1
|
Neudecker D, Fritschi N, Sutter T, Lu LL, Lu P, Tebruegge M, Santiago-Garcia B, Ritz N. Evaluation of serological assays for the diagnosis of childhood tuberculosis disease: a study protocol. BMC Infect Dis 2024; 24:481. [PMID: 38730343 PMCID: PMC11084122 DOI: 10.1186/s12879-024-09359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) poses a major public health challenge, particularly in children. A substantial proportion of children with TB disease remain undetected and unconfirmed. Therefore, there is an urgent need for a highly sensitive point-of-care test. This study aims to assess the performance of serological assays based on various antigen targets and antibody properties in distinguishing children (0-18 years) with TB disease (1) from healthy TB-exposed children, (2) children with non-TB lower respiratory tract infections, and (3) from children with TB infection. METHODS The study will use biobanked plasma samples collected from three prospective multicentric diagnostic observational studies: the Childhood TB in Switzerland (CITRUS) study, the Pediatric TB Research Network in Spain (pTBred), and the Procalcitonin guidance to reduce antibiotic treatment of lower respiratory tract infections in children and adolescents (ProPAED) study. Included are children diagnosed with TB disease or infection, healthy TB-exposed children, and sick children with non-TB lower respiratory tract infection. Serological multiplex assays will be performed to identify M. tuberculosis antigen-specific antibody features, including isotypes, subclasses, Fc receptor (FcR) binding, and IgG glycosylation. DISCUSSION The findings from this study will help to design serological assays for diagnosing TB disease in children. Importantly, those assays could easily be developed as low-cost point-of-care tests, thereby offering a potential solution for resource-constrained settings. CLINICALTRIALS GOV IDENTIFIER NCT03044509.
Collapse
Affiliation(s)
- Daniela Neudecker
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland
| | - Nora Fritschi
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland
- University of Basel Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Thomas Sutter
- Department of Computer Science, Medical Data Science, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Lenette L Lu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
- Parkland Health and Hospital System, Dallas, TX, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pei Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marc Tebruegge
- Department of Paediatrics, The Royal Children's Hospital Melbourne, The University of Melbourne, Parkville, Australia
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatrics & National Reference Centre for Paediatric TB, Klinik Ottakring, Vienna Healthcare Group, Vienna, Austria
| | - Begoña Santiago-Garcia
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER INFEC), Instituto de Salud Carlos III, Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Nicole Ritz
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland.
- Department of Paediatrics, The Royal Children's Hospital Melbourne, The University of Melbourne, Parkville, Australia.
- Paediatric Infectious Diseases Unit, Children's Hospital, Lucerne Cantonal Hospital, Lucerne, Switzerland.
| |
Collapse
|
2
|
Kasempimolporn S, Thaveekarn W, Promrungreang K, Khow O, Boonchang S, Sitprija V. Improved Serodiagnostic Sensitivity of Strip Test for Latent Tuberculosis. J Clin Diagn Res 2017; 11:DC01-DC03. [PMID: 28764156 DOI: 10.7860/jcdr/2017/25860.9994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Diagnosis of Latent Tuberculosis Infection (LTBI) is difficult due to no clinical manifestations. Cases of LTBI are mostly sputum negative. The World Health Organization recommends the Tuberculin Skin Test (TST) as the current diagnostic standard for LTBI. Our previously developed serologic strip test for LTBI detection had suboptimal sensitivity. Additional Mycobacteriumtuberculosis (MTB) latency-associated antigens may improve the detection rate of LTBI. AIM The present study aimed to optimize sensitivity of existing strip test. MATERIALS AND METHODS A combination of recombinant latency proteins Rv2029c, Rv2031c, Rv2032, Rv2627c, Rv3133c, and Rv3716c was used to prepare the strips and evaluate the performance with the sera of patients in four well-classified categories: LTBI, active pulmonary TB, healthy TB contacts and other non-TB diseases. RESULTS A total of 91 serum samples from various clinical categories were screened with the strips. Among clinically diagnosed LTBI patients, strip test yielded a sensitivity of 75.0%. Among clinically diagnosed non-LTBI subjects, strip test yielded 88.1% specificity. The diagnostic positive and negative predictive values for strip test in reference to various clinical contexts were 77.4% and 86.7%, respectively. CONCLUSION Addition of the six potential latency proteins could improve the diagnostic performance of existing strip test for LTBI. The use of suitable immunodominant antigens could maximize sensitivity in the diagnosis and differentiate MTB infection status.
Collapse
Affiliation(s)
- Songsri Kasempimolporn
- Senior Advisory Scientist, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Wichit Thaveekarn
- Scientist, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Kanyanat Promrungreang
- Scientist, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Orawan Khow
- Senior Scientist, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Supatsorn Boonchang
- Laboratory Officer, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Visith Sitprija
- Director Professor, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|