1
|
Bénéjat L, Ducournau A, Gebhart J, Bessede E, Becker J, Jauvain M, Lehours P. Evaluation of a rapid fluorescence immunoassay for detecting Campylobacter antigens in stool samples. Gut Pathog 2025; 17:12. [PMID: 40022164 PMCID: PMC11871677 DOI: 10.1186/s13099-025-00686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The species most frequently causing campylobacteriosis are Campylobacter jejuni and Campylobacter coli, followed by Campylobacter fetus, Campylobacter upsaliensis, and Campylobacter lari. Although polymerase chain reaction (PCR) can be used to detect Campylobacter DNA in stool samples, PCR assays are often validated for C. jejuni and C. coli only, and coproculture results can take several days to receive. For laboratories that do not have access to PCR technology, rapid antigen tests can be of the utmost importance for early diagnosis of the disease. We evaluated the performance of the Sofia Campylobacter Fluorescence Immunoassay (SCFIA) for rapid detection of Campylobacter antigens in stool. METHODS In total, 94 frozen and 205 fresh stool specimens were included in retrospective and prospective evaluations, respectively. The linearity of the assay and its limit of detection for different Campylobacter species was evaluated using serial dilutions. Cross reactivity to phylogenetically related species was also investigated. The PCR results from the BD MAX Enteric Panel were considered the gold standard. RESULTS The sensitivity of the SCFIA was 97.87% and 96.88% in retrospective and prospective evaluations, respectively. The specificity was 98.84%. The assay exhibited high linearity in serial dilutions for C. coli, C. jejuni, C. armoricus, C. ornithocola, C. lari, and C. upsaliensis, with correlation coefficients of 0.991-0.999, whereas C. fetus was not detected. No cross-reactivity was detected for Aliarcobacter butzleri, Helicobacter cinaedi, or Helicobacter pullorum. The minimum concentration for a positive result at the assay-specific cut-off was 4-17 million CFU/mL. The limit of detection ranged from 106 to 107 CFU/mL. CONCLUSION SCFIA results are highly correlated with PCR results, with no cross-reactivity with phylogenetically related species. The linear correlation between fluorescence and CFU/mL results was strong. The assay's ability to detect antigens of various Campylobacter species can aid early diagnosis. However, the inability to detect C. fetus must be considered.
Collapse
Affiliation(s)
- Lucie Bénéjat
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Astrid Ducournau
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Juliette Gebhart
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
| | - Emilie Bessede
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, BRIC, Bordeaux Institute of onCology, 146 Rue Léo Saignat, Bordeaux, F-33076, France
| | | | - Marine Jauvain
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France
- University of Bordeaux, Inserm, UMR 1312, BRIC, Bordeaux Institute of onCology, 146 Rue Léo Saignat, Bordeaux, F-33076, France
| | - Philippe Lehours
- National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France.
- University of Bordeaux, Inserm, UMR 1312, BRIC, Bordeaux Institute of onCology, 146 Rue Léo Saignat, Bordeaux, F-33076, France.
| |
Collapse
|
2
|
Borovikov S, Tursunov K, Syzdykova A, Begenova A, Zhakhina A. Expression of recombinant Omp18 and MOMP of Campylobacter jejuni and the determination of their suitability as antigens for serological diagnosis of campylobacteriosis in animals. Vet World 2023; 16:222-228. [PMID: 36855354 PMCID: PMC9967712 DOI: 10.14202/vetworld.2023.222-228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023] Open
Abstract
Background and Aim Campylobacteriosis causes gastrointestinal tract lesions in adults and children and may result in severe complications. The primary sources of infection are infected animals and animal products. Immunochemical methods effectively diagnose intestinal infections but require highly specific antigens to detect their antibodies. This study aimed to obtain two recombinant immunogenic antigens of Campylobacter jejuni, an outer membrane protein with a molecular weight of 18 kDa (Omp18) and the major outer membrane protein (MOMP) with a molecular weight of 45 kDa, and evaluate their suitability for the serological diagnosis of campylobacteriosis using immunochromatographic assay (ICA). Materials and Methods The C. jejuni Omp18 and MOMP gene sequences were synthesized de novo (Macrogen, Korea) and cloned into the pET32 expression plasmid. Using these genetic constructs, electrocompetent cells of the Escherichia coli BL21 strain were transformed and cultured under various conditions. Antigens were purified and refolded using metal affinity chromatography. The properties of the purified proteins were studied by western blotting, liquid chromatography with tandem mass spectrometry, and enzyme-linked immunosorbent assay (ELISA). Results We developed two recombinant E. coli BL21 cells producing rOmp18 and Recombinant MOMP (rMOMP) antigens with molecular weights of 36 and 64 kDa, respectively. Amino acid sequence analysis of the obtained antigens showed complete homology with the reference sequences in the PubMed NCBI database. Western blotting using positive-control sera demonstrated the specificity of the recombinant antigens. The results of ELISA with 94 bovine sera showed the interaction of recombinant antigens with specific antibodies. Conclusion The obtained rOmp18 and rMOMP antigens can detect antibodies in the serum of infected or recovered animals and can be used to develop ICA.
