1
|
Servin F, Collins JA, Heiselman JS, Frederick-Dyer KC, Planz VB, Geevarghese SK, Brown DB, Jarnagin WR, Miga MI. Simulation of Image-Guided Microwave Ablation Therapy Using a Digital Twin Computational Model. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:107-124. [PMID: 38445239 PMCID: PMC10914207 DOI: 10.1109/ojemb.2023.3345733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 03/07/2024] Open
Abstract
Emerging computational tools such as healthcare digital twin modeling are enabling the creation of patient-specific surgical planning, including microwave ablation to treat primary and secondary liver cancers. Healthcare digital twins (DTs) are anatomically one-to-one biophysical models constructed from structural, functional, and biomarker-based imaging data to simulate patient-specific therapies and guide clinical decision-making. In microwave ablation (MWA), tissue-specific factors including tissue perfusion, hepatic steatosis, and fibrosis affect therapeutic extent, but current thermal dosing guidelines do not account for these parameters. This study establishes an MR imaging framework to construct three-dimensional biophysical digital twins to predict ablation delivery in livers with 5 levels of fat content in the presence of a tumor. Four microwave antenna placement strategies were considered, and simulated microwave ablations were then performed using 915 MHz and 2450 MHz antennae in Tumor Naïve DTs (control), and Tumor Informed DTs at five grades of steatosis. Across the range of fatty liver steatosis grades, fat content was found to significantly increase ablation volumes by approximately 29-l42% in the Tumor Naïve and 55-60% in the Tumor Informed DTs in 915 MHz and 2450 MHz antenna simulations. The presence of tumor did not significantly affect ablation volumes within the same steatosis grade in 915 MHz simulations, but did significantly increase ablation volumes within mild-, moderate-, and high-fat steatosis grades in 2450 MHz simulations. An analysis of signed distance to agreement for placement strategies suggests that accounting for patient-specific tumor tissue properties significantly impacts ablation forecasting for the preoperative evaluation of ablation zone coverage.
Collapse
Affiliation(s)
- Frankangel Servin
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jarrod A. Collins
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jon S. Heiselman
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of Surgery, Hepatopancreatobiliary ServiceMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | | | - Virginia B. Planz
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
| | | | - Daniel B. Brown
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
| | - William R. Jarnagin
- Department of Surgery, Hepatopancreatobiliary ServiceMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Michael I. Miga
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTN37235USA
- Department of OtolaryngologyVanderbilt University Medical CenterNashvilleTN37235USA
| |
Collapse
|
2
|
Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM. How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review. World J Clin Cases 2022; 10:8906-8921. [PMID: 36157636 PMCID: PMC9477046 DOI: 10.12998/wjcc.v10.i25.8906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease. Mounting evidence has shown that magnetic resonance (MR) technique has high accuracy in the quantitative analysis of fatty liver, and is suitable for monitoring the therapeutic effect on fatty liver. However, many packaging methods and postprocessing functions have puzzled radiologists in clinical applications. Therefore, selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging. AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver. METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Studies were retrieved from PubMed, Embase, and Cochrane Library databases, and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria. The Reference Citation Analysis database (https:// www.referencecitationanalysis.com) was used to analyze citation of articles which were included in this review. RESULTS Forty studies were included for spectroscopy, two-point Dixon imaging, and multiple-point Dixon imaging comparing liver biopsy to other imaging methods. The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed. CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.
