1
|
Li M, Zhang L, Huang B, Liu Y, Chen Y, Lip GYH. Free fatty acids and mortality among adults in the United States: a report from US National Health and Nutrition Examination Survey (NHANES). Nutr Metab (Lond) 2024; 21:72. [PMID: 39256788 PMCID: PMC11389384 DOI: 10.1186/s12986-024-00844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The relationship between free fatty acids (FFAs) and the risk of mortality remains unclear. There is a scarcity of prospective studies examining the associations between specific FFAs, rather than total concentrations, of their effect on long-term health outcomes. OBJECTIVE To evaluate the correlation between different FFAs and all-cause and cardiovascular mortality in a large, diverse, nationally representative sample of adults in the US, and examine how different FFAs may mediate this association. METHODS This cohort study included unsaturated fatty acids (USFA) and saturated fatty acids (SFA) groups in the US National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014 and provided blood samples for FFAs levels. Multiple model calibration was performed using Cox regression analysis for known risk factors to explore the associations between FFAs and all-cause and cardiovascular mortality. RESULTS In the group of USFA, 3719 people were included, median follow-up, 6.7 years (5.8-7.8 years). In the SFA group, we included 3900 people with a median follow-up, 6.9 years (5.9-8 years). In the USFA group, myristoleic acid (14:1 n-5) (hazard ratio (HR) 1.02 [1.006-1.034]; P = 0.004), palmitoleic acid (16:1 n-7) (HR 1.001 [1.001-1.002]; P < 0.001), cis-vaccenic acid (18:1 n-7) (HR 1.006 [1.003-1.009]; P < 0.001), nervonic acid (24:1 n-9) (HR 1.007 [1.002-1.012]; P = 0.003), eicosatrienoic acid (20:3 n-9) (HR 1.027 [1.009-1.046]; P = 0.003), docosatetraenoic acid (22:4 n-6) (HR 1.024 [1.012-1.036]; P < 0.001), and docosapentaenoic acid (22:5 n-6) (HR 1.019 [1.006-1.032]; P = 0.005) were positively associated with the all-cause mortality, while docosahexaenoic acid (22:6 n-3) had a statistically lower risk of all-cause mortality (HR 0.998 [0.996-0.999]; P = 0.007). Among the SFA group, palmitic acid (16:0) demonstrated a higher risk of all-cause mortality (HR 1.00 [1.00-1.00]; P = 0.022), while tricosanoic acid (23:0) (HR 0.975 [0.959-0.991]; P = 0.002) and lignoceric acid (24:0) (HR 0.992 [0.984-0.999]; P = 0.036) were linked to a lower risk of all-cause mortality. Besides 23:0 and 24:0, the other FFAs mentioned above were linearly associated with the risks of all-cause mortality. CONCLUSIONS In this nationally representative cohort of US adults, some different FFAs exhibited significant associations with risk of all-cause mortality. Achieving optimal concentrations of specific FFAs may lower this risk of all-cause mortality, but this benefit was not observed in regards to cardiovascular mortality.
Collapse
Affiliation(s)
- Meng Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bi Huang
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Chen
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Zhao Z, Dong S, Sun T, Han K, Huang X, Ma M, Yang S, Zhou Y. The association between higher FFAs and high residual platelet reactivity among CAD patients receiving clopidogrel therapy. Front Cardiovasc Med 2023; 10:1115142. [PMID: 37304959 PMCID: PMC10250738 DOI: 10.3389/fcvm.2023.1115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Metabolic abnormalities are associated with the occurrence, severity, and poor prognosis of coronary artery disease (CAD), some of which affect the antiplatelet efficacy of clopidogrel. Free fatty acids (FFAs) is a biomarker for metabolic abnormalities, and elevated FFAs is observed among CAD patients. Whether FFAs enhances residual platelet reactivity induced by adenosine diphosphate (ADP) while using clopidogrel was unknown. The purpose of our study is exploring the issue. Method Current study included 1,277 CAD patients using clopidogrel and used logistic regression to detect whether the higher level of FFAs is associated with high residual platelet reactivity (HRPR). We additionally performed subgroup and sensitivity analyses to evaluate the stability of the results. We defined HRPR as ADP-induced platelet inhibition rate (ADPi) < 50% plus ADP-induced maximum amplitude (MAADP) > 47 mm. Results 486 patients (38.1%) showed HRPR. The proportion of HRPR among patients with higher FFAs (>0.445 mmol/L) is greater than among patients with lower FFAs (46.4% vs. 32.6%, P < 0.001). Multivariate logistic regression demonstrated that higher FFAs (>0.445 mmol/L) is independently associated with HRPR (adjusted OR = 1.745, 95% CI, 1.352-2.254). After subgroup and sensitivity analyses, the results remained robust. Conclusion The higher level of FFAs enhances residual platelet reactivity induced by ADP and is independently associated with clopidogrel HRPR.
