1
|
Garba Z, Kaboré B, Bonkoungou IJO, Natama MH, Rouamba T, Haukka K, Kirveskari JP, Tinto H, Sangaré L, Barro N, Kantele A. Phenotypic Detection of Carbapenemase and AmpC-β-Lactamase Production among Extended Spectrum β-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella spp. Isolated from Clinical Specimens. Antibiotics (Basel) 2023; 13:31. [PMID: 38247589 PMCID: PMC10812623 DOI: 10.3390/antibiotics13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Data on antimicrobial resistance (AMR) are sparse across numerous African countries, as microbiological analyses are not routinely conducted and surveillance data are not collected. Accordingly, clinical samples are not routinely tested for carbapenem-resistant bacteria and, therefore, the general understanding of their prevalence in the region remains limited. Methods: Between January 2020 and June 2022, we collected extended spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-PE) isolates from five hospitals in Burkina Faso. After an initial culture on ESBL-selective media, the species were identified using API20E and isolates were tested against 13 antimicrobial agents using the disc diffusion method on Mueller-Hinton (MH) agar. ESBL production was confirmed via a double-disc synergy test. Production of carbapenemases and AmpC-β-lactamases and phenotypic co-resistance were determined. Results: Among the 473 ESBL-PE, 356 were ESBL-E. coli (ESBL-Ec) and 117 were Klebsiella spp. (ESBL-K). Of these isolates, 5.3% were carbapenemase and 5.3% were AmpC-β-lactamase-positive. Three types of carbapenemases were identified: 19 NDM, 3 OXA-48-like and 1 VIM. Two isolates produced both NDM and OXA-48-like carbapenemases. Carbapenemase producers were detected at all levels of healthcare. Co-resistance rates were up to 85% for aminoglycosides, 90% for sulfonamides, 95% for fluoroquinolones and 25% for chloramphenicol. Fosfomycin resistance was 6% for ESBL-Ec and 49% for ESBL-K (49%). Conclusions: Some of the ESBL-Ec and ESBL-K co-produced carbapenemases and/or AmpC-β-lactamases at all healthcare levels and in various sample types with high co-resistance rates to non-betalactams. Carbapenem resistance is no longer rare, calling for testing in routine diagnostics, a comprehensive resistance surveillance system and infection control within healthcare.
Collapse
Affiliation(s)
- Zakaria Garba
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (I.J.O.B.); (N.B.)
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Bérenger Kaboré
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Isidore J. O. Bonkoungou
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (I.J.O.B.); (N.B.)
| | - Magloire H. Natama
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Toussaint Rouamba
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Kaisa Haukka
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland;
- Human Microbiome Research Program, Medical Faculty, University of Helsinki, 00014 Helsinki, Finland
| | - Juha P. Kirveskari
- Helsinki Innovation Services Ltd., University of Helsinki, 00014 Helsinki, Finland;
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagadougou 11 BP 218, Burkina Faso; (B.K.); (M.H.N.); (T.R.); (H.T.)
| | - Lassana Sangaré
- Department of Health Sciences, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso;
| | - Nicolas Barro
- Department of Biochemistry and Microbiology, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (I.J.O.B.); (N.B.)
