1
|
Blanquet L, Serra D, Marrinhas C, Almeida A. Exploring Gut Microbiota-Targeted Therapies for Canine Idiopathic Epilepsy. Int J Mol Sci 2025; 26:1742. [PMID: 40004205 PMCID: PMC11855791 DOI: 10.3390/ijms26041742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Epilepsy stands out as one of the most prevalent chronic neurological conditions affecting companion animals. Recent research has increasingly focused on exploring the role of gut microbiota in influencing neurological conditions, like epilepsy. This influence stems from the bidirectional communication pathways between gut bacteria and the brain, which involve metabolic, neural, immunological, and endocrine mechanisms. In fact, a balanced and stable gut microbiota is essential to maintaining normal gut physiology and ensuring appropriate signaling along the gut-brain axis. Conversely, dysbiosis can have detrimental effects on gut physiology and may contribute to the development or exacerbation of neurological conditions, including epilepsy. Considering these findings, this review article aims to deepen the understanding of the mechanisms underlying the microbiota-gut-brain connection in the context of canine idiopathic epilepsy. Moreover, this review presents recent data on innovative gut-related therapeutic strategies for canine idiopathic epilepsy treatment.
Collapse
Affiliation(s)
- Luann Blanquet
- EUVG—Escola Universitária Vasco de Gama, Campus Universitário, Av. José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal
| | - Diana Serra
- EUVG—Escola Universitária Vasco de Gama, Campus Universitário, Av. José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal
- CIVG—Centro de Investigação Vasco da Gama, EUVG—Escola Universitária Vasco da Gama, Campus Universitário-Bloco B, Av. José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal
- CNC—Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-531 Coimbra, Portugal
| | - Carla Marrinhas
- Onevet Hospital Veterinário do Baixo Vouga, Estrada Nacional 1, 355, 3750-742 Águeda, Portugal
| | - Anabela Almeida
- EUVG—Escola Universitária Vasco de Gama, Campus Universitário, Av. José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal
- CIVG—Centro de Investigação Vasco da Gama, EUVG—Escola Universitária Vasco da Gama, Campus Universitário-Bloco B, Av. José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal
- CIBIT/ICNAS—Instituto de Imagem Biomédica e Investigação Translacional de Coimbra, Universidade de Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Salavati Schmitz S, Salgado JPA, Glendinning L. Microbiota of healthy dogs demonstrate a significant decrease in richness and changes in specific bacterial groups in response to supplementation with resistant starch, but not psyllium or methylcellulose, in a randomized cross-over trial. Access Microbiol 2024; 6:000774.v4. [PMID: 38868374 PMCID: PMC11165627 DOI: 10.1099/acmi.0.000774.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/20/2024] [Indexed: 06/14/2024] Open
Abstract
Even though dietary fibres are often used as prebiotic supplements in dogs, the effect of individual types of fibres on canine microbiota composition is unknown. The objective of this study was to assess changes in faecal microbiota richness, diversity and taxonomic abundance with three different fibre supplements in dogs. These were psyllium husk, resistant starch from banana flour and methylcellulose. They were administered to 17 healthy dogs in a cross-over trial after transition to the same complete feed. Faecal scores and clinical activity indices were recorded, and faecal samples were collected before and at the end of supplementation, as well as 2 weeks after each supplement (washout). Illumina NovaSeq paired-end 16S rRNA gene sequencing was performed on all samples. After quality control and chimera removal, alpha diversity indices were calculated with QIIME. Differences in specific taxa between groups were identified using Metastats. Methylcellulose significantly increased faecal scores but had no effect on microbiota. Psyllium resulted in minor changes in the abundance of specific taxa, but with questionable biological significance. Resistant starch reduced microbiota richness and resulted in the most abundant changes in taxa, mostly a reduction in short-chain fatty acid-producing genera of the phylum Bacillota, with an increase in genera within the Bacteroidota, Pseudomonadota, Actinomycetota and Saccharibacteria. In conclusion, while psyllium and methylcellulose led to few changes in the microbiota composition, the taxonomic changes seen with resistant starch may indicate a less favourable composition. Based on this, the type of resistant starch used here cannot be recommended as a prebiotic in dogs.
Collapse
Affiliation(s)
- Silke Salavati Schmitz
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine,, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Jorge Perez-Accino Salgado
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine,, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Laura Glendinning
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
3
|
Liversidge BD, Gomez DE, Dodd SAS, MacNicol JL, Adolphe JL, Blois SL, Verbrugghe A. Comparison of the fecal microbiota of adult healthy dogs fed a plant-based (vegan) or an animal-based diet. Front Microbiol 2024; 15:1367493. [PMID: 38694809 PMCID: PMC11061427 DOI: 10.3389/fmicb.2024.1367493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Purpose Pet guardians are increasingly seeking vegan dog foods. However, research on the impact of these diets on gastrointestinal (GI) physiology and health is limited. In humans, vegan diets modify the GI microbiota, increasing beneficial digestive microorganisms. This study aimed to examine the canine fecal microbiota in response to a vegan diet compared to an animal-based diet. Methods Sixty-one client-owned healthy adult dogs completed a randomized, double-blinded longitudinal study. Dogs were randomly assigned into two groups that were fed either a commercial extruded animal-based diet (MEAT, n = 30) or an experimental extruded vegan diet (PLANT, n = 31) for 12 weeks. Fecal collections occurred at the start of the experimental period and after 3 months of exclusively feeding either diet. Bacterial DNA was extracted from the feces, and the V4 region of the 16S rRNA gene was amplified using PCR and sequenced on Illumina MiSeq. Beta-diversity was measured using Jaccard and Bray-Curtis distances, and the PERMANOVA was used to assess for differences in fecal microbiota within and between groups. Alpha-diversity indices for richness, evenness, and diversity, as well as relative abundance, were calculated and compared between groups. Results Beta-diversity differences occurred between diet groups at exit time-point with differences on Bray-Curtis distances at the family and genus levels (p = 0.007 and p = 0.001, respectively), and for the Jaccard distance at the family and genus level (p = 0.006 and p = 0.011, respectively). Significant differences in alpha-diversity occurred when comparing the PLANT to the MEAT group at the exit time-point with the PLANT group having a lower evenness (p = 0.012), but no significant differences in richness (p = 0.188), or diversity (p = 0.06). At exit-timepoint, compared to the MEAT group, the relative abundance of Fusobacterium, Bacteroides, and Campylobacter was lower in the PLANT group. The relative abundance of Fusobacterium decreased over time in the PLANT group, while no change was observed in the MEAT group. Conclusion These results indicate that vegan diets may change the canine gut microbiota. Future studies are warranted to confirm our results and determine long-term effects of vegan diets on the canine gut microbiome.