Collapse
Affiliation(s)
- Zehao Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Shutong Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Tienan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Kangning Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Xin Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Meishi Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Shiwei Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Cheng J, Lyu Y, Mei Y, Chen Q, Liu H, Li Y. Serum growth differentiation factor-15 and non-esterified fatty acid levels in patients with coronary artery disease and hyperuricemia. Lipids Health Dis 2023; 22:31. [PMID: 36864452 PMCID: PMC9979416 DOI: 10.1186/s12944-023-01792-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND High serum NEFA and GDF-15 are risk factors for CAD and have been linked to detrimental cardiovascular events. It has been hypothesized that hyperuricemia causes CAD via the oxidative metabolism and inflammation. The current study sought to clarify the relationship between serum GDF-15/NEFA and CAD in individuals with hyperuricemia. METHODS Blood samples collected from 350 male patients with hyperuricemia(191 patients without CAD and 159 patients with CAD, serum UA > 420 μmol/L) to measure serum GDF-15 and NEFA concentrations with baseline parameters. RESULTS Serum circulating GDF-15 concentrations(pg/dL) [8.48(6.67,12.73)] and NEFA levels(mmol/L) [0.45(0.32,0.60)] were higher in hyperuricemia patients with CAD. Logistic regression analysis revealed that the OR (95% CI) for CAD were 10.476 (4.158, 26.391) and 11.244 (4.740, 26.669) in quartile 4 (highest) respectively. The AUC of the combined serum GDF-15 and NEFA was 0.813 (0.767,0.858) as a predictor of whether CAD occurred in male with hyperuricemia. CONCLUSIONS Circulating GDF-15 and NEFA levels correlated positively with CAD in male patients with hyperuricemia and measurements may be a useful clinical adjunct.
Collapse
Affiliation(s)
- Jingru Cheng
- grid.412632.00000 0004 1758 2270Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongnan Lyu
- grid.412632.00000 0004 1758 2270Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Mei
- grid.412632.00000 0004 1758 2270Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- grid.412632.00000 0004 1758 2270Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hang Liu
- grid.412632.00000 0004 1758 2270Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Clinical Laboratory,institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Luo XY, Zhong Z, Chong AG, Zhang WW, Wu XD. Function and Mechanism of Trimetazidine in Myocardial Infarction-Induced Myocardial Energy Metabolism Disorder Through the SIRT1-AMPK Pathway. Front Physiol 2021; 12:645041. [PMID: 34220528 PMCID: PMC8248253 DOI: 10.3389/fphys.2021.645041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Myocardial energy metabolism (MEM) is an important factor of myocardial injury. Trimetazidine (TMZ) provides protection against myocardial ischemia/reperfusion injury. The current study set out to evaluate the effect and mechanism of TMZ on MEM disorder induced by myocardial infarction (MI). Firstly, a MI mouse model was established by coronary artery ligation, which was then treated with different concentrations of TMZ (5, 10, and 20 mg kg-1 day-1). The results suggested that TMZ reduced the heart/weight ratio in a concentration-dependent manner. TMZ also reduced the levels of Bax and cleaved caspase-3 and promoted Bcl-2 expression. In addition, TMZ augmented adenosine triphosphate (ATP) production and superoxide dismutase (SOD) activity induced by MI and decreased the levels of lipid peroxide (LPO), free fatty acids (FFA), and nitric oxide (NO) in a concentration-dependent manner (all P < 0.05). Furthermore, an H2O2-induced cell injury model was established and treated with different concentrations of TMZ (1, 5, and 10 μM). The results showed that SIRT1 overexpression promoted ATP production and reactive oxygen species (ROS) activity and reduced the levels of LPO, FFA, and NO in H9C2 cardiomyocytes treated with H2O2 and TMZ. Silencing SIRT1 suppressed ATP production and ROS activity and increased the levels of LPO, FFA, and NO (all P < 0.05). TMZ activated the SIRT1-AMPK pathway by increasing SIRT1 expression and AMPK phosphorylation. In conclusion, TMZ inhibited MI-induced myocardial apoptosis and MEM disorder by activating the SIRT1-AMPK pathway.
