1
|
Qiu L, Chirman D, Clark JR, Xing Y, Hernandez Santos H, Vaughan EE, Maresso AW. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024; 16:2359691. [PMID: 38825856 PMCID: PMC11152113 DOI: 10.1080/19490976.2024.2359691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dylan Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Halabian R, Jahangiri A, Sedighian H, Behzadi E, Fooladi AAI. Staphylococcal enterotoxin B as DNA vaccine against breast cancer in a murine model. Int Microbiol 2023; 26:939-949. [PMID: 36991248 PMCID: PMC10057679 DOI: 10.1007/s10123-023-00348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Recently, many efforts have been made to treat cancer using recombinant bacterial toxins and this strategy has been used in clinical trials of various cancers. Therapeutic DNA cancer vaccines are now considered as a promising strategy to activate the immune system against cancer. Cancer vaccines could induce specific and long-lasting immune responses against tumors. This study aimed to evaluate the antitumor potency of the SEB DNA vaccine as a new antitumor candidate against breast tumors in vivo. To determine the effect of the SEB construct on inhibiting tumor cell growth in vivo, the synthetic SEB gene, subsequent codon optimization, and embedding the cleavage sites were sub-cloned to an expression vector. Then, SEB construct, SEB, and PBS were injected into the mice. After being vaccinated, 4T1 cancer cells were injected subcutaneously into the right flank of mice. Then, the cytokine levels of IL-4 and IFN-γ were estimated by the ELISA method to evaluate the antitumor activity. The spleen lymphocyte proliferation, tumor size, and survival time were assessed. The concentration of IFN-γ in the SEB-Vac group showed a significant increase compared to other groups. The production of IL-4 in the group that received the DNA vaccine did not change significantly compared to the control group. The lymphocyte proliferation increased significantly in the mice group that received SEB construct than PBS control group (p < 0.001). While there was a meaningful decrease in tumor size (p < 0.001), a significant increase in tumor tissue necrosis (p < 0.01) and also in survival time of the animal model receiving the recombinant construct was observed. The designed SEB gene construct can be a new model vaccine for breast cancer because it effectively induces necrosis and produces specific immune responses. This structure does not hurt normal cells and is a safer treatment than chemotherapy and radiation therapy. Its slow and long-term release gently stimulates the immune system and cellular memory. It could be applied as a new model for inducing apoptosis and antitumor immunity to treat cancer.
Collapse
Affiliation(s)
- Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
4
|
Harzandi N, Aghababa H, Khoramabadi N, Tabaraie T. Efficient Immunization of BALB/c Mice against Pathogenic Brucella melitensis and B. ovis: Comparing Cell-Mediated and Protective Immune Responses Elicited by pCDNA3.1 and pVAX1 DNA Vaccines Coding for Omp31 of Brucella melitensis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2618. [PMID: 34179193 PMCID: PMC8217529 DOI: 10.30498/ijb.2021.2618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Brucella spp. are intracellular pathogens, therefore cell-mediated immunity is the main response to inhibit survival and growth of the bacteria in vertebrate host. Objective Many eukaryotic plasmid vectors are being used in setting up DNA vaccines which may show different efficiencies in same conditions. This is important in designing the vaccines and immunization strategies. We looked into the probable differences of immune responses induced by different eukaryotic DNA plasmid vectors (pcDNA3.1 and pVAX1) harboring the same Omp31 gene of B. melitensis. Materials and Methods Female BALB/c mice were immunized with pcDNA -omp31 and pVAX-omp31 and further boosted with recombinant Omp31. Subclasses of specific serum IgG against the rOmp31 were measured by ELISA. Cytokines responses to rOmp31 in Splenocyte cultures of the immunized mice were evaluated by measuring the production of IL-4, IL-10, IL-12 and IFN-γ. Protective responses of the immunized mice were evaluated by intraperitoneal challenge with pathogenic Brucella melitensis 16M and Brucella ovis PA76250. Results Both DNA vaccine candidates conferred potent Th1-type responses with higher levels of cytokines and immunoglobulins observed in mice immunized with pVAX-omp31. Although pcDNA-omp31 and pVAX-omp31 both elicited protective immunity, mice immunized with the latter showed a higher protection against both B. melitensis and B. ovis PA76250. Conclusion The results of this study highlight the significant differences between efficiency of diverse plasmid backbones in DNA vaccines which code for an identical antigen. Comparing various plasmid vectors should be considered as an essential part of the studies aiming construction of DNA vaccines for intracellular pathogens.