Collapse
Affiliation(s)
- You-Wei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yu-Kun Chen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yuan-Fang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qi-Ping Wen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zong-Ming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China
| |
Collapse
|
3
|
Zou L, Zhang H, Wang Q, Zhong W, Du Y, Liu H, Xing W. Simultaneous liver steatosis, fibrosis and iron deposition quantification with mDixon quant based on radiomics analysis in a rabbit model. Magn Reson Imaging 2022; 94:36-42. [PMID: 35988836 DOI: 10.1016/j.mri.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the feasibility of simultaneous quantification of liver fibrosis, liver steatosis and abnormal iron deposition using mDixon Quant based on radiomics analysis, and to eliminate the interference among different histopathologic features. METHODS One hundred and twenty rabbits that were administered CCl4 for 4-16 weeks and a cholesterol rich diet for the initial 4 weeks in the experimental group and 20 rabbits in the control group were examined using mDixon. Radiomics features of the whole liver were extracted from PDFF and R2* and radiomics models for discriminating steatosis: S0-S1 vs. S2-S4, fibrosis: F0-F2 vs. F3-F4 and iron deposition: normal vs. abnormal were constructed respectively and evaluated using receiver operating characteristic (ROC) curves with the histopathological results as reference standard. Combined corrected models merging the radscore and the other two histopathologic features were evaluated using multiple logistic regression analyses and compared with radiomics models. RESULTS The area under the ROC curve (AUC) of the radiomics model with PDFF features was 0.886 and 0.843 in the training and the test set, respectively, for the diagnosis of liver steatosis grade S0-1 and S2-S4. The radiomics model based on R2* features were 0.815 and 0.801 for distinguishing F0-F2 and F3-F4 and 0.831 and 0.738 for discriminating abnormal iron deposition in the training and test set, respectively. The corrected model for liver steatosis and fibrosis (0.944 and 0.912 in the test set) outperformed the radiomics models by eliminating the interference of histopathologic features(P < 0.05), but had comparable diagnostic performance for abnormal iron deposition(P > 0.05). CONCLUSIONS It is feasible for mDixon to simultaneously quantify whole liver steatosis, fibrosis and iron deposition based on radiomics analysis. It is valuable to minimize the interference of different pathological features for the assessment of liver steatosis and fibrosis.
Collapse
Affiliation(s)
- LiQiu Zou
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Hao Zhang
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - WenXin Zhong
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - YaNan Du
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - HaiFeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213200, China.
| |
Collapse
|
4
|
Brancato V, Della Pepa G, Bozzetto L, Vitale M, Annuzzi G, Basso L, Cavaliere C, Salvatore M, Rivellese AA, Monti S. Evaluation of a Whole-Liver Dixon-Based MRI Approach for Quantification of Liver Fat in Patients with Type 2 Diabetes Treated with Two Isocaloric Different Diets. Diagnostics (Basel) 2022; 12:diagnostics12020514. [PMID: 35204604 PMCID: PMC8871286 DOI: 10.3390/diagnostics12020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Dixon-based methods for the detection of fatty liver have the advantage of being non-invasive, easy to perform and analyze, and to provide a whole-liver coverage during the acquisition. The aim of the study was to assess the feasibility of a whole-liver Dixon-based approach for liver fat quantification in type 2 diabetes (T2D) patients who underwent two different isocaloric dietary treatments: a diet rich in monosaturated fatty acids (MUFA) and a multifactorial diet. Thirty-nine T2D patients were randomly assigned to MUFA diet (n = 21) and multifactorial diet (n = 18). The mean values of the proton density fat fraction (PDFF) over the whole liver and over the ROI corresponding to that chosen for MRS were compared to MRS-PDFF using Spearman’s correlation (ρ). Before–after changes in percentage of liver volume corresponding to MRI-PDFF above thresholds associated with hepatic steatosis (LV%TH, with TH = 5.56%, 7.97% and 8.8%) were considered to assess the proposed approach and compared between diets using Wilcoxon rank-sum test. Statistical significance set at p < 0.05. A strong linear relationship was found between MRS-PDFF and MRI-PDFFs (ρ = 0.85, p < 0.0001). Changes in LV%TH% were significantly higher (p < 0.05) in the multifactorial diet than in MUFA diet (25% vs. 9%, 35% vs. 12%, and 38% vs. 13% decrease, respectively, for TH = 5.56%, 7.97%, and 8.8%) and this was reproducible compared to results obtained using the standard liver fat analysis. A volumetric approach based on Dixon method could be an effective, non-invasive technique that could be used for the quantitative analysis of hepatic steatosis in T2D patients.