Collapse
Affiliation(s)
- Brooklynn D. Liversidge
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah A. S. Dodd
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jennifer L. MacNicol
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Jennifer L. Adolphe
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Petcurean Pet Nutrition, Chilliwack, BC, Canada
| | - Shauna L. Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Phimister FD, Anderson RC, Thomas DG, Farquhar MJ, Maclean P, Jauregui R, Young W, Butowski CF, Bermingham EN. Using meta-analysis to understand the impacts of dietary protein and fat content on the composition of fecal microbiota of domestic dogs (Canis lupus familiaris): A pilot study. Microbiologyopen 2024; 13:e1404. [PMID: 38515236 PMCID: PMC10958101 DOI: 10.1002/mbo3.1404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The interplay between diet and fecal microbiota composition is garnering increased interest across various host species, including domestic dogs. While the influence of dietary macronutrients and their associated microbial communities have been extensively reviewed, these reviews are descriptive and do not account for differences in microbial community analysis, nor do they standardize macronutrient content across studies. To address this, a meta-analysis was performed to assess the impact of dietary crude protein ("protein") and dietary crude fat ("fat") on the fecal microbiota composition in healthy dogs. Sixteen publications met the eligibility criteria for the meta-analysis, yielding a final data set of 314 dogs. Diets were classed as low, moderate, high, or supra in terms of protein or fat content. Sequence data from each publication were retrieved from public databases and reanalyzed using consistent bioinformatic pipelines. Analysis of community diversity indices and unsupervised clustering of the data with principal coordinate analysis revealed a small effect size and complete overlap between protein and fat levels at the overall community level. Supervised clustering through random forest analysis and partial least squares-discriminant analysis indicated alterations in the fecal microbiota composition at a more individual taxonomic level, corresponding to the levels of protein or fat. The Prevotellaceae Ga6A1 group and Enterococcus were associated with increasing levels of protein, while Allobaculum and Clostridium sensu stricto 13 were associated with increasing levels of fat. Interestingly, the random forest analyses revealed that Sharpea, despite its low relative abundance in the dog's fecal microbiome, was primarily responsible for the separation of the microbiome for both protein and fat. Future research should focus on validating and understanding the functional roles of these relatively low-abundant genera.
Collapse
Affiliation(s)
- Francis D. Phimister
- AgResearch LtdManawatu‐WhanganuiNew Zealand
- School of Agricultural and EnvironmentMassey UniversityManawatu‐WhanganuiNew Zealand
| | | | - David G. Thomas
- School of Agricultural and EnvironmentMassey UniversityManawatu‐WhanganuiNew Zealand
| | | | | | | | | | | | | |
Collapse
|
5
|
Sugita K, Shima A, Takahashi K, Ishihara G, Kawano K, Ohmori K. Pilot evaluation of a single oral fecal microbiota transplantation for canine atopic dermatitis. Sci Rep 2023; 13:8824. [PMID: 37258604 DOI: 10.1038/s41598-023-35565-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
The gut microbiota has been suggested to be involved in the pathogenesis of canine atopic dermatitis (cAD). However, the gut microbiota has not been well characterized in dogs with atopic dermatitis (AD). In addition, the efficacy of fecal microbiota transplantation (FMT) in dogs with AD remains unclear. This research, therefore, aimed to characterize the gut microbiota of dogs with AD and conduct pilot evaluation of the efficacy of a single oral FMT on clinical signs and the gut microbiota of dogs with AD. For these purposes, we used 12 dogs with AD and 20 healthy dogs. The 16S rRNA analysis of the fecal microbiota revealed significant differences between 12 dogs with AD and 20 healthy dogs. Next, a single oral FMT was performed in 12 dogs with AD as a single-arm, open-label clinical trial for 56 days. A single oral FMT significantly decreased Canine Atopic Dermatitis Extent and Severity Index (CADESI)-04 scores from day 0 (median score, 16.5) to day 56 (8) and Pruritus Visual Analog Scale (PVAS) scores from days 0 (median score, 3) to day 56 (1). Furthermore, a single oral FMT changed the composition of the fecal microbiota of dogs with AD at the phylum and genus levels. The number of common amplicon sequence variants in the fecal microbiota between donor dogs and dogs with AD was positively correlated with CADESI-04 and PVAS reduction ratios 56 days after FMT. Our findings suggest that the gut microbiota plays a pivotal role in the pathogenesis of cAD, and that oral FMT could be a new therapeutic approach targeting the gut microbiota in cAD.