Collapse
Affiliation(s)
- Xiu-Ying Luo
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Zhong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Guo Chong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Wei Zhang
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Dong Wu
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Wu C, Chen X. Association of Serum Nonesterified Fatty Acids with Cardiovascular Event in Patients with Chronic Kidney Disease. Int J Gen Med 2021; 14:2033-2040. [PMID: 34079342 PMCID: PMC8164389 DOI: 10.2147/ijgm.s309595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Chronic kidney disease (CKD) has been suggested to be associated with a high risk of cardiovascular diseases (CVD). The study aimed to evaluate the prognostic significance of nonesterified fatty acid (NEFA), also well known as free fatty acid, on predicting cardiovascular events in patients with CKD. Methods A total of 957 hospitalized patients with CKD in a stable clinical condition were enrolled at baseline. Then, the serum NEFA levels were measured. These included patients were prospectively followed up for a median of 10.2 years (range=0.4–11.5 years). We assessed whether serum NEFA levels at baseline can predict cardiovascular event during the follow-up. Results A total of 278 (29.1%) patients experienced cardiovascular events during follow-up. The Kaplan–Meier curve demonstrated that patients with higher serum NEFA levels (≥19.8 mg/dl) had a higher rate of cardiovascular events than patients with lower NEFA levels (<19.8 mg/dl). Multivariate Cox regression analysis suggested that elevated serum NEFA levels (HR=1.62; 95% CI 1.40–2.16, P<0.001) were independently associated with increased risk of cardiovascular events after correction for clinical confounding factors. Conclusion Elevated serum NEFA levels were associated with higher risk of cardiovascular events and may be a new parameter predicting cardiovascular events in patients with CKD, which may strengthen its potential effect in clinical practice.
Collapse
Affiliation(s)
- Chentang Wu
- Department of Cardiovascular Medicine, Mindong Hospital of Fujian Medical University, Fuan, Fujian, 355000, People's Republic of China
| | - Xueyun Chen
- Department of Endocrinology, Mindong Hospital of Fujian Medical University, Fuan, Fujian, 355000, People's Republic of China
| |
Collapse
|
6
|
Kharazmi-Khorassani J, Ghafarian Zirak R, Ghazizadeh H, Zare-Feyzabadi R, Kharazmi-Khorassani S, Naji-Reihani-Garmroudi S, Kazemi E, Esmaily H, Javan-Doust A, Banpour H, Mohammadi-Bajgiran M, Besharatlou MR, Ferns GA, Hashemi M, Ghayour-Mobarhan M. The role of serum monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) in cardiovascular disease risk. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021049. [PMID: 33988177 PMCID: PMC8182619 DOI: 10.23750/abm.v92i2.9235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fatty acids have been observed as independent risk factors of cardiovascular diseases (CVD). In this study we investigated FFA levels in patients with CVD, and, its risk factors. MATERIAL AND METHODS In this case-control study, 346 unrelated Iranian patients who underwent coronary angiography were enrolled. Participants were categorized into two groups: who had >50% stenosis were assigned to the angiogram positive group (N=90) and those with <30% stenosis were assigned to the angiogram negative group (N=124) and also 222 subjects were healthy. Several risk factors were assessed in all participants, including anthropometric indices, blood pressure, lipid profiles, and biochemical factors. The levels of FFAs were determined using gas chromatography. Serum FFA concentrations were compared between healthy and patients with positive and negative angiograms. The association of serum FFA levels with four major risk factors (hypertension, high fasting blood glucose (FBG) level, high BMI and WHR) were also assessed. RESULTS According to our data, it has been shown that median of FFAs was higher in patients than healthy subjects (p<0.0001), such as SFA and n6-FFAs (in patients 1.59 (1.27) and 1.22 (1.06), respectively and healthy subjects 0.33 (0.38) and 0.36 (0.35)). According to anthropometric and biochemical data, we did not show statistical differences between the groups, except FBG, SBP and hs-CRP that showed significantly higher levels in the patients than controls (p<0.0001, p=0.001). Also, lower median levels of total cholesterol, LDL-C, HDL-C and DBP were observed in patients which can due to lipid-lowering medication use like Statins. CONCLUSION High serum levels of FFAs are considered as an independent risk factor for CVDs, while various types of FFAs can have different influences on CVD risk factors. Therefore, longitudinal studies are needed to clarify the association between FFAs and CVD risk factors. High serum levels of FFAs are considered as an independent risk factor for CVDs, while various types of FFAs can have different influences on CVD risk factors. Therefore, longitudinal studies are needed to clarify the association between FFAs and CVD risk factors.
