthole caused F. oxysporum mycelia to shrink and deform. Transmission electron microscopy (TEM) showed that the organelles were blurred and the cell wall was thickened in the presence of osthole. The sensitivity of F. oxysporum to calcofluor white (CFW) staining was significantly enhanced by osthole. Relative conductivity measurements and propidium iodide (PI) observation revealed that osthole had no significant effect on the cell membrane. Further experiments showed that the activity of chitinase and β-1,3-glucanase were decreased, and expression levels of chitinase and β-1,3-glucanase related genes were significantly down-regulated after treatment with osthole. In conclusion, osthole disrupted the cell wall integrity and dynamic balance of F. oxysporum, thereby inhibiting normal mycelial growth.
Collapse
Affiliation(s)
- Ke Hu
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, PR China.
| | - Feixu Mo
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yi Ding
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Aiai Zhou
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xue Guo
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Ruotong Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Min Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Minggui Ou
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, PR China
| |
Collapse
|
15
|
Bielak E, Sawoszczuk T, Syguła-Cholewińska J. Application of Chromatographic and Microbiological Analyses to Identify and Assess the Durability of Antimicrobial Properties of Innovative Materials for the Footwear Industry─Leather Modified with Origanum vulgare Oil. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Elżbieta Bielak
- Department of Non-food Product Quality and Safety, Institute of Quality Sciences and Product Management, Cracow University of Economics, Rakowicka 27, Cracow 31-510, Poland
| | - Tomasz Sawoszczuk
- Department of Microbiology, Institute of Quality Sciences and Product Management, Cracow University of Economics, Rakowicka 27, Cracow 31-510, Poland
| | - Justyna Syguła-Cholewińska
- Department of Microbiology, Institute of Quality Sciences and Product Management, Cracow University of Economics, Rakowicka 27, Cracow 31-510, Poland
| |
Collapse
|
16
|
Hong JK, Sook Jo Y, Jeong DH, Woo SM, Park JY, Yoon DJ, Lee YH, Choi SH, Park CJ. Vapours from plant essential oils to manage tomato grey mould caused by Botrytis cinerea. Fungal Biol 2023; 127:985-996. [PMID: 37024158 DOI: 10.1016/j.funbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023]
Abstract
Tomato grey mould has been a great concern during tomato production. The in vitro antifungal activity of vapours emitted from four plant essential oils (EOs) (cinnamon oil, fennel oil, origanum oil, and thyme oil) were evaluated during in vitro conidial germination and mycelial growth of Botrytis cinerea, the causal agent of grey mould. Cinnamon oil vapour was the most effective in suppressing conidial germination, whereas the four EOs showed similar activities regarding inhibiting mycelial growth in dose-dependent manners. The in planta protection effect of the four EO vapours was also investigated by measuring necrotic lesions on tomato leaves inoculated by B. cinerea. Grey mould lesions on the inoculated leaves were reduced by the vapours from cinnamon oil, origanum oil and thyme oil at different levels, but fennel oil did not limit the spread of the necrotic lesions. Decreases in cuticle defect, lipid peroxidation, and hydrogen peroxide production in the B. cinerea-inoculated leaves were correlated with reduced lesions by the cinnamon oil vapours. The reduced lesions by the cinnamon oil vapour were well matched with arrested fungal proliferation on the inoculated leaves. The cinnamon oil vapour regulated tomato defence-related gene expression in the leaves with or without fungal inoculation. These results suggest that the plant essential oil vapours, notably cinnamon oil vapour, can provide eco-friendly alternatives to manage grey mould during tomato production.