Collapse
Affiliation(s)
- Koji Sugita
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Sugita Animal Hospital, Saitama, Japan
| | - Ayaka Shima
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | - Kaho Takahashi
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Koji Kawano
- Tokyo Animal Allergy Center, Tokyo, Japan
- Department of Gastroenterology and Gastroenterological Oncology, Fujita Health University, Aichi, Japan
| | - Keitaro Ohmori
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
6
|
Effect of Different Fiber Sources as Additives to Wet Food for Beagle Dogs on Diet Acceptance, Digestibility, and Fecal Quality. Vet Sci 2023; 10:vetsci10020091. [PMID: 36851395 PMCID: PMC9967778 DOI: 10.3390/vetsci10020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
In order to enhance the health and welfare of obese dogs and to facilitate the required loss of body weight, commercial diets are produced with fibrous ingredients. Cellulose is a common dietary fiber used mainly in powdered form. However, other processing forms and fibers are available as fibrous additives. This work aimed to test the effects of different fiber sources on apparent total tract digestibility and fecal quality in dogs. Four diets were fed to eight dogs (experimental design: 4 × 4 Latin square) for a 14-day period each. In addition to a basal diet (CO), three experimental diets varying in fiber sources were used: powdered cellulose (CE), granulated cellulose (GC), and lignocellulose (LC). Dogs fed the CO had lower crude fiber digestibility than those fed the other experimental diets (p < 0.0033). Dogs fed diets supplemented with fiber sources had lower gross energy digestibility (range: 76.2-77.3%) compared with those fed the CO (84.4%). In all groups, the fecal score (consistency and shape) ranged within the optimal values; solely wet fecal output was increased for the fiber groups compared with those on the CO. This study demonstrated that various sources of fiber such as GC and LC can be used as alternatives to CE without restrictions.
Collapse
|
7
|
Kim H, Seo J, Park T, Seo K, Cho HW, Chun JL, Kim KH. Obese dogs exhibit different fecal microbiome and specific microbial networks compared with normal weight dogs. Sci Rep 2023; 13:723. [PMID: 36639715 PMCID: PMC9839755 DOI: 10.1038/s41598-023-27846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Canine obesity is a major health concern that predisposes dogs to various disorders. The fecal microbiome has been attracting attention because of their impact on energy efficiency and metabolic disorders of host. However, little is known about specific microbial interactions, and how these may be affected by obesity in dogs. The objective of this study was to investigate the differences in fecal microbiome and specific microbial networks between obese and normal dogs. A total of 20 beagle dogs (males = 12, body weight [BW]: 10.5 ± 1.08 kg; females = 8, BW: 11.3 ± 1.71 kg; all 2-year-old) were fed to meet the maintenance energy requirements for 18 weeks. Then, 12 beagle dogs were selected based on body condition score (BCS) and divided into two groups: high BCS group (HBCS; BCS range: 7-9, males = 4, females = 2) and normal BCS group (NBCS; BCS range: 4-6, males = 4, females = 2). In the final week of the experiment, fecal samples were collected directly from the rectum, before breakfast, for analyzing the fecal microbiome using 16S rRNA gene amplicon sequencing. The HBCS group had a significantly higher final BW than the NBCS group (P < 0.01). The relative abundances of Faecalibacterium, Phascolarctobacterium, Megamonas, Bacteroides, Mucispirillum, and an unclassified genus within Ruminococcaceae were significantly higher in the HBCS group than those in the NBCS group (P < 0.05). Furthermore, some Kyoto Encyclopedia of Genes and Genomes (KEGG) modules related to amino acid biosynthesis and B vitamins biosynthesis were enriched in the HBCS group (P < 0.10), whereas those related to carbohydrate metabolism were enriched in the NBCS group (P < 0.10). Microbial network analysis revealed distinct co-occurrence and mutually exclusive interactions between the HBCS and NBCS groups. In conclusion, several genera related to short-chain fatty acid production were enriched in the HBCS group. The enriched KEGG modules in the HBCS group enhanced energy efficiency through cross-feeding between auxotrophs and prototrophs. However, further studies are needed to investigate how specific networks can be interpreted in the context of fermentation characteristics in the lower gut and obesity in dogs.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
8
|
Vecchiato CG, Golinelli S, Pinna C, Pilla R, Suchodolski JS, Tvarijonaviciute A, Rubio CP, Dorato E, Delsante C, Stefanelli C, Pagani E, Fracassi F, Biagi G. Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Front Microbiol 2023; 13:1050474. [PMID: 36713218 PMCID: PMC9878458 DOI: 10.3389/fmicb.2022.1050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Obesity is the most common nutritional disease in dogs, and is generally managed by caloric restriction. Gut microbiota alteration could represent a predisposing factor for obesity development, which has been associated with a low-grade inflammatory condition and an impaired antioxidant status. Besides, weight loss has been shown to influence the gut microbiota composition and reduce the inflammatory response and oxidative stress. Method However, these insights in canine obesity have not been fully elucidated. The aim of this study was to assess the differences in serum and inflammatory parameters, antioxidant status, fecal microbiota and bacterial metabolites in 16 obese and 15 lean client-owned dogs and how these parameters in obese may be influenced by caloric restriction. First, for 30 days, all dogs received a high-protein, high-fiber diet in amounts to maintain their body weight; later, obese dogs were fed for 180 days the same diet in restricted amounts to promote weight loss. Results Before the introduction of the experimental diet (T0), small differences in fecal microbial populations were detected between obese and lean dogs, but bacterial diversity and main bacterial metabolites did not differ. The fecal Dysbiosis Index (DI) was within the reference range (< 0) in most of dogs of both groups. Compared to lean dogs, obese dogs showed higher serum concentrations of acute-phase proteins, total thyroxine (TT4), and antioxidant capacity. Compared to T0, dietary treatment affected the fecal microbiota of obese dogs, decreasing the abundance of Firmicutes and increasing Bacteroides spp. However, these changes did not significantly affect the DI. The caloric restriction failed to exert significative changes on a large scale on bacterial populations. Consequently, the DI, bacterial diversity indices and metabolites were unaffected in obese dogs. Caloric restriction was not associated with a reduction of inflammatory markers or an improvement of the antioxidant status, while an increase of TT4 has been observed. Discussion In summary, the present results underline that canine obesity is associated with chronic inflammation. This study highlights that changes on fecal microbiota of obese dogs induced by the characteristics of the diet should be differentiated from those that are the consequence of the reduced energy intake.