Collapse
|
7
|
Henderson GC, Meyer JM. Transient elevation of triacylglycerol content in the liver: a fundamental component of the acute response to exercise. J Appl Physiol (1985) 2021; 130:1293-1303. [PMID: 33475457 DOI: 10.1152/japplphysiol.00930.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Exercise is well appreciated as a therapeutic approach to improve health. Although chronic exercise training can change metabolism, even a single exercise session can have significant effects upon metabolism. Responses of adipose tissue lipolysis and skeletal muscle triacylglycerol (TAG) utilization have been well appreciated as components of the acute exercise response. However, there are other central components of the physiological response to be considered, as well. A robust and growing body of literature depicts a rapid responsiveness of hepatic TAG content to single bouts of exercise, and there is a remaining need to incorporate this information into our overall understanding of how exercise affects the liver. TAG content in the liver increases during an exercise session and can continue to rise for a few hours afterwards, followed by a fairly rapid return to baseline. Here, we summarize evidence that rapid responsiveness of hepatic TAG content to metabolic stress is a fundamental component of the exercise response. Adipose tissue lipolysis and plasma free fatty acid concentration are likely the major metabolic controllers of enhanced lipid storage in the liver after each exercise bout, and we discuss nutritional impacts as well as health implications. Although traditionally clinicians would be merely concerned with hepatic lipids in overnight-fasted, rested individuals, it is now apparent that the content of hepatic TAG fluctuates in response to metabolic challenges such as exercise, and these responses likely exert significant impacts on health and cellular homeostasis.
Collapse
Affiliation(s)
| | - Juliauna M. Meyer
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
8
|
Zhang MH, Cao YX, Wu LG, Guo N, Hou BJ, Sun LJ, Guo YL, Wu NQ, Dong Q, Li JJ. Association of plasma free fatty acids levels with the presence and severity of coronary and carotid atherosclerotic plaque in patients with type 2 diabetes mellitus. BMC Endocr Disord 2020; 20:156. [PMID: 33087077 PMCID: PMC7579983 DOI: 10.1186/s12902-020-00636-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previous studies have suggested that patients with diabetes mellitus (DM) have higher prevalence of atherosclerotic cardiovascular disease (ASCVD), and plasma levels of free fatty acids (FFAs) are a useful marker for predicting ASCVD. We hypothesized that FFAs could predict both coronary and carotid lesions in an individual with type 2 DM (T2DM). The present study, hence, was to investigate the relation of plasma FFA level to the presence and severity of coronary and carotid atherosclerosis in patients with T2DM. METHODS Three hundred and two consecutive individuals with T2DM who have received carotid ultrasonography and coronary angiography due to chest pain were enrolled in this study. Plasma FFAs were measured using an automatic biochemistry analyzer. Coronary and carotid severity was evaluated by Gensini score and Crouse score respectively. Subsequently, the relation of FFA levels to the presence and severity of coronary artery disease (CAD) and carotid atherosclerotic plaque (CAP) in whole individuals were also assessed. RESULTS Increased plasma FFA levels were found in the groups either CAD or CAP compared to those without. Patients with higher level of FFAs had a higher CAD (89.9%) and elevated prevalence of CAP (69.7%). And also, patients with higher level of FFAs had a higher Gensini and Crouse scores. Multivariate regression analysis showed that FFA levels were independently associated with the presence of CAD and CAP (OR = 1.83, 95%CI: 1.27-2.65, P = 0.001; OR = 1.62, 95%CI: 1.22-2.14, P = 0.001, respectively). The area under the curve (AUC) was 0.68 and 0.65 for predicting the presence of CAD and CAP in patients with DM respectively. CONCLUSIONS The present study firstly indicated that elevated FFA levels appeared associated with both the presence and severity of CAD and CAP in patients with T2DM, suggesting that plasma FFA levels may be a useful biomarker for improving management of patients with T2DM.
Collapse
Affiliation(s)
- Ming-Hua Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
- Department of Internal Medicine, The People's Hospital of Tang Xian County, Baoding, 072350, Hebei, China
| | - Ye-Xuan Cao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Li-Guo Wu
- Department of Internal Medicine, The People's Hospital of Tang Xian County, Baoding, 072350, Hebei, China
| | - Na Guo
- Department of Internal Medicine, The People's Hospital of Tang Xian County, Baoding, 072350, Hebei, China
| | - Bing-Jie Hou
- Department of Internal Medicine, The People's Hospital of Tang Xian County, Baoding, 072350, Hebei, China
| | - Li-Jing Sun
- Department of Internal Medicine, The People's Hospital of Tang Xian County, Baoding, 072350, Hebei, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China.