Collapse
|
17
|
Catani L, Grassi E, Cocozza di Montanara A, Guidi L, Sandulli R, Manachini B, Semprucci F. Essential oils and their applications in agriculture and agricultural products: A literature analysis through VOSviewer. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Tančinová D, Mašková Z, Mendelová A, Foltinová D, Barboráková Z, Medo J. Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods 2022; 11:foods11192945. [PMID: 36230021 PMCID: PMC9563059 DOI: 10.3390/foods11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Essential oils (EOs) from aromatic plants seem to have the potential to control several fungal pathogens and food contaminants. Botrytis cinerea is the main strawberry fruit contaminant causing high losses during storage. Here, thirteen EOs applied in the vapor phase were evaluated for their potential to inhibit the growth of three different strains of B. cinerea isolated from strawberry fruits. Eight EOs (lemongrass, litsea, lavender, peppermint, mint, petitgrain, sage, and thyme) were able to completely inhibit the growth of B. cinerea for 7 days when applied at a concentration of 625 μL·L−1. Four EOs with the lowest minimal inhibition concentrations (thyme, peppermint, lemongrass, and litsea) have been tested on strawberry fruits intentionally inoculated by B. cinerea. All four EOs showed high inhibition at a concentration of 250 or 500 μL·L−1, but only peppermint EO was able to completely inhibit B. cinerea lesion development at a concentration of 125 μL·L−1. The sensory evaluation of strawberries treated by EOs at a concentration 125 μL·L−1 resulted in a statistically significant decrease in taste, aftertaste, aroma, and overall quality. Lemongrass and litsea EOs scored better than thyme and peppermint ones, thus forming two viable methods for B. cinerea suppression and the extension of packed strawberries’ shelf life.
Collapse
Affiliation(s)
- Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Zuzana Mašková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Andrea Mendelová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Denisa Foltinová
- The State Veterinary and Food Administration of the Slovak Republic, Botanická 17, 842 13 Bratislava, Slovakia
| | - Zuzana Barboráková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| |
Collapse
|
19
|
He L, Wang M, Wang H, Zhao T, Cui K, Zhou L. iTRAQ proteomic analysis of the inhibitory effect of 1,6-O,O-diacetylbritannilactone on the plant pathogenic oomycete Phytophthora capsici. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105125. [PMID: 35715063 DOI: 10.1016/j.pestbp.2022.105125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora capsici is a highly destructive oomycete of vegetables; its management is challenging due to its broad host range, rapid dispersion, resilient spores and severe fungicide resistance. Identifying an effective alternative fungicide is important for the control of P. capsici. 1,6-O,O-diacetylbritannilactone (ABLOO), one of the secondary metabolites of Inula Britannica, showed a favorable inhibitory activity against P. capsici at different developmental stages, with a sensitivity order as follows: sporangia formation (30.45 mg/L) > zoospore discharge (77.69 mg/L) > mycelial growth (93.18 mg/L) > cystospore germination (591.48 mg/L). To investigate the mode of action of ABLOO in P. capsici, iTRAQ-based quantitative proteomic analysis was performed by comparing the expression levels of proteins in the control and ABLOO-treated (400 mg/L, inhibition rate of 80%) mycelial groups. A total of 65 downregulated and 75 upregulated proteins were identified in the proteomic analysis. Functional enrichment analyses showed that proteins with transmembrane transport activity were significantly inhibited, while proteins involved in energy production were significantly increased, including proteins involved in ubiquinone and other terpenoid-quinone biosynthesis, oxidative phosphorylation, and glycolysis/gluconeogenesis. The morphological results indicated that ABLOO treatment could decrease the thickness of the cell walls of P. capsici mycelia. Correspondingly, biochemical results showed that ABLOO treatment reduced the β-1,3-glucan contents (the key component of the cell wall of P. capsici) and increased the cell membrane permeability of P. capsici. ABLOO may exhibit antioomycete activity by destroying the cell membrane of P. capsici. This study provides new evidence regarding the inhibitory mechanisms of ABLOO against P. capsici.