Collapse
Affiliation(s)
- Carla Giuditta Vecchiato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy,*Correspondence: Carla Giuditta Vecchiato, ✉
| | - Stefania Golinelli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Pinna
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Rachel Pilla
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Camila Peres Rubio
- Department of Animal and Food Science, School of Veterinary Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Elisa Dorato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Costanza Delsante
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Claudio Stefanelli
- Dipartimento di Scienze per la Qualità della Vita, University of Bologna, Rimini, Italy
| | - Elena Pagani
- Monge & C. S.p.A., Monasterolo di Savigliano, Italy
| | - Federico Fracassi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Oba PM, Kelly J, Kostiuk D, Swanson KS. Effects of weight loss and feeding specially formulated diets on the body composition, blood metabolite profiles, voluntary physical activity, and fecal metabolites and microbiota of obese dogs. J Anim Sci 2023; 101:skad073. [PMID: 36879442 PMCID: PMC10083730 DOI: 10.1093/jas/skad073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Canine obesity negatively influences health and well-being, but can be managed by altering diet composition and caloric intake. Restricted feeding, dietary intervention, and consequent weight loss may be used to improve health and modify gastrointestinal microbiota. In this study, we aimed to determine the effects of restricted feeding of specially formulated foods on weight loss, body composition, voluntary physical activity, serum hormones and oxidative stress markers, and fecal metabolites and microbiota populations of obese dogs. Twenty-four obese dogs [body weight (BW) = 15.2 ± 1.7 kg; body condition score (BCS) = 8.7 ± 0.4; muscle condition score (MCS) = 3.5 ± 0.3; age = 7.2 ± 1.6 yr] were used in a 24-wk study. A control (OR) food was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline, dogs were allotted to one of two diets: OR or test (FT), and then fed to lose 1.5% BW/wk. Food intake, BW, BCS, and MCS were measured, blood and fecal samples were collected, DEXA scans were performed, and voluntary physical activity was measured over time. Microbiota data were evaluated using QIIME2 and change from baseline data from other measures were evaluated using the Mixed Models procedure of SAS, with P < 0.05 being significant. Restricted feeding led to reduced BW, BCS, fat mass, and blood cholesterol, triglyceride, glucose, and leptin concentrations, and increased MCS and lean body mass percentage. Blood cholesterol reduction was greater in dogs fed FT vs. OR. Fecal metabolites and bacterial alpha-diversity were affected by diet and weight loss. Dogs fed FT had greater reductions in fecal short-chain fatty acid, branched-chain fatty acid, and ammonia concentrations than those fed OR. Dogs fed OR had a higher alpha-diversity than those fed FT. Weight loss increased alpha-diversity (weeks 16, 20, and 24 > weeks 0 and 4). Beta-diversity showed separation between dietary groups and between week 0 and all other time points after week 8. Weight loss increased fecal Allobaculum and Ruminococcus torques. Weight loss also increased fecal Bifidobacterium, Faecalibaculum, and Parasutterella, but were greater in dogs fed OR. Weight loss decreased fecal Collinsella, Turicibacter, Blautia, Ruminococcus gnavus, Faecalibacterium, and Peptoclostridium, but were greater in dogs fed OR. In summary, restricted feeding promoted safe weight and fat loss, reduced blood lipid and leptin concentrations, and altered fecal microbiota of obese dogs.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA
| |
Collapse
|
10
|
Opetz DL, Oba PM, Kostiuk D, Kelly J, Swanson KS. Effects of weight loss and feeding specially formulated diets on the body composition, blood metabolite profiles, voluntary physical activity, and fecal metabolites and microbiota of overweight cats. J Anim Sci 2023; 101:skad332. [PMID: 37773637 PMCID: PMC10601921 DOI: 10.1093/jas/skad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Feline obesity is a common and preventable disease, posing a myriad of health risks and detriments. Specially formulated diets and restricted feeding may serve as an intervention strategy to promote weight loss and improve feline health. In this study, our objective was to determine the effects of restricted feeding and weight loss on body composition, voluntary physical activity, blood hormones and metabolites, and fecal microbiota of overweight cats. Twenty-two overweight adult spayed female and neutered male cats [body weight (BW) = 5.70 ± 1.0 kg; body condition score (BCS) = 7.68 ± 0.6; age = 4 ± 0.4 yr] were used in a weight loss study. A control diet (OR) was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline (week 0), cats were allotted to OR or a test diet (FT) and fed to lose ~1.0% BW/wk for 24 wk. At baseline and 6, 12, 18, and 24 wk after weight loss, dual-energy x-ray absorptiometry scans were performed and blood samples were collected. Voluntary physical activity was measured at weeks 0, 8, 16, and 24. Fecal samples were collected at weeks 0, 4, 8, 12, 16, 20, and 24. Change from baseline data were analyzed statistically using the Mixed Models procedure of SAS, with P < 0.05 considered significant. Restricted feeding of both diets led to weight and fat mass loss, lower BCS, and lower blood triglyceride and leptin concentrations. Cats fed the FT diet had a greater reduction in blood triglycerides and cholesterol than cats fed the OR diet. Restricted feeding and weight loss reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations. Fecal valerate concentrations were affected by diet, with cats fed the OR diet having a greater reduction than those fed the FT diet. Fecal bacterial alpha diversity was not affected, but fecal bacterial beta diversity analysis showed clustering by diet. Restricted feeding and weight loss affected relative abundances of 7 fecal bacterial genera, while dietary intervention affected change from baseline relative abundances of 2 fecal bacterial phyla and 20 fecal bacterial genera. Our data demonstrate that restricted feeding promoted controlled and safe weight and fat loss, reduced blood lipids and leptin concentrations, and shifted fecal metabolites and microbiota. Some changes were also impacted by diet, highlighting the importance of ingredient and nutrient composition in weight loss diets.