Collapse
Affiliation(s)
- Naser Harzandi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Haniyeh Aghababa
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Nima Khoramabadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Termeh Tabaraie
- Department of Cardiology, Charité Medical University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Pirdel L, Pirdel M. A Differential Immune Modulating Role of Vitamin D in Urinary Tract Infection. Immunol Invest 2020; 51:531-545. [PMID: 33353437 DOI: 10.1080/08820139.2020.1845723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin D is known as an important modulator of numerous immune functions. We aimed to investigate the association of 25-hydroxyvitamin D [25(OH)D] with several humoral mediators of the immune system in the patients with urinary tract infection (UTI) caused by uropathogenic E. coli (UPEC). Serum levels of 25(OH)D, cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-6, IL-10, IL-17A, tumor necrosis factor transforming growth factor (TNF)-α, and tumor growth factor (TGF)-β), immunoglobulin (Ig) isotypes (IgG, IgM, and IgM), complement proteins (C3 and C4) with hemolytic activities (CH50 and AP50), and nitric oxide (NO) were evaluated in 65 patients, compared to 45 age- and sex-matched healthy controls. An insignificant decrease in 25(OH)D levels was observed in patients, compared to controls. In the patient group, elevated levels of IFN-γ, IL-17A, and IL-10 had a significant association with the serum levels of 25(OH)D, while the levels of TGF-β, IL-6, and TNF-α showed an insignificant association. The levels of IgG, C3, and NO also displayed such a statistically significant association with serum 25(OH)D levels. The AP50 levels which had significant difference were found to be not associated with serum 25(OH)D levels. Vitamin D might mediate a link between the innate and adaptive immune responses via the induction of Th1/Th17 polarization of cytokine responses and isotype regulation of antibody production, along with the maintenance of the capacity of the alternative complement pathway, in response to a UPEC infection. However, further studies are needed to validate the defined nature of the host immune response.
Collapse
Affiliation(s)
- Leila Pirdel
- Department of Medicine, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Manijeh Pirdel
- Department of Midwifery, Astara Branch, Islamic Azad University, Astara, Iran
| |
Collapse
|
6
|
Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol Immunol 2019; 108:56-67. [PMID: 30784763 DOI: 10.1016/j.molimm.2019.02.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Urinary tract infections (UTIs) are recognized as one of the most common infectious diseases in the world that can be divided to different types. Uropathogenic Escherichia coli (UPEC) strains are the most prevalent causative agent of UTIs that applied different virulence factors such as fimbriae, capsule, iron scavenger receptors, flagella, toxins, and lipopolysaccharide for their pathogenicity in the urinary tract. Despite the high pathogenicity of UPEC strains, host utilizes different immune systems such as innate and adaptive immunity for eradication of them from the urinary tract. The routine therapy of UTIs is based on the use of antibiotics such as β-lactams, trimethoprim, nitrofurantoin and quinolones in many countries. Unfortunately, the widespread and misuse of these antibiotics resulted in the increasing rate of resistance to them in the societies. Increasing antibiotic resistance and their side effects on human body show the need to develop alternative strategies such as vaccine against UTIs. Developing a vaccine against UTI pathogens will have an important role in reduction the mortality rate as well as reducing economic costs. Different vaccines based on the whole cells (killed or live-attenuated vaccines) and antigens (subunits, toxins and conjugatedvaccines) have been evaluated against UTIs pathogens. Furthermore, other therapeutic strategies such as the use of probiotics and antimicrobial peptides are considered against UTIs. Despite the extensive efforts, limited success has been achieved and more studies are needed to reach an alternative of antibiotics for treatment of UTIs.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran.
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran.
| |
Collapse
|
7
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
8
|
BAKHTIARI R, AHMADIAN S, FALLAH MEHRABADI J. Rising Cellular Immune Response after Injection of pVax/iutA: A Genetic DNA Cassette as Candidate Vaccine against Urinary Tract Infection. IRANIAN JOURNAL OF PUBLIC HEALTH 2016; 45:890-6. [PMID: 27516995 PMCID: PMC4980343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) are major bacterial agent of Urinary Tract Infection (UTI). This infection is more prevalent among women because approximately half of all women will experience a UTI in their life-time and near a quarter of them will have a recurrent infection within 6-12 months. IutA protein has a major role during UPEC pathogenesis and consequently infection. Therefore, the aim of current study was assessment of IutA protein roles as a potential candidate antigen based for vaccine designing. METHODS This survey was conducted during 2014-2015 at the University of Tehran, Iran. Chromosomal DNA extracted from E. coli 35218 and iutA gene amplified by PCR. The amplicon cloned to pVax.1 eukaryotic expression vector and recombinant vector confirmed by sequencing. The iutA gene expression in genetic cassette of pVax/iutA was evaluated in COS7 cell line by RT-PCR. Then, injected to mouse model, which divided to three groups: injected with pVax vector, PBS and pVax/iutA cassette respectively in two stages (d 1 and 14). One week after the second injection, bleeding from immunized mouse was performed and IFN-gamma was measured. RESULTS The mice immunized with pVax/iutA showed increased interferon-γ responses significantly higher than two non-immunized groups (P<0.05). CONCLUSION Cellular immune response has a main protective role against UTI. Raising this kind of immune response is important to preventing of recurrent infection. Moreover, the current DNA cassette will be valuable for more trying to prepare a new vaccine against UTI.
Collapse
Affiliation(s)
- Ronak BAKHTIARI
- Dept. of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran,Division of Microbiology, Dept. of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin AHMADIAN
- Dept. of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran,Corresponding Author:
| | | |
Collapse
|