Collapse
Affiliation(s)
- Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Haijiao Wang
- Forest Diseases and Pests Control and Quarantine Station of Henan Province, Zhengzhou 450008, Henan, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
20
|
Antifungal activity of thymol against the main fungi causing pomegranate fruit rot by suppressing the activity of cell wall degrading enzymes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Tavares CP, Sabadin GA, Sousa IC, Gomes MN, Soares AM, Monteiro CM, Vaz IS, Costa-Junior LM. Effects of carvacrol and thymol on the antioxidant and detoxifying enzymes of Rhipicephalus microplus (Acari: Ixodidae). Ticks Tick Borne Dis 2022; 13:101929. [DOI: 10.1016/j.ttbdis.2022.101929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
|
22
|
Wang J, Zhang J, Ma J, Liu L, Li J, Shen T, Tian Y. The major component of cinnamon oil as a natural substitute against
Fusarium solani
on
Astragalus membranaceus. J Appl Microbiol 2022; 132:3125-3141. [DOI: 10.1111/jam.15458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jianglai Wang
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jinfeng Zhang
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jinxiu Ma
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Lu Liu
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jiajia Li
- Research Institute Lanzhou Jiaotong University Lanzhou 730070 China
| | - Tong Shen
- Research Institute Lanzhou Jiaotong University Lanzhou 730070 China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
23
|
Ganea M, Nagy C, Teodorescu AG, Lesyan M, Hanga-Farcas A, Horvath T, Miere FG. Preliminary Studies on the Formulation of Vaginal Suppositories with Liposomal Oregano Oil. PHARMACOPHORE 2022. [DOI: 10.51847/ybqmdzd3tn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
De-Montijo-Prieto S, Razola-Díaz MDC, Gómez-Caravaca AM, Guerra-Hernandez EJ, Jiménez-Valera M, Garcia-Villanova B, Ruiz-Bravo A, Verardo V. Essential Oils from Fruit and Vegetables, Aromatic Herbs, and Spices: Composition, Antioxidant, and Antimicrobial Activities. BIOLOGY 2021; 10:1091. [PMID: 34827085 PMCID: PMC8615279 DOI: 10.3390/biology10111091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
In the field of food preservation, encapsulated Essential Oils (EOs) could be the best non-toxic and eco-friendly tool for food preservative applications substituting the chemicals ones that have several disadvantages for the environment and health. Thirteen commercial EOs from plants, fruits, and vegetables were characterized by GC-MS. The antioxidant activity was measured by DPPH and ABTS techniques. Antimicrobial activity was assessed by agar well-diffusion method and the Minimum Inhibitory Concentration (MIC) by agar dilution method against six bacteria, Candida albicans, and Botrytis cinerea. All the EOs tested have demonstrated antioxidant activity in the range of IC50 0.01-105.32 mg/mL. Between them, cinnamon EOs were the best, followed by oregano and thyme EOs. Fennel EO showed the lowest radical scavenging. MIC values ranged from 0.14 to 9 mg/mL. C. cassia, thyme, and oregano EOs were the most effective against the bacterial species tested, and the yeast C. albicans. On the contrary, citric fruit EOs showed low or no inhibition against most bacterial strains. The percentages of inhibition of mycelia growth of B. cinerea ranged from 3.4 to 98.5%. Thyme, oregano, mint, and fennel EOs showed the highest inhibition.
Collapse
Affiliation(s)
- Soumi De-Montijo-Prieto
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n., 18071 Granada, Spain
| | - Eduardo Jesús Guerra-Hernandez
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
| | - María Jiménez-Valera
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - Belén Garcia-Villanova
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| |
Collapse
|
25
|
Türkmen M, Kara M, Maral H, Soylu S. Determination of chemical component of essential oil of
Origanum dubium
plants grown at different altitudes and antifungal activity against
Sclerotinia sclerotiorum. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Musa Türkmen
- Department of Field Crops, Faculty of Agriculture Hatay Mustafa Kemal University Antakya Turkey
| | - Merve Kara
- Department of Plant Protection, Faculty of Agriculture Hatay Mustafa Kemal University Antakya Turkey
| | - Hasan Maral
- Ermenek Vocational School Karamanoğlu Mehmetbey University Karaman Turkey
| | - Soner Soylu
- Department of Plant Protection, Faculty of Agriculture Hatay Mustafa Kemal University Antakya Turkey
| |
Collapse
|
26
|