| |
Collapse
|
9
|
Nooromid M, Chen EB, Xiong L, Shapiro K, Jiang Q, Demsas F, Eskandari M, Priyadarshini M, Chang EB, Layden BT, Ho KJ. Microbe-Derived Butyrate and Its Receptor, Free Fatty Acid Receptor 3, But Not Free Fatty Acid Receptor 2, Mitigate Neointimal Hyperplasia Susceptibility After Arterial Injury. J Am Heart Assoc 2020; 9:e016235. [PMID: 32580613 PMCID: PMC7670501 DOI: 10.1161/jaha.120.016235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Arterial restenosis after vascular surgery is a common cause of midterm restenosis and treatment failure. Herein, we aim to investigate the role of microbe‐derived butyrate, FFAR2 (free fatty acid receptor 2), and FFAR3 (free fatty acid receptor 3) in mitigating neointimal hyperplasia development in remodeling murine arteries after injury. Methods and Results C57BL/6 mice treated with oral vancomycin before unilateral femoral wire injury to deplete gut microbiota had significantly diminished serum and stool butyrate and more neointimal hyperplasia development after arterial injury, which was reversed by concomitant butyrate supplementation. Deficiency of FFAR3 but not FFAR2, both receptors for butyrate, exacerbated neointimal hyperplasia development after injury. FFAR3 deficiency was also associated with delayed recovery of the endothelial layer in vivo. FFAR3 gene expression was observed in multiple peripheral arteries, and expression was increased after arterial injury. Treatment of endothelial but not vascular smooth muscle cells with the pharmacologic FFAR3 agonist 1‐methylcyclopropane carboxylate stimulated cellular migration and proliferation in scratch assays. Conclusions Our results support a protective role for butyrate and FFAR3 in the development of neointimal hyperplasia after arterial injury and delineate activation of the butyrate‐FFAR3 pathway as a valuable strategy for the prevention and treatment of neointimal hyperplasia.
Collapse
Affiliation(s)
- Michael Nooromid
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Edmund B Chen
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Liqun Xiong
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Katherine Shapiro
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Qun Jiang
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Falen Demsas
- Geisel School of Medicine at Dartmouth Hanover NH
| | - Maeve Eskandari
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| | - Medha Priyadarshini
- Department of Medicine University of Illinois at Chicago and Jesse Brown VA Medical Center Chicago IL
| | - Eugene B Chang
- Section of Gastroenterology Department of Medicine University of Chicago, Chicago, IL
| | - Brian T Layden
- Department of Medicine University of Illinois at Chicago and Jesse Brown VA Medical Center Chicago IL
| | - Karen J Ho
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago IL
| |
Collapse
|
10
|
Flori L, Donnini S, Calderone V, Zinnai A, Taglieri I, Venturi F, Testai L. The Nutraceutical Value of Olive Oil and Its Bioactive Constituents on the Cardiovascular System. Focusing on Main Strategies to Slow Down Its Quality Decay during Production and Storage. Nutrients 2019; 11:E1962. [PMID: 31438562 PMCID: PMC6770508 DOI: 10.3390/nu11091962] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases represent the principal cause of morbidity and mortality worldwide. It is well-known that oxidative stress and inflammatory processes are strongly implicated in their pathogenesis; therefore, anti-oxidant and anti-inflammatory agents can represent effective tools. In recent years a large number of scientific reports have pointed out the nutraceutical and nutritional value of extra virgin olive oils (EVOO), strongholds of the Mediterranean diet, endowed with a high nutritional quality and defined as functional foods. In regard to EVOO, it is a food composed of a major saponifiable fraction, represented by oleic acid, and a minor unsaponifiable fraction, including a high number of vitamins, polyphenols, and squalene. Several reports suggest that the beneficial effects of EVOO are linked to the minor components, but recently, further studies have shed light on the health effects of the fatty fraction and the other constituents of the unsaponifiable fraction. In the first part of this review, an analysis of the clinical and preclinical evidence of the cardiovascular beneficial effects of each constituent is carried out. The second part of this review is dedicated to the main operating conditions during production and/or storage that can directly influence the shelf life of olive oil in terms of both nutraceutical properties and sensory quality.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Centre, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Interdepartmental Research Centre, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Francesca Venturi
- Interdepartmental Research Centre, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
- Interdepartmental Research Centre, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
11
|
Coverdale JPC, Katundu KGH, Sobczak AIS, Arya S, Blindauer CA, Stewart AJ. Ischemia-modified albumin: Crosstalk between fatty acid and cobalt binding. Prostaglandins Leukot Essent Fatty Acids 2018; 135:147-157. [PMID: 30103926 PMCID: PMC6109191 DOI: 10.1016/j.plefa.2018.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia is difficult to diagnose effectively with still few well-defined biochemical markers for identification in advance, or in the absence of myocardial necrosis. "Ischemia-modified albumin" (IMA), a form of albumin displaying reduced cobalt-binding affinity, is significantly elevated in ischemic patients, and the albumin cobalt-binding (ACB) assay can measure its level indirectly. Elucidating the molecular mechanism underlying the identity of IMA and the ACB assay hinges on understanding metal-binding properties of albumin. Albumin binds most metal ions and harbours four primary metal binding sites: site A, site B, the N-terminal site (NTS), and the free thiol at Cys34. Previous efforts to clarify the identity of IMA and the causes for its reduced cobalt-binding capacity were focused on the NTS site, but the degree of N-terminal modification could not be correlated to the presence of ischemia. More recent work suggested that Co2+ ions as used in the ACB assay bind preferentially to site B, then to site A, and finally to the NTS. This insight paved the way for a new consistent molecular basis of the ACB assay: albumin is also the main plasma carrier for free fatty acids (FFAs), and binding of a fatty acid to the high-affinity site FA2 results in conformational changes in albumin which prevent metal binding at site A and partially at site B. Thus, this review advances the hypothesis that high IMA levels in myocardial ischemia and many other conditions originate from high plasma FFA levels hampering the binding of Co2+ to sites A and/or B. This is supported by biophysical studies and the co-association of a range of pathological conditions with positive ACB assays and high plasma FFA levels.