Collapse
Affiliation(s)
- Sergey Borovikov
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agro Technical University, 010000, Astana, Kazakhstan,Corresponding author: Sergey Borovikov, e-mail: Co-authors: KT: , AS: , AB: , AZ:
| | - Kanat Tursunov
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
| | - Alfiya Syzdykova
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agro Technical University, 010000, Astana, Kazakhstan
| | - Ainagul Begenova
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agro Technical University, 010000, Astana, Kazakhstan
| | - Alfira Zhakhina
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agro Technical University, 010000, Astana, Kazakhstan
| |
Collapse
|
3
|
Takeuchi MG, de Melo RT, Dumont CF, Peixoto JLM, Ferreira GRA, Chueiri MC, Iasbeck JR, Timóteo MF, de Araújo Brum B, Rossi DA. Agents of Campylobacteriosis in Different Meat Matrices in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6087. [PMID: 35627626 PMCID: PMC9140573 DOI: 10.3390/ijerph19106087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
We aimed to identify the prevalence of thermophilic species of Campylobacter in meats of different species available on the Brazilian commercial market and to determine the genetic diversity, antimicrobial resistance and virulence potential of the isolates. A total of 906 samples, including chicken, beef and pork carcasses and chicken and beef livers, were purchased in retail outlets, and prevalences of 18.7% (46/246), 3.62% (5/138), 10.14% (14/138), 3.62% (5/138) and 4.47% (11/132), respectively, were identified, evidencing the dissemination of genotypes in the main producing macro-regions. Of all isolates, 62.8% were classified as multidrug resistant (MDR), with resistance to amoxicillin-clavulanate (49.4%), tetracycline (51.8%) and ciprofloxacin (50.6%) and co-resistance to macrolides and fluoroquinolones (37.1%). Multivirulent profiles were identified mainly in isolates from chicken carcasses (84.8%), and the emergence of MDR/virulent strains was determined in pork isolates. All isolates except those from chicken carcasses showed a high potential for biofilm formation (71.4% luxS) and consequent persistence in industrial food processing. For chicken carcasses, the general virulence was higher in C. jejuni (54.3%), followed by C. coli (24%) and Campylobacter spp. (21.7%), and in the other meat matrices, Campylobacter spp. showed a higher prevalence of virulence (57.2%). The high rates of resistance and virulence reinforce the existence of strain selection pressure in the country, in addition to the potential risk of strains isolated not only from chicken carcasses, but also from other meat matrices.
Collapse
Affiliation(s)
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (M.G.T.); (C.F.D.); (J.L.M.P.); (G.R.A.F.); (M.C.C.); (J.R.I.); (M.F.T.); (B.d.A.B.); (D.A.R.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
A Cutoff Determination of Real-Time Loop-Mediated Isothermal Amplification (LAMP) for End-Point Detection of Campylobacter jejuni in Chicken Meat. Vet Sci 2022; 9:vetsci9030122. [PMID: 35324850 PMCID: PMC8953776 DOI: 10.3390/vetsci9030122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Campylobacter jejuni is one of the leading causes of foodborne illness worldwide. C. jejuni is commonly found in poultry. It is the most frequent cause of contamination and thus resulting in not only public health concerns but also economic impacts. To test for this bacterial contamination in food processing plants, this study attempted to employ a simple and rapid detection assay called loop-mediated isothermal amplification (LAMP). The best cutoff value for the positive determination of C. jejuni calculated using real-time LAMP quantification cycle (Cq) was derived from the receiver operating characteristic (ROC) curve modeling. The model showed an area under curve (AUC) of 0.936 (95% Wald CI: 0.903–0.970). Based on Youden’s J statistic, the optimal cutoff value which had the highest sensitivity and specificity from the model was calculated as 18.07. The LAMP assay had 96.9% sensitivity, 95.8% specificity, and 93.9 and 97.9% positive and negative predictive values, respectively, compared to a standard culture approach for C. jejuni identification. Among all non-C. jejuni strains, the LAMP assay gave each of 12.5% false-positive results to C. coli and E. coli (1 out of 8 samples). The assay can detect C. jejuni at the lowest concentration of 103 CFU/mL. Our results suggest a preliminary indicator for the application of end-point LAMP assays, such as turbidity and UV fluorescence tests, to detect C. jejuni in field operations. The LAMP assay is an alternative screening test for C. jejuni contamination in food samples. The method provides a rapid detection, which requires only 9 min with a cutoff value of Cq. We performed the extraction of DNA from pure cultures and the detection of C. jejuni using the LAMP assay within 3 h. However, we were not able to reduce the time for the process of enrichment involved in our study. Therefore, we suggest that alternative enrichment media and rapid DNA extraction methods should be considered for further study. Compared to other traditional methods, our proposed assay requires less equipment and time, which is applicable at any processing steps in the food production chain.