Collapse
Affiliation(s)
- Danielle L Opetz
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Darcia Kostiuk
- Champion Petfoods Holding, Inc., Edmonton, CanadaAB T5S 2W6
| | - Janelle Kelly
- Champion Petfoods Holding, Inc., Edmonton, CanadaAB T5S 2W6
| | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Li K, Yang J, Zhou X, Wang H, Ren Y, Huang Y, Liu H, Zhong Z, Peng G, Zheng C, Zhou Z. The Mechanism of Important Components in Canine Fecal Microbiota Transplantation. Vet Sci 2022; 9:vetsci9120695. [PMID: 36548856 PMCID: PMC9786814 DOI: 10.3390/vetsci9120695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a potential treatment for many intestinal diseases. In dogs, FMT has been shown to have positive regulation effects in treating Clostridioides difficile infection (CDI), inflammatory bowel disease (IBD), canine parvovirus (CPV) enteritis, acute diarrhea (AD), and acute hemorrhagic diarrhea syndrome (AHDS). FMT involves transplanting the functional components of a donor's feces into the gastrointestinal tract of the recipient. The effective components of FMT not only include commensal bacteria, but also include viruses, fungi, bacterial metabolites, and immunoglobulin A (IgA) from the donor feces. By affecting microbiota and regulating host immunity, these components can help the recipient to restore their microbial community, improve their intestinal barrier, and induce anti-inflammation in their intestines, thereby affecting the development of diseases. In addition to the above components, mucin proteins and intestinal epithelial cells (IECs) may be functional ingredients in FMT as well. In addition to the abovementioned indications, FMT is also thought to be useful in treating some other diseases in dogs. Consequently, when preparing FMT fecal material, it is important to preserve the functional components involved. Meanwhile, appropriate fecal material delivery methods should be chosen according to the mechanisms these components act by in FMT.
Collapse
Affiliation(s)
- Kerong Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Jie Yang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Xiaoxiao Zhou
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Huan Wang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Yuxin Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Yunchuan Huang
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
- Correspondence: (C.Z.); (Z.Z.)
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (C.Z.); (Z.Z.)
| |
Collapse
|
12
|
Canine Fecal Microbiota Transplantation: Current Application and Possible Mechanisms. Vet Sci 2022; 9:vetsci9080396. [PMID: 36006314 PMCID: PMC9413255 DOI: 10.3390/vetsci9080396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for a variety of diseases, and is characterized as the transfer of fecal microorganisms from a healthy donor into the intestinal tract of a diseased recipient. In human clinics, FMT has been used for treating diseases for decades, with promising results. In recent years, veterinary specialists adapted FMT in canine patients; however, compared to humans, canine FMT is more inclined towards research purposes than practical applications in most cases, due to safety concerns. Therefore, in order to facilitate the application of fecal transplant therapy in dogs, in this paper, we review recent applications of FMT in canine clinical treatments, as well as possible mechanisms that are involved in the process of the therapeutic effect of FMT. More research is needed to explore more effective and safer approaches for conducting FMT in dogs.
Collapse
|
13
|
Söder J, Wernersson S, Höglund K, Hagman R, Lindåse S, Dicksved J. Composition and short-term stability of gut microbiota in lean and spontaneously overweight healthy Labrador retriever dogs. Acta Vet Scand 2022; 64:8. [PMID: 35346308 PMCID: PMC8962211 DOI: 10.1186/s13028-022-00628-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background The gut microbiota and its metabolic end-products act in close collaboration with the nutrient metabolism of the animal. A relationship between excess adiposity and alterations in gut microbiota composition has been identified in humans and rodents, but data are scarce for overweight dogs. This study compared composition and temporal variations of gut microbiota in healthy lean and spontaneously overweight dogs. The analysis was based on three individual fresh faeces samples from each dog during a 10-day period. Twenty-seven healthy and intact male Labrador retriever dogs were included, 12 of which were classified as lean (body condition score (BCS) 4–5 on a 9-point scale) and 15 as overweight (BCS 6–8). Gut microbiota was analysed by Illumina sequencing of the V3-V4 region of the 16S rRNA gene. Results Lean and overweight groups of dogs were not separated by principal coordinate analysis (PCoA), analysis of similarity (one-way ANOSIM, P = 0.99) or species indicator analysis (IndVal) using operational taxonomic units (OTU) data. Gut microbial taxa at phylum, family or genus level did not differ between lean and overweight dogs in mixed-model repeated measures analyses. Short-term stability, evaluated by similarity index, did not differ between lean and overweight dogs over the 10-day period. Pooled Firmicutes/Bacteroidetes (F/B) ratio was 3.1 ± 3.7 in overweight dogs and 2.1 ± 1.2 in lean dogs (P = 0.83). Individual dogs, irrespective of body condition (lean or overweight), displayed variation in mean alpha diversity (Chao-1 index range 122–245, Shannon index range 2.6–3.6) and mean similarity index (range 44–85%). Conclusions Healthy lean and spontaneously overweight Labrador retriever dogs had comparable gut microbiota composition and short-term stability over a 10-day sampling period. There were no alterations in microbial diversity or in relative abundance of specific taxa at phylum, family or genus level in overweight compared to lean dogs. Our findings suggest that there are few detectable differences in gut microbiota composition between healthy spontaneously overweight and lean dogs by the current method. Future application of metagenomic or metabolomic techniques could be used to investigate microbial genes or microbial end-products that may differ even when microbiota compositional analyses fail to detect a significant difference between lean and overweight dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13028-022-00628-z.