Collapse
Affiliation(s)
| | - Kondwani G H Katundu
- School of Medicine, University of St Andrews, St Andrews, United Kingdom; College of Medicine, University of Malawi, Blantyre, Malawi
| | - Amélie I S Sobczak
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | | | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.
| |
Collapse
|
12
|
Zhang HW, Zhao X, Guo YL, Zhu CG, Wu NQ, Sun J, Liu G, Dong Q, Li JJ. Free fatty acids and cardiovascular outcome: a Chinese cohort study on stable coronary artery disease. Nutr Metab (Lond) 2017; 14:41. [PMID: 28674554 PMCID: PMC5485743 DOI: 10.1186/s12986-017-0195-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/13/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hui-Wen Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| | - Xi Zhao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| | - Geng Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037 China
| |
Collapse
|
13
|
Ischemia-Modified Albumin as a Marker of Acute Coronary Syndrome: The Case for Revising the Concept of "N-Terminal Modification" to "Fatty Acid Occupation" of Albumin. DISEASE MARKERS 2017; 2017:5692583. [PMID: 28356609 PMCID: PMC5357514 DOI: 10.1155/2017/5692583] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/19/2017] [Indexed: 02/07/2023]
Abstract
Ischemia-modified albumin (IMA) is assumed “N-terminal modified” albumin which is generated immediately following myocardial ischemia. The diagnosis of IMA is based on reduced cobalt binding affinity to albumin which is attributed mainly to incapability of cobalt to bind at albumin's modified N-terminus. Although the albumin cobalt binding test was accepted as a potentially powerful marker for discriminating acute coronary syndrome from nonischemic chest pain, its usefulness has been brought into question in recent years. Patients with acutely ischemic myocardium exhibit a rapid increase in serum levels of fatty acids (FAs). Almost all released FAs are strongly bound to albumin which create conformational changes in the protein with resultant reduced cobalt binding affinity. There is a clear metabolic and temporal relationship between IMA measured via albumin cobalt binding testing and serum levels of FAs. In line with what has been suggested recently in the literature, we conclude that a shift from the concept of “N-terminal modified” to “FA-occupied” albumin is required, as this better describes IMA in patients with acute coronary syndrome. We also offer “oxidation modified albumin, OMA,” which is conceptually different from the “FA-occupied” IMA, to describe modification of albumin in chronic disease associated with increased oxidative stress.
Collapse
|
14
|
Liu J, Wang P, Douglas SL, Tate JM, Sham S, Lloyd SG. Impact of high-fat, low-carbohydrate diet on myocardial substrate oxidation, insulin sensitivity, and cardiac function after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2016; 311:H1-H10. [PMID: 27199129 PMCID: PMC4967196 DOI: 10.1152/ajpheart.00809.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/02/2016] [Indexed: 01/10/2023]
Abstract
High-fat, low-carbohydrate Diet (HFLCD) impairs the myocardial response to ischemia-reperfusion, but the underlying mechanisms remain elusive. We sought to determine the magnitude of diet-induced alterations in intrinsic properties of the myocardium (including insulin sensitivity and substrate oxidation) and circulating substrate and insulin differences resulting from diet, leading to this impaired response. Rats were fed HFLCD (60% kcal from fat/30% protein/10% carbohydrate) or control diet (CONT) (16%/19%/65%) for 2 wk. Isolated hearts underwent global low-flow ischemia followed by reperfusion (I/R). Carbon-13 NMR spectroscopy was used to determine myocardial substrate TCA cycle entry. Myocardial insulin sensitivity was assessed as dose-response of Akt phosphorylation. There was a significant effect of HFLCD and I/R with both these factors leading to an increase in free fatty acid (FFA) oxidation and a decrease in carbohydrate or ketone oxidation. Following I/R, HFLCD led to decreased ketone and increased FFA oxidation; the recovery of left ventricular (LV) function was decreased in HFLCD and was negatively correlated with FFA oxidation and positively associated with ketone oxidation. HFLCD also resulted in reduced insulin sensitivity. Under physiologic ranges, there were no direct effects of buffer insulin and ketone levels on oxidation of any substrate and recovery of cardiac function after I/R. An insulin-ketone interaction exists for myocardial substrate oxidation characteristics. We conclude that the impaired recovery of function after ischemia-reperfusion with HFLCD is largely due to intrinsic diet effects on myocardial properties, rather than to diet effect on circulating insulin or substrate levels.