Collapse
Affiliation(s)
- Valentina Brancato
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
- Correspondence:
| | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Luca Basso
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Carlo Cavaliere
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Marco Salvatore
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Angela Albarosa Rivellese
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Serena Monti
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy;
| |
Collapse
|
5
|
The Role of Hepatic Fat Accumulation in Glucose and Insulin Homeostasis-Dysregulation by the Liver. J Clin Med 2021; 10:jcm10030390. [PMID: 33498493 PMCID: PMC7864173 DOI: 10.3390/jcm10030390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Accumulation of hepatic triacylglycerol (TG) is associated with obesity and metabolic syndrome, which are important pathogenic factors in the development of type 2 diabetes. In this narrative review, we summarize the effects of hepatic TG accumulation on hepatic glucose and insulin metabolism and the underlying molecular regulation in order to highlight the importance of hepatic TG accumulation for whole-body glucose metabolism. We find that liver fat accumulation is closely linked to impaired insulin-mediated suppression of hepatic glucose production and reduced hepatic insulin clearance. The resulting systemic hyperinsulinemia has a major impact on whole-body glucose metabolism and may be an important pathogenic step in the development of type 2 diabetes.
Collapse
|
6
|
Collins JA, Heiselman JS, Clements LW, Weis JA, Brown DB, Miga MI. Toward Image Data-Driven Predictive Modeling for Guiding Thermal Ablative Therapy. IEEE Trans Biomed Eng 2019; 67:1548-1557. [PMID: 31494543 DOI: 10.1109/tbme.2019.2939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Accurate prospective modeling of microwave ablation (MWA) procedures can provide powerful planning and navigational information to physicians. However, patient-specific tissue properties are generally unavailable and can vary based on factors such as relative perfusion and state of disease. Therefore, a need exists for modeling frameworks that account for variations in tissue properties. METHODS In this study, we establish an inverse modeling approach to reconstruct a set of tissue properties that best fit the model-predicted and observed ablation zone extents in a series of phantoms of varying fat content. We then create a model of these tissue properties as a function of fat content and perform a comprehensive leave-one-out evaluation of the predictive property model. Furthermore, we validate the inverse-model predictions in a separate series of phantoms that include co-recorded temperature data. RESULTS This model-based approach yielded thermal profiles in close agreement with experimental measurements in the series of validation phantoms (average root-mean-square error of 4.8 °C). The model-predicted ablation zones showed compelling overlap with observed ablations in both the series of validation phantoms (93.4 ± 2.2%) and the leave-one-out cross validation study (86.6 ± 5.3%). These results demonstrate an average improvement of 17.3% in predicted ablation zone overlap when comparing the presented property-model to properties derived from phantom component volume fractions. CONCLUSION These results demonstrate accurate model-predicted ablation estimates based on image-driven determination of tissue properties. SIGNIFICANCE The work demonstrates, as a proof-of-concept, that physical modeling parameters can be linked with quantitative medical imaging to improve the utility of predictive procedural modeling for MWA.
Collapse
|
7
|
Rostoker G, Vaziri ND. Risk of iron overload with chronic indiscriminate use of intravenous iron products in ESRD and IBD populations. Heliyon 2019; 5:e02045. [PMID: 31338466 PMCID: PMC6627982 DOI: 10.1016/j.heliyon.2019.e02045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/14/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
The routine use of recombinant erythropoiesis-stimulating agents (ESA) over the past three decades has enabled the partial correction of anaemia in most patients with end-stage renal disease (ESRD). Since ESA use frequently leads to iron deficiency, almost all ESA-treated haemodialysis patients worldwide receive intravenous iron (IV) to ensure sufficient available iron during ESA therapy. Patients with inflammatory bowel disease (IBD) are also often treated with IV iron preparations, as anaemia is common in IBD. Over the past few years, liver magnetic resonance imaging (MRI) has become the gold standard method for non-invasive diagnosis and follow-up of iron overload diseases. Studies using MRI to quantify liver iron concentration in ESRD have shown a link between high infused iron dose and risk of haemosiderosis in dialysis patients. In September 2017, the Pharmacovigilance Committee (PRAC) of the European Medicines Agency (EMA) considered convergent publications over the last few years on iatrogenic haemosiderosis in dialysis patients and requested that companies holding marketing authorization for iron products should investigate the risk of iron overload, particularly in patients with end-stage renal disease on dialysis and, by analogy, patients with IBD. We present a narrative review of data supporting the views and decision of the EMA, and then give our expert opinion on this controversial field of anaemia therapeutics.