Abd-Elkader DY, Salem MZM, Komeil DA, Al-Huqail AA, Ali HM, Salah AH, Akrami M, Hassan HS. Post-Harvest Enhancing and Botrytis cinerea Control of Strawberry Fruits Using Low Cost and Eco-Friendly Natural Oils. AGRONOMY 2021; 11:1246. [DOI: 10.3390/agronomy11061246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This work investigates an experimental study for using low-cost and eco-friendly oils to increase the shelf life of strawberry fruit. Three natural oils were used: (i) Eucalyptus camaldulensis var obtuse, (ii) Mentha piperita green aerial parts essential oils (EOs), and (iii) Moringa oleifera seeds n-hexane fixed oil (FO). Furthermore, a mixture of EOs from E. camaldulensis var obtusa and M. piperita (1/1 v/v) was used. The treated fruits were stored at 5 °C and 90% relative humidity (RH) for 18 days. HPLC was used to analyse the changes in phenolic compounds during the storage periods. The effects of biofumigation through a slow-release diffuser of EOs (E. camaldulensis var obtusa and M. piperita), or by coating with M. oleifera FO, were evaluated in terms of control of post-harvest visual and chemical quality of strawberry fruits. The post-harvest resistance of strawberry fruits to Botrytis cinerea fungal infection was also evaluated. As a result, the EO treatments significantly reduced the change in visual and chemical quality of strawberry fruit. Additionally, changes in the titratable acidity of moringa FO-coated strawberry fruits were delayed. EO treatments improved total soluble solids, total phenols, ascorbic acid, antioxidants and peroxidase. E. camaldulensis var obtusa and M. piperita (1/1 v/v) EO-vapour fruit exhibited a slower rate of deterioration, compared to other treatments in all tested, in two experiments. The lowest colour change (ΔE) was observed inthe fruit treated with E. camaldulensis var obtusa EO and M. oleifera FO. HPLC showed changes in phenolic compounds’ concentration, where p-coumaric acid, caffeic acid, gallic acid, ferulic acid and ellagic acid were mostly identified in the fruits treated with the oils. SEM examination confirmed the potential decrease in fungal growth as the fruits were treated with EOs. In conclusion, the treatment of EOs during different storage periods showed promising characterisations for strawberry fruit quality.
Collapse
|
27
|
Wang Y, Wang M, Li M, Zhao T, Zhou L. Cinnamaldehyde inhibits the growth of Phytophthora capsici through disturbing metabolic homoeostasis. PeerJ 2021; 9:e11339. [PMID: 33987017 PMCID: PMC8092109 DOI: 10.7717/peerj.11339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background Phytophthora capsici Leonian (P. capsici) can cause wilting and roots rotting on pepper and other cash crops. The new fungicide cinnamaldehyde (CA) has high activity against this pathogen. However, its potential mechanism is still unknown. Methods In order to gain insights into the mechanism, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics was used to analyze P. capsici treated with CA. The iTRAQ results were evaluated by parallel reaction monitoring (PRM) analysis and quantitative real-time PCR (qRT-PCR) analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to speculate the biochemical pathways that the agent may act on. Results The results showed that 1502 differentially expressed proteins were identified, annotated and classified into 209 different terms (like metabolic process, cellular process, single-organism process) based on Gene Ontology (GO) functional enrichment analysis and nine different pathways (glyoxylate and dicarboxylate metabolism, fatty acid metabolism and so on) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. This study suggested that CA disordered fatty acid metabolism, polysaccharide metabolism and leucine metabolism. Based on PRM analysis, five proteins including CAMK/CAMK1 protein kinase, glucan 1,3-beta-glucosidase, 1,3-beta-glucanosyltransferase, methylcrotonoyl-CoA carboxylase subunit alpha and isovaleryl-CoA dehydrogenase were down-regulated in P. capsici treated with CA. Furthermore, the qRT-PCR analysis showed that the gene expression level of the interested proteins was consistent with the protein expression level, except for CAMK/CAMK1 protein kinase, acetyl-CoA carboxylase and fatty acid synthase subunit alpha. Conclusions CA destroyed the metabolic homoeostasisof P. capsici, which led to cell death. This is the first proteomic analysis of P. capsici treated with CA, which may provide an important information for exploring the mechanism of the fungicide CA against P. capsici.
Collapse
Affiliation(s)
- Yinan Wang
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| | - Mengke Wang
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| | - Min Li
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| | - Te Zhao
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| | - Lin Zhou
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| |
Collapse
|