Collapse
Affiliation(s)
- Jian Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, National University of Singapore, Singapore; and
| | - Samuel L Douglas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua M Tate
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Simon Sham
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven G Lloyd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
15
|
Perdomo L, Beneit N, Otero YF, Escribano Ó, Díaz-Castroverde S, Gómez-Hernández A, Benito M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol 2015; 14:75. [PMID: 26055507 PMCID: PMC4475625 DOI: 10.1186/s12933-015-0237-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several translational studies have identified the differential role between saturated and unsaturated fatty acids at cardiovascular level. However, the molecular mechanisms that support the protective role of oleate in cardiovascular cells are poorly known. For these reasons, we studied the protective role of oleate in the insulin resistance and in the atherosclerotic process at cellular level such as in cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). METHODS The effect of oleate in the cardiovascular insulin resistance, vascular dysfunction, inflammation, proliferation and apoptosis of VSMCs were analyzed by Western blot, qRT-PCR, BrdU incorporation and cell cycle analysis. RESULTS Palmitate induced insulin resistance. However, oleate not only did not induce cardiovascular insulin resistance but also had a protective effect against insulin resistance induced by palmitate or TNFα. One mechanism involved might be the prevention by oleate of JNK-1/2 or NF-κB activation in response to TNF-α or palmitate. Oleate reduced MCP-1 and ICAM-1 and increased eNOS expression induced by proinflammatory cytokines in ECs. Furthermore, oleate impaired the proliferation induced by TNF-α, angiotensin II or palmitate and the apoptosis induced by TNF-α or thapsigargin in VSMCs. CONCLUSIONS Our data suggest a differential role between oleate and palmitate and support the concept of the cardioprotector role of oleate as the main lipid component of virgin olive oil. Thus, oleate protects against cardiovascular insulin resistance, improves endothelial dysfunction in response to proinflammatory signals and finally, reduces proliferation and apoptosis in VSMCs that may contribute to an ameliorated atherosclerotic process and plaque stability.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Apoptosis/drug effects
- Atherosclerosis/metabolism
- Blotting, Western
- Cell Line
- Cell Proliferation/drug effects
- Chemokine CCL2/drug effects
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Inflammation
- Insulin Resistance
- Intercellular Adhesion Molecule-1/drug effects
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- MAP Kinase Signaling System/drug effects
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/drug effects
- NF-kappa B/drug effects
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type III/drug effects
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oleic Acid/pharmacology
- Palmitates/pharmacology
- Palmitic Acid/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Necrosis Factor-alpha/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Liliana Perdomo
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Nuria Beneit
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Yolanda F Otero
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Sabela Díaz-Castroverde
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Almudena Gómez-Hernández
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| |
Collapse
|
16
|
Xiong Z, Xu H, Huang X, Ärnlöv J, Qureshi AR, Cederholm T, Sjögren P, Lindholm B, Risérus U, Carrero JJ. Nonesterified fatty acids and cardiovascular mortality in elderly men with CKD. Clin J Am Soc Nephrol 2015; 10:584-91. [PMID: 25637632 DOI: 10.2215/cjn.08830914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/06/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Although nonesterified fatty acids (NEFAs) are essential as energy substrate for the myocardium, an excess of circulating NEFAs can be harmful. This study aimed to assess plausible relationships between serum NEFA and mortality due to cardiovascular disease (CVD) in individuals with CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This was a prospective cohort study from the third examination cycle of the Uppsala Longitudinal Study of Adult Men, a population-based survey of 1221 elderly men aged 70-71 years residing in Uppsala, Sweden. Data collection took place during 1991-1995. All participants had measures of kidney function; this study investigated 623 (51.7%) of these patients with manifest CKD (defined as either eGFR<60 ml/min per 1.73 m(2) or urine albumin excretion rate ≥20 µg/min). Follow-up for mortality was done from examination date until death or December 31, 2007. After a median follow-up of 14 years (interquartile range, 8-16.8), associations of NEFAs with mortality (related to all causes, CVD, ischemic heart disease [IHD], or acute myocardial infarction) were ascertained. RESULTS The median serum NEFA was 14.1 mg/dl (interquartile range, 11.3-17.8). No association was found with measures of kidney function. Diabetes and serum triglycerides were the only multivariate correlates of NEFA. During follow-up, 453 participants died, of which 209 deaths were due to CVD, including 88 IHD deaths, with 41 attributed to acute myocardial infarction (AMI). In fully adjusted covariates, serum NEFA was an independent risk factor for all-cause mortality (hazard ratio [HR] per log2 increase, 1.22; 95% confidence interval [95% CI], 1.00 to 1.48) and CVD-related death (HR, 1.51; 95% CI, 1.15 to 1.99), including both IHD (HR, 1.51; 95% CI, 1.00 to 2.32) and AMI mortality (HR, 2.08; 95% CI, 1.09 to 3.98). CONCLUSIONS Elevated serum NEFA associated with CVD mortality, and particularly with mortality due to AMI, in a homogeneous population of older men with moderate CKD.
