1
|
Su Y, Mou S, Song Y, Zhang H, Zhang Q. Genome-wide identification of the TGF-β superfamily and their expression in the Chinese mitten crab Eriocheir sinensis. Sci Rep 2025; 15:12709. [PMID: 40223023 PMCID: PMC11994790 DOI: 10.1038/s41598-025-97772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Transforming growth factor-β superfamily genes are multifunctional cytokines that play central roles in the regulation of cell proliferation, differentiation, apoptosis, adhesion, and migration. Identifying the TGF-β superfamily in crabs could provide a basis for elucidating the genetic regulatory mechanism of growth, development, sex differentiation and environmental adaptation. To understand the complexity and evolution of the TGF-β superfamily in the Chinese mitten crab Eriocheir sinensis, this study comprehensively and systematically analysed this superfamily in the genome of E. sinensis. A total of 9 TGF-β superfamily genes have been identified, including EsBMP2, EsBMP3, EsBMP7, EsBMP10, EsBMP15, EsGDF8, EsUnivin, EsINHB and EsINHBB. A wide variation in the number of motifs and CDSs was found among different subfamilies. The expression of EsBMP2 and EsBMP7 suggested that these genes may be the main genes controlling embryonic development in E. sinensis. EsBMP2, EsBMP7 and EsBMP10 are very highly expressed in the gills. The TGF-β superfamily genes presented different expression patterns during limb regeneration and molting. In addition, this gene family also responds to environmental stresses, including nanoplastic stress, cadmium stress, air exposure, and high-salinity stress, which provides a new perspective for understanding the strong tolerance and adaptability of crabs to environmental stress. To our knowledge, this study is the first genome-wide investigation of the TGF-β superfamily in crabs. This study identified the sequence structure, phylogenetic relationship, and gene expression profiles of the TGF-β superfamily genes in the Chinese mitten crab, and the above results lay a foundation for further investigation of the evolution and biological functions of this gene family.
Collapse
Affiliation(s)
- Yu Su
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Siyu Mou
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yifan Song
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Huanglong Zhang
- Bureau of Agriculture and Rural Affairs, Quanzhou, 362100, Hui'an County, China
| | - Qian Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Benrabaa SAM, Chang SA, Chang ES, Mykles DL. Effects of molting on the expression of ecdysteroid responsive genes in the crustacean molting gland (Y-organ). Gen Comp Endocrinol 2024; 355:114548. [PMID: 38761872 DOI: 10.1016/j.ygcen.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.
Collapse
Affiliation(s)
| | - Sharon A Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Ernest S Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Donald L Mykles
- Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA.
| |
Collapse
|
3
|
Musgrove L, Russell FD, Ventura T. Considerations for cultivated crustacean meat: potential cell sources, potential differentiation and immortalization strategies, and lessons from crustacean and other animal models. Crit Rev Food Sci Nutr 2024; 65:2431-2455. [PMID: 38733287 DOI: 10.1080/10408398.2024.2342480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Cultivated crustacean meat (CCM) is a means to create highly valued shrimp, lobster, and crab products directly from stem cells, thus removing the need to farm or fish live animals. Conventional crustacean enterprises face increasing pressures in managing overfishing, pollution, and the warming climate, so CCM may provide a way to ensure sufficient supply as global demand for these products grows. To support the development of CCM, this review briefly details crustacean cell culture work to date, before addressing what is presently known about crustacean muscle development, particularly the molecular mechanisms involved, and how this might relate to recent work on cultivated meat production in vertebrate species. Recognizing the current lack of cell lines available to establish CCM cultures, we also consider primary stem cell sources that can be obtained non-lethally including tissues from limbs which are readily released and regrown, and putative stem cells in circulating hemolymph. Molecular approaches to inducing myogenic differentiation and immortalization of putative stem cells are also reviewed. Finally, we assess the current status of tools available to CCM researchers, particularly antibodies, and propose avenues to address existing shortfalls in order to see the field progress.
Collapse
Affiliation(s)
- Lisa Musgrove
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| | - Fraser D Russell
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Health, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| |
Collapse
|
4
|
Wang J, Li J, Ge Q, Li J. A potential negative regulation of myostatin in muscle growth during the intermolt stage in Exopalaemon carinicauda. Gen Comp Endocrinol 2021; 314:113902. [PMID: 34529998 DOI: 10.1016/j.ygcen.2021.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Muscle growth in crustacean is a complicated process where the muscle grows and develops through muscle restoration, and the growth rate depends on the net muscle gain during molting. Myostatin (MSTN) is a conserved inhibitor of muscle growth in vertebrates, but until now solid evidence supporting a similar function of MSTN in invertebrates has been lacking. In this study, we identified and characterized MSTN from the shrimp Exopalaemon carinicauda (EcMSTN) to better understand its biological function. The full-length cDNA of EcMSTN was 1,518 bp, encoding 428 amino acid residues, and the genomic sequence was 1,851 bp, including three exons and two introns. EcMSTN was expressed in a wide range of tissues, but predominantly detected in the abdominal muscle (P < 0.05). Low expression was detected in the cleavage, blastula and gastrula stages in the early development stages, increasing after the nauplius stage. EcMSTN expression was negatively correlated with the growth traits. After EcMSTN knockdown using RNA interference, EcMSTN expression was down-regulated in the abdominal muscle and up-regulated the expression of growth-related genes, including fast myosin heavy chain and skeletal muscle actin 3. After inhibiting EcMSTN for 5 weeks, the RNAi-treated shrimp with reduced EcMSTN levels exhibited a dramatically higher body weight compared with that of the control group. Association analysis revealed that two SNP loci g.Mstn220 and g.Mstn567 were markedly associated with both body weight and body length. The results would clarify the negative role of EcMSTN in regulating muscle growth during the intermolt stage and provide growth-related markers for molecular marker assisted breeding of E. carinicauda.
Collapse
Affiliation(s)
- Jiajia Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jitao Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qianqian Ge
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|