Collapse
Affiliation(s)
- Guy Rostoker
- Division of Nephrology and Dialysis, Hôpital Privé Claude Galien, Ramsay-Générale de Santé, Quincy-sous-Sénart, France
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, USA
| |
Collapse
|
8
|
Collins JA, Heiselman JS, Clements LW, Brown DB, Miga MI. Multiphysics modeling toward enhanced guidance in hepatic microwave ablation: a preliminary framework. J Med Imaging (Bellingham) 2019; 6:025007. [PMID: 31131291 DOI: 10.1117/1.jmi.6.2.025007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
We compare a surface-driven, model-based deformation correction method to a clinically relevant rigid registration approach within the application of image-guided microwave ablation for the purpose of demonstrating improved localization and antenna placement in a deformable hepatic phantom. Furthermore, we present preliminary computational modeling of microwave ablation integrated within the navigational environment to lay the groundwork for a more comprehensive procedural planning and guidance framework. To achieve this, we employ a simple, retrospective model of microwave ablation after registration, which allows a preliminary evaluation of the combined therapeutic and navigational framework. When driving registrations with full organ surface data (i.e., as could be available in a percutaneous procedure suite), the deformation correction method improved average ablation antenna registration error by 58.9% compared to rigid registration (i.e., 2.5 ± 1.1 mm , 5.6 ± 2.3 mm of average target error for corrected and rigid registration, respectively) and on average improved volumetric overlap between the modeled and ground-truth ablation zones from 67.0 ± 11.8 % to 85.6 ± 5.0 % for rigid and corrected, respectively. Furthermore, when using sparse-surface data (i.e., as is available in an open surgical procedure), the deformation correction improved registration error by 38.3% and volumetric overlap from 64.8 ± 12.4 % to 77.1 ± 8.0 % for rigid and corrected, respectively. We demonstrate, in an initial phantom experiment, enhanced navigation in image-guided hepatic ablation procedures and identify a clear multiphysics pathway toward a more comprehensive thermal dose planning and deformation-corrected guidance framework.
Collapse
Affiliation(s)
- Jarrod A Collins
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Jon S Heiselman
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Logan W Clements
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Daniel B Brown
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
| | - Michael I Miga
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States.,Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
| |
Collapse
|
9
|
Quantification of Liver Fat Content With Unenhanced MDCT: Phantom and Clinical Correlation With MRI Proton Density Fat Fraction. AJR Am J Roentgenol 2018; 211:W151-W157. [PMID: 30016142 DOI: 10.2214/ajr.17.19391] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the relation between unenhanced CT liver attenuation values and MRI-derived proton density fat fraction (PDFF) for estimation of liver fat content at CT. MATERIALS AND METHODS A CT-MRI phantom was constructed and imaged containing 12 vials with lipid fractions ranging from 0% to 100%. For the retrospective clinical arm, 221 patients (120 men, 101 women; mean age, 54 years) underwent both unenhanced CT and chemical shift-encoded MRI of the liver between 2007 and 2017. Among these patients, 92 had more than one 120-kV CT scan for comparison. CT attenuation and MRI PDFF were derived with coregistered ROI measurements in the right hepatic lobe. The 120-kV subgroup of CT examinations performed within 1 month of MRI PDFF examinations (n = 72) served as the primary cohort for linear correlation. The effects of different tube voltage settings, time intervals between CT and MRI, and iron overload were assessed. Linear least squares regression analysis was performed. RESULTS Phantom results showed excellent linear fit between CT attenuation and MRI PDFF (r2 = 0.986). In patients, 120-kV CT performed within 1 month of MRI PDFF exhibited strong linear correlation (r2 = 0.828) that closely matched the phantom data, yielding the following clinical CT-MRI conversion formula: MRI PDFF (%) = -0.58 × CT attenuation (HU) + 38.2. Correlation worsened for CT-to-MRI intervals longer than 1 month (r2 = 0.565), and this specific relationship did not apply as well to non-120-kV settings (r2 = 0.554). For patients with multiple scans, correlation progressively worsened over time. CT-based liver fat content was underestimated in several patients with iron overload. CONCLUSION The linear correlation between unenhanced CT attenuation and MRI PDFF allows quantification of liver fat content by means of unenhanced CT in clinical practice. As expected, correlation worsened with increasing CT-MRI time interval, variable tube voltage settings, and iron overload.
Collapse
|