Collapse
|
14
|
Thomson P, Santibáñez R, Rodríguez-Salas C, Flores-Yañez C, Garrido D. Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. PeerJ 2022; 10:e12695. [PMID: 35190784 PMCID: PMC8857902 DOI: 10.7717/peerj.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Obesity is a multifactorial nutritional disorder highly prevalent in dogs, observed in developed and developing countries. It is estimated that over 40% of the canine population suffers from obesity, which manifests in an increased risk of chronic osteoarticular, metabolic, and cardiovascular diseases. The intestinal microbiome of obese animals shows increases in the abundance of certain members capable of extracting energy from complex polysaccharides. The objective of this study was to compare the composition and predicted function of the intestinal microbiome of Chilean obese and normal weight adult dogs. Twenty clinically healthy dogs were classified according to their body condition score (BCS) as obese (n = 10) or normal weight (n = 10). DNA was extracted from stool samples, followed by next-generation sequencing of the 16S rRNA V3-V4 region and bioinformatics analysis targeting microbiome composition and function. Significant differences were observed between these groups at the phylum level, with anincrease in Firmicutes and a decrease in Bacteroidetes in obese dogs. Microbiome compositions of these animals correlated with their BCS, and obese dogs showed enrichment in pathways related to transport, chemotaxis, and flagellar assembly. These results highlight the differences in the gut microbiome between normal weight and obese dogs and prompt further research to improve animal health by modulating the gut microbiome.
Collapse
Affiliation(s)
- Pamela Thomson
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Chile
| | - Rodrigo Santibáñez
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Rodríguez-Salas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Chile
| | | | - Daniel Garrido
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Macedo HT, Rentas MF, Vendramini THA, Macegoza MV, Amaral AR, Jeremias JT, de Carvalho Balieiro JC, Pfrimer K, Ferriolli E, Pontieri CFF, Brunetto MA. Weight-loss in obese dogs promotes important shifts in fecal microbiota profile to the extent of resembling microbiota of lean dogs. Anim Microbiome 2022; 4:6. [PMID: 34991726 PMCID: PMC8740440 DOI: 10.1186/s42523-021-00160-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/30/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Among the undesirable changes associated with obesity, one possibility recently raised is dysbiosis of the intestinal microbiota. Studies have shown changes in microbiota in obese rats and humans, but there are still few studies that characterize and compare the fecal microbiota of lean, obese and dogs after weight loss. Thus, this study aimed to evaluate the effects of a weight loss program (WLP) in fecal microbiota of dogs in addition to comparing them with those of lean dogs. Twenty female dogs of different breeds, aged between 1 and 9 years were selected. They were equally divided into two groups: Obese group (OG), with body condition score (BCS) 8 or 9/9, and body fat percentage greater than 30%, determined by the deuterium isotope dilution method, and lean group (LG) with BCS 5/9, and maximum body fat of 15%. Weight loss group (WLG) was composed by OG after loss of 20% of their current body weight. Fecal samples were collected from the three experimental groups. Total DNA was extracted from the feces and these were sequenced by the Illumina methodology. The observed abundances were evaluated using a generalized linear model, considering binomial distribution and using the logit link function in SAS (p < 0.05). RESULTS The WLP modulated the microorganisms of the gastrointestinal tract, so that, WLG and LG had microbial composition with greater biodiversity than OG, and intestinal uniformity of the microbiota (Pielou's evenness index) was higher in OG than WLG dogs (P = 0.0493) and LG (P = 0.0101). In addition, WLG had values of relative frequency more similar to LG than to OG. CONCLUSION The fecal microbiota of the studied groups differs from each other. The weight loss program can help to reverse the changes observed in obese dogs.
Collapse
Affiliation(s)
- Henrique Tobaro Macedo
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Mariana Fragoso Rentas
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Thiago Henrique Annibale Vendramini
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Matheus Vinicius Macegoza
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Andressa Rodrigues Amaral
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Juliana Toloi Jeremias
- Nutritional Development Center (CDN), Grandfood Indústria E Comércio LTDA (Premier Pet), Luiz Augusto de Oliveira Hwy, Km 204, Dourado, São Paulo, 13590-000, Brazil
| | - Júlio César de Carvalho Balieiro
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil
| | - Karina Pfrimer
- Medical School of Ribeirão Preto (FMRP), University of São Paulo (USP), Bandeirantes Ave, 3900 - Campus da USP, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Eduardo Ferriolli
- Medical School of Ribeirão Preto (FMRP), University of São Paulo (USP), Bandeirantes Ave, 3900 - Campus da USP, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cristiana Ferreira Fonseca Pontieri
- Nutritional Development Center (CDN), Grandfood Indústria E Comércio LTDA (Premier Pet), Luiz Augusto de Oliveira Hwy, Km 204, Dourado, São Paulo, 13590-000, Brazil
| | - Marcio Antonio Brunetto
- Department of Animal Nutrition and Production, Pet Nutrology Research Center (CEPEN Pet), School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Duque de Caxias Norte Ave, 255, Pirassununga, São Paulo, 13635-900, Brazil.
| |
Collapse
|
16
|
Phungviwatnikul T, Lee AH, Belchik SE, Suchodolski JS, Swanson KS. Weight loss and high-protein, high-fiber diet consumption impact blood metabolite profiles, body composition, voluntary physical activity, fecal microbiota, and fecal metabolites of adult dogs. J Anim Sci 2021; 100:6490144. [PMID: 34967874 PMCID: PMC8846339 DOI: 10.1093/jas/skab379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/29/2021] [Indexed: 01/01/2023] Open
Abstract
Canine obesity is associated with reduced lifespan and metabolic dysfunction, but can be managed by dietary intervention. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal microbiota and metabolites of overweight dogs. Twelve spayed female dogs (age: 5.5 ± 1.1 yr; body weight [BW]: 14.8 ± 2.0 kg, body condition score [BCS]: 7.9 ± 0.8) were fed a HPHF diet during a 4-wk baseline phase to maintain BW. After baseline (week 0), dogs were first fed 80% of baseline intake and then adjusted to target 1.5% weekly weight loss for 24 wk. Body composition using dual-energy x-ray absorptiometry and blood samples (weeks 0, 6, 12, 18, and 24), voluntary physical activity (weeks 0, 7, 15, and 23), and fresh fecal samples for microbiota and metabolite analysis (weeks 0, 4, 8, 12, 16, 20, and 24) were measured over time. Microbiota data were analyzed using QIIME 2. All data were analyzed statistically over time using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW and had 1.43 ± 0.73% weight loss per week. BCS decreased (P < 0.0001) by 2.7 units, fat mass decreased (P < 0.0001) by 3.1 kg, and fat percentage decreased (P < 0.0001) by 11.7% with weight loss. Many serum metabolites and hormones were altered, with triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreasing (P < 0.05) with weight loss. Relative abundances of fecal Bifidobacterium, Coriobacteriaceae UCG-002, undefined Muribaculaceae, Allobaculum, Eubacterium, Lachnospira, Negativivibacillus, Ruminococcus gauvreauii group, uncultured Erysipelotrichaceae, and Parasutterella increased (P < 0.05), whereas Prevotellaceae Ga6A1 group, Catenibacterium, Erysipelatoclostridium, Fusobacterium, Holdemanella, Lachnoclostridium, Lactobacillus, Megamonas, Peptoclostridium, Ruminococcus gnavus group, and Streptococcus decreased (P < 0.01) with weight loss. Despite the number of significant changes, a state of dysbiosis was not observed in overweight dogs. Fecal ammonia and secondary bile acids decreased, whereas fecal valerate increased with weight loss. Several correlations between gut microbial taxa and biological parameters were observed. Our results suggest that restricted feeding of a HPHF diet and weight loss promotes fat mass loss, minimizes lean mass loss, reduces inflammatory marker and triglyceride concentrations, and modulates fecal microbiota phylogeny and activity in overweight dogs.