Collapse
Affiliation(s)
- Zibo Xiong
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, and Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hong Xu
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, and
| | - Xiaoyan Huang
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Johan Ärnlöv
- Molecular Epidemiology, Department of Medical Sciences, and School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Abdul Rashid Qureshi
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, and
| | - Tommy Cederholm
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; and
| | - Per Sjögren
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; and
| | - Bengt Lindholm
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, and
| | - Ulf Risérus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; and
| | - Juan Jesús Carrero
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden;
| |
Collapse
|
17
|
Lv ZH, Ma P, Luo W, Xiong H, Han L, Li SW, Zhou X, Tu JC. Association between serum free fatty acid levels and possible related factors in patients with type 2 diabetes mellitus and acute myocardial infarction. BMC Cardiovasc Disord 2014; 14:159. [PMID: 25399059 PMCID: PMC4236447 DOI: 10.1186/1471-2261-14-159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 10/27/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Free fatty acids (FFAs) play importance roles in the development of diabetes and cardiovascular diseases. We measured serum FFA levels from type 2 diabetes mellitus (T2DM) and acute myocardial infarction (AMI) patients and assay the correlation between serum FFA levels and related factors. The present study was undertaken to investigate a possible relation between the changes in serum free fatty acid concentration with acute myocardial infarction and type 2 diabetes mellitus. METHODS The study population consisted of 540 healthy individuals and 103 patients with T2DM, 59 patients with AMI and 21 volunteers. Serum FFAs were measured with high pressure liquid chromatography. Blood urea nitrogen and uric acid were measured in clinical laboratory, as were glycemic, lipid and blood routine parameters. We selected 242 individuals with age over 60 years, 143 healthy individuals and 52 patients with T2DM, 47 patients with AMI were incorporated into three groups as control group, T2DM group and AMI group. Associations were analyzed with stepwise regression analysis with adjusted for age, sex, body mass index. RESULTS Serum FFA levels were significantly higher in the age over 60 years individuals compared to 20 ~ 50 years (logFFA μmmol/L:2.60 ± 0.16 vs. 2.73 ± 0.18, P < .001) in the healthy group. We found lower FFA levels in the AMI compared to the T2DM and control group (2.64 ± 0.22 vs. 2.72 ± 0.13&2.72 ± 0.16, respectively, P < .05&P < 0.01) in the age over 60, fasting blood glucose level higher in the AMI and T2DM (5.78 ± 1.32&7.75 ± 2.93 mmol/L vs. 4.90 ± 0.47 mmol/L, P < .01&P < .001) compared with the normal group, HDL level (1.01 ± 0.22&0.98 ± 0.18 mmol/L vs.1.30 ± 0.22 mmol/L, P < .001&P < .001). With stepwise regression analysis, the serum FFA levels was positively associated with the HDL in the control group (YlogFFA = 2.32 + 0.33XHDL, R = 0.26, P < .01) and T2MD (YlogFFA = 2.46 + 0.27XHDL, R = 0.36, P < .05), AST in AMI (YlogFFA =2.24 + 0. 015XAST, R = 0.49, P < .01). CONCLUSIONS Compared to control group, serum FFA levels were decreased only in AMI group, while HDL level was increased in both AMI and T2DM group. The serum FFA levels were positive association with the HDL level in both T2DM and control group, FFA levels were positive association with AST in AMI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Zhou
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | | |
Collapse
|