Collapse
|
5
|
Loderstädt U, Hagen RM, Hahn A, Frickmann H. New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections-A Narrative Mini-Review on Challenges in the Tropics. Trop Med Infect Dis 2021; 6:tropicalmed6020096. [PMID: 34199650 PMCID: PMC8293448 DOI: 10.3390/tropicalmed6020096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
The application of modern PCR approaches for the diagnosis of bacterial gastrointestinal pathogens is on the rise due to their rapidly available results combined with high sensitivity. While multiple studies describe the ongoing implementation of this technique for routine diagnostic purposes in laboratories in Western industrialized countries, reports on successful and also sustainable respective approaches in resource-poor tropical settings are still scarce. In order to shed light on potential reasons for this marked discrepancy, this narrative review summarizes identified challenges for the application of diagnostic PCR targeting bacterial gastrointestinal pathogens from stool samples in the tropics. The identified and discussed issues comprise the lack of generally accepted definitions for (1) minimum standards regarding sample acquisition, storage and transport time for diagnostic PCR analyses in the tropics, (2) nucleic acid extraction standards allowing an optimum detection of all types of pathogens which may be responsible for gastroenteritis in the tropics, (3) validation standards to ensure comparable quality of applied diagnostic assays, and (4) cut-offs for a reliable discrimination of infection and mere colonization in areas where semi-immunity due to repeated exposition associated with poor hygiene conditions has to be expected. Further implementation research is needed to solve those issues.
Collapse
Affiliation(s)
- Ulrike Loderstädt
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Andernacher Str. 100, 56070 Koblenz, Germany;
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
- Correspondence: or or ; Tel.: +49-40-6947-28743
| |
Collapse
|
6
|
Franco J, Bénejat L, Ducournau A, Mégraud F, Lehours P, Bessède E. Evaluation of CAMPYLOBACTER QUIK CHEK™ rapid membrane enzyme immunoassay to detect Campylobacter spp. antigen in stool samples. Gut Pathog 2021; 13:4. [PMID: 33482881 PMCID: PMC7821655 DOI: 10.1186/s13099-021-00400-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Campylobacter spp. enteritis is the most frequent bacterial enteritis in both adults and children and is sometimes a source of severe complications. Its diagnosis by culture suffers from a lack of sensitivity and delays the result, preventing an early initiation of optimal antibiotic therapy in some cases. Our aim was to test a new rapid immuno-enzymatic method for Campylobacter spp. diagnosis in comparison to a composite reference standard (CRS). Stool samples from the French National Reference Center for Campylobacter and Helicobacter were tested with the CAMPYLOBACTER QUIK CHEK™ (Abbott). The CRS used to consider a case positive for Campylobacter spp. was a positive culture and, in case of a negative culture, a positive result obtained with both an ELISA and a molecular test. One hundred and eight stools were included: 53 were positive according to the CRS. If performed alone, culture would have missed 5 cases which the CAMPYLOBACTER QUIK CHEK™ detected. Finally, the CAMPYLOBACTER QUIK CHEK™ showed a sensitivity of 96.2% and a specificity of 94.5% and is relevant for clinical practice. Given the characteristics of the new method, it can be used as a screening method for Campylobacter spp. detection.