Collapse
Affiliation(s)
| | - Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA
| | - Sara E Belchik
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA,Department of Veterinary Clinical Medicine, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA,Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, IL 61801, USA,Corresponding author:
| |
Collapse
|
17
|
Suchodolski JS. Analysis of the gut microbiome in dogs and cats. Vet Clin Pathol 2021; 50 Suppl 1:6-17. [PMID: 34514619 PMCID: PMC9292158 DOI: 10.1111/vcp.13031] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
The gut microbiome is an important immune and metabolic organ. Intestinal bacteria produce various metabolites that influence the health of the intestine and other organ systems, including kidney, brain, and heart. Changes in the microbiome in diseased states are termed dysbiosis. The concept of dysbiosis is constantly evolving and includes changes in microbiome diversity and/or structure and functional changes (eg, altered production of bacterial metabolites). Molecular tools are now the standard for microbiome analysis. Sequencing of microbial genes provides information about the bacteria present and their functional potential but lacks standardization and analytical validation of methods and consistency in the reporting of results. This makes it difficult to compare results across studies or for individual clinical patients. The Dysbiosis Index (DI) is a validated quantitative PCR assay for canine fecal samples that measures the abundance of seven important bacterial taxa and summarizes the results as one single number. Reference intervals are established for dogs, and the DI can be used to assess the microbiome in clinical patients over time and in response to therapy (eg, fecal microbiota transplantation). In situ hybridization or immunohistochemistry allows the identification of mucosa‐adherent and intracellular bacteria in animals with intestinal disease, especially granulomatous colitis. Future directions include the measurement of bacterial metabolites in feces or serum as markers for the appropriate function of the microbiome. This article summarizes different approaches to the analysis of gut microbiota and how they might be applicable to research studies and clinical practice in dogs and cats.
Collapse
Affiliation(s)
- Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
18
|
Pereira AM, Clemente A. Dogs' Microbiome From Tip to Toe. Top Companion Anim Med 2021; 45:100584. [PMID: 34509665 DOI: 10.1016/j.tcam.2021.100584] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Microbiota and microbiome, which refers, respectively, to the microorganisms and conjoint of microorganisms and genes are known to live in symbiosis with hosts, being implicated in health and disease. The advancements and cost reduction associated with high-throughput sequencing techniques have allowed expanding the knowledge of microbial communities in several species, including dogs. Throughout their body, dogs harbor distinct microbial communities according to the location (e.g., skin, ear canal, conjunctiva, respiratory tract, genitourinary tract, gut), which have been a target of study mostly in the last couple of years. Although there might be a core microbiota for different body sites, shared by dogs, it is likely influenced by intrinsic factors such as age, breed, and sex, but also by extrinsic factors such as the environment (e.g., lifestyle, urban vs rural), and diet. It starts to become clear that some medical conditions are mediated by alterations in microbiota namely dysbiosis. Moreover, understanding microbial colonization and function can be used to prevent medical conditions, for instance, modulation of gut microbiota of puppies is more effective to ensure a healthy gut than interventions in adults. This paper gathers current knowledge of dogs' microbial communities, exploring their function, implications in the development of diseases, and potential interactions among communities while providing hints for further research.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- University of the Azores, Faculty of Agricultural and Environmental Sciences, Institute of Agricultural and Environmental Research and Technology (IITAA). Rua Capitão João d'Ávila, Azores, Portugal.
| | - Alfonso Clemente
- Department of Physiology and Biochemistry in Animal Nutrition, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
19
|
Park M, Kim KH, Jaiswal V, Choi J, Chun JL, Seo KM, Lee MJ, Lee HJ. Effect of black ginseng and silkworm supplementation on obesity, the transcriptome, and the gut microbiome of diet-induced overweight dogs. Sci Rep 2021; 11:16334. [PMID: 34381138 PMCID: PMC8358025 DOI: 10.1038/s41598-021-95789-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023] Open
Abstract
Like humans, weight control in overweight dogs is associated with a longer life expectancy and a healthier life. Dietary supplements are one of the best strategies for controlling obesity and obesity-associated diseases. This study was conducted to assess the potential of black ginseng (BG) and silkworm (SW) as supplements for weight control in diet-induced overweight beagle dogs. To investigate the changes that occur in dogs administered the supplements, different obesity-related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND groups. These data suggest that the BG + SW supplement could be developed as dietary interventions against diet-induced obesity, and obesity-related differential genes could be important candidates in the mechanism of the anti-obesity effects of the BG + SW supplement.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Jihee Choi
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Kang Min Seo
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Mi-Jin Lee
- Clinical Nutritional Medicine, Veterinary Medical Teaching Hospital, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea.
| |
Collapse
|
20
|
Phungviwatnikul T, Alexander C, Do S, He F, Suchodolski JS, de Godoy MRC, Swanson KS. Effects of Dietary Macronutrient Profile on Apparent Total Tract Macronutrient Digestibility and Fecal Microbiota, Fermentative Metabolites, and Bile Acids of Female Dogs after Spay Surgery. J Anim Sci 2021; 99:6333593. [PMID: 34333604 DOI: 10.1093/jas/skab225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity and estrogen reduction are known to impact the gut microbiota and gut microbial-derived metabolites in some species, but limited information is available in dogs. The aim of this study was to determine the effects of dietary macronutrient profile on apparent total tract macronutrient digestibility, fecal microbiota, and fecal metabolites of adult female dogs after spay surgery. Twenty-eight adult intact female beagles (age: 3.02 ± 0.71 yr, BW: 10.28 ± 0.77 kg; BCS: 4.98 ± 0.57) were used. After a 5-wk baseline phase (wk 0), 24 dogs were spayed and randomly allotted to one of three experimental diets (n=8/group): 1) control (CO) containing moderate protein and fiber (COSP), 2) high-protein, high-fiber (HPHF), or 3) high-protein, high-fiber plus omega-3 and medium-chain fatty acids (HPHFO). Four dogs were sham-operated and fed CO (COSH). All dogs were fed to maintain BW for 12 wk after spay, then allowed to consume twice that amount for 12 wk. Fecal samples were collected at wk 0, 12, and 24 for digestibility, microbiota, and metabolite analysis. All data were analyzed using repeated measures and linear Mixed Models procedure of SAS 9.4, with results reported as change from baseline. Apparent organic matter and energy digestibilities had greater decreases in HPHF and HPHFO than COSH and COSP. Increases in fecal acetate, total short-chain fatty acids, and secondary bile acids were greater and decreases in primary bile acids were greater in HPHF and HPHFO. Principal coordinates analysis of weighted UniFrac distances revealed that HPHF and HPHFO clustered together and separately from COSH and COSP at wk 12 and 24, with relative abundances of Faecalibacterium, Romboutsia, and Fusobacterium increasing to a greater extent and Catenibacterium, Bifidobacterium, Prevotella 9, Eubacterium, and Megamonas decreasing to a greater extent in HPHF or HPHFO. Our results suggest that high-protein, high-fiber diets alter nutrient and energy digestibilities, fecal metabolite concentrations, and fecal gut microbiota, but spay surgery had minor effects. Future research is needed to investigate how food intake, nutrient profile, and changes in hormone production influence gut microbiota and metabolites of dogs individually and how this knowledge may be used to manage spayed pets.
Collapse
Affiliation(s)
| | - Celeste Alexander
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Sungho Do
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Fei He
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.,Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
21
|
Bermudez Sanchez S, Pilla R, Sarawichitr B, Gramenzi A, Marsilio F, Steiner JM, Lidbury JA, Woods GRT, Suchodolski JS, German AJ. Untargeted fecal metabolome analysis in obese dogs after weight loss achieved by feeding a high-fiber-high-protein diet. Metabolomics 2021; 17:66. [PMID: 34228201 PMCID: PMC8260550 DOI: 10.1007/s11306-021-01815-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION In humans and companion animals, obesity is accompanied by metabolic derangements. Studies have revealed differences in the composition of the fecal microbiome between obese dogs and those with an ideal body weight. OBJECTIVES We have previously reported that the fecal microbiome in obese dogs changes after controlled weight reduction, induced by feeding a diet high in fiber and protein. Despite these findings, it is unclear if taxonomic differences infer differences at the functional level between obese dogs and those with an ideal body weight. METHODOLOGY Untargeted fecal metabolome analysis was performed on dogs with obesity before and after weight loss achieved by feeding a high-fiber-high-protein diet. RESULTS Fecal metabolome analysis revealed a total of 13 compounds that changed in concentration in obese dogs after weight loss. Of these compounds, metabolites associated with bacterial metabolism decreased after weight loss including purine, L-(-)-methionine, coumestrol, and the alkaloids 1-methylxanthine and trigonelline. Conversely, the polyphenols (-)-epicatechin and matairesinol and the quinoline derivatives 1,5-isoquinolinediol and 2-hydroxiquinoline increased after weight loss. CONCLUSION These results suggest differences in intestinal microbiome at the functional level after weight loss, but further studies are needed to determine the role of these compounds in the etiology of obesity and weight loss.
Collapse
Affiliation(s)
- Sandra Bermudez Sanchez
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Veterinary Medicine Sciences, University of Teramo, Teramo, Italy.
| | - Rachel Pilla
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Benjamin Sarawichitr
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Fulvio Marsilio
- Veterinary Medicine Sciences, University of Teramo, Teramo, Italy
| | - Joerg M Steiner
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Georgiana R T Woods
- Institute of Life Course and Medical Sciences, University of Liverpool, Leahurst, Neston, UK
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alexander J German
- Institute of Life Course and Medical Sciences, University of Liverpool, Leahurst, Neston, UK
| |
Collapse
|
22
|
Pilla R, Suchodolski JS. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet Clin North Am Small Anim Pract 2021; 51:605-621. [PMID: 33653538 DOI: 10.1016/j.cvsm.2021.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome is a functional organ, and responds metabolically to the nutrient composition within the diet. Fiber, starch, and protein content have strong effects on the microbiome composition, and changes in these nutrient profiles can induce rapid shifts. Due to functional redundancy of bacteria within microbial communities, important metabolites for health can be produced by different bacteria. Microbiome alterations associated with disease are of greater magnitude than those seen in healthy dogs on different diets. Dietary changes, addition of prebiotics, and probiotics, can be beneficial to improve microbial diversity and to normalize metabolite production in diseased dogs.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA
| |
Collapse
|