Collapse
Affiliation(s)
- Justine Franco
- Centre National de Référence des Campylobacters et Helicobacters, Bordeaux University Hospital, Bordeaux, France
| | - Lucie Bénejat
- Centre National de Référence des Campylobacters et Helicobacters, Bordeaux University Hospital, Bordeaux, France
| | - Astrid Ducournau
- Centre National de Référence des Campylobacters et Helicobacters, Bordeaux University Hospital, Bordeaux, France
| | - Francis Mégraud
- Centre National de Référence des Campylobacters et Helicobacters, Bordeaux University Hospital, Bordeaux, France.,INSERM U1053 Bordeaux Research In Translational Oncology, Bordeaux, France
| | - Philippe Lehours
- Centre National de Référence des Campylobacters et Helicobacters, Bordeaux University Hospital, Bordeaux, France.,INSERM U1053 Bordeaux Research In Translational Oncology, Bordeaux, France
| | - Emilie Bessède
- Centre National de Référence des Campylobacters et Helicobacters, Bordeaux University Hospital, Bordeaux, France. .,INSERM U1053 Bordeaux Research In Translational Oncology, Bordeaux, France.
| |
Collapse
|
7
|
Tanida K, Hahn A, Frickmann H. Comparison of two commercial and one in-house real-time PCR assays for the diagnosis of bacterial gastroenteritis. Eur J Microbiol Immunol (Bp) 2020; 10:210-216. [PMID: 33279885 PMCID: PMC7753976 DOI: 10.1556/1886.2020.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction The aim of the study was a comparative evaluation of in-house real-time PCR and commercial real-time PCR (Fast Track Diagnostics (FTD), ampliCube/Mikrogen) targeting enteropathogenic bacteria from stool in preparation of Regulation (EU) 2017/746 on in vitro diagnostic medical devices. Methods Both 241 stool samples from patients and 100 samples from German laboratory control schemes (“Ringversuche”) were used to comparatively assess in-house real-time PCR, the FTD bacterial gastroenteritis kit, and the ampliCube gastrointestinal bacterial panels 1&2 either with the in-house PCRs as gold standard and as a test comparison without gold standard applying latent class analysis. Sensitivity, specificity, intra- and inter-assay variation and Cohen’s kappa were assessed. Results In comparison with the gold standard, sensitivity was 75–100% for strongly positive samples, 20–100% for weakly positive samples, and specificity ranged from 96 to 100%. Latent class analysis suggested that sensitivity ranges from 81.2 to 100% and specificity from 58.5 to 100%. Cohen’s kappa varied between moderate and nearly perfect agreement, intra- and inter-assay variation was 1–3 to 1–4 Ct values. Conclusion Acceptable agreement and performance characteristics suggested replaceability of the in-house PCR assays by the commercial approaches.
Collapse
Affiliation(s)
- Konstantin Tanida
- 1Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Andreas Hahn
- 2Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Hagen Frickmann
- 1Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.,2Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
8
|
Shen Y, Nie J, Kuang L, Zhang J, Li H. DNA sequencing, genomes and genetic markers of microbes on fruits and vegetables. Microb Biotechnol 2020; 14:323-362. [PMID: 32207561 PMCID: PMC7936329 DOI: 10.1111/1751-7915.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The development of DNA sequencing technology has provided an effective method for studying foodborne and phytopathogenic microorganisms on fruits and vegetables (F & V). DNA sequencing has successfully proceeded through three generations, including the tens of operating platforms. These advances have significantly promoted microbial whole‐genome sequencing (WGS) and DNA polymorphism research. Based on genomic and regional polymorphisms, genetic markers have been widely obtained. These molecular markers are used as targets for PCR or chip analyses to detect microbes at the genetic level. Furthermore, metagenomic analyses conducted by sequencing the hypervariable regions of ribosomal DNA (rDNA) have revealed comprehensive microbial communities in various studies on F & V. This review highlights the basic principles of three generations of DNA sequencing, and summarizes the WGS studies of and available DNA markers for major bacterial foodborne pathogens and phytopathogenic fungi found on F & V. In addition, rDNA sequencing‐based bacterial and fungal metagenomics are summarized under three topics. These findings deepen the understanding of DNA sequencing and its application in studies of foodborne and phytopathogenic microbes and shed light on strategies for the monitoring of F & V microbes and quality control.
Collapse
Affiliation(s)
- Youming Shen
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jiyun Nie
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lixue Kuang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jianyi Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Haifei Li
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| |
Collapse
|