| | - Anu Kantele
- Human Microbiome Research Program, Medical Faculty, University of Helsinki, 00014 Helsinki, Finland
- Meilahti Infectious Diseases and Vaccine Research Center MeiVac, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
2
|
Rehana I, Pandey A, Singh P. Plasmid-Mediated AmpC (pAmpC) Genotypes Among Uropathogenic Escherichia coli: A Hospital-Based Study From Western Uttar Pradesh. Cureus 2023; 15:e41551. [PMID: 37565104 PMCID: PMC10410188 DOI: 10.7759/cureus.41551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Resistance due to AmpC and extended-spectrum beta (β)-lactamases (ESBLs) in Escherichia coli is an emerging problem worldwide. AmpC enzymes are a subclass of β-lactamases that have a capacity to hydrolyze and deactivate a large range of β-lactam antibiotics, particularly cephalosporins, penicillins, and monobactams, although frequently being susceptible to carbapenems and fourth-generation cephalosporins. The prevalence of plasmid-mediated AmpC (pAmpC) genotypes in uropathogenic E. coli isolates were looked at a tertiary care teaching hospital of Western Uttar Pradesh. Materials and methods A total of 312 non-repeat clinical E. coli isolates among patients presented with urinary tract infections (UTIs) were investigated by standard microbiological methods. Isolates were screened for the presence of ampC using a cefoxitin (30 µg) disc and confirmed using an inhibitor-based assay. Using multiplex polymerase chain reaction (PCR), six AmpC genotypes, namely, CIT, DHA, EBC, ACC, FOX, and MOX, were genotypically identified. Results A total of 152 (48.72%) uropathogenic E. coli isolates tested positive on the cefoxitin screening. Out of which, AmpC production was confirmed in 118/152 (77.63%) using a phenotypic method. In particular, the pAmpC gene was found in 56/152 (36.84%) isolates. CIT was the most common gene detected in this geographical area (57.14 %). Multiple genes, i.e., CIT and FOX, were also detected in 14.29% of the isolates. Conclusion Identifying AmpC producers is important in routine microbiology laboratory as they are a nosocomial threat requiring strict adherence to infection control protocols. A confirmatory phenotypic test followed by genotypic tests will help in the correct and accurate identification of this resistance.
Collapse
Affiliation(s)
- Ismat Rehana
- Microbiology, Subharti Medical College, Meerut, IND
| | - Anita Pandey
- Microbiology, Subharti Medical College, Meerut, IND
| | - Peetam Singh
- Microbiology, Subharti Medical College, Meerut, IND
| |
Collapse
|
3
|
Rodríguez-Guerrero E, Callejas-Rodelas JC, Navarro-Marí JM, Gutiérrez-Fernández J. Systematic Review of Plasmid AmpC Type Resistances in Escherichia coli and Klebsiella pneumoniae and Preliminary Proposal of a Simplified Screening Method for ampC. Microorganisms 2022; 10:microorganisms10030611. [PMID: 35336186 PMCID: PMC8954824 DOI: 10.3390/microorganisms10030611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Beta-lactamase (BL) production is a major public health problem. Although not the most frequent AmpC type, AmpC-BL is increasingly isolated, especially plasmid AmpC-BL (pAmpC-BL). The objective of this study was to review information published to date on pAmpC-BL in Escherichia coli and Klebsiella pneumoniae, and on the epidemiology and detection methods used by clinical microbiology laboratories, by performing a systematic review using the MEDLINE PubMed database. The predictive capacity of a screening method to detect AmpC-BL using disks with cloxacillin (CLX) was also evaluated by studying 102 Enterobacteriaceae clinical isolates grown in CHROMID ESBL medium with the addition of cefepime (FEP), cefoxitin (FOX), ertapenem (ETP), CLX, and oxacillin with CLX. The review, which included 149 publications, suggests that certain risk factors (prolonged hospitalization and previous use of cephalosporins) are associated with infections by pAmpC-BL-producing microorganisms. The worldwide prevalence has increased over the past 10 years, with a positivity rate ranging between 0.1 and 40%, although AmpC was only detected when sought in a targeted manner. CMY-2 type has been the most prevalent pAmpC-BL-producing microorganism. The most frequently used phenotypic method has been the double-disk synergy test (using CLX disks or phenyl-boronic acid and cefotaxime [CTX] and ceftazidime) and the disk method combined with these inhibitors. In regard to screening methods, a 1-µg oxacillin disk with CLX showed 88.9% sensitivity, 100% specificity, 100% positive predictive value (PPV), 98.9% negative predictive value (NPV), and 98.9% validity index (VI). This predictive capacity is reduced with the addition of extended-spectrum beta-lactamases, showing 62.5% sensitivity, 100% specificity, 100% PPV, 93.5% NPV, and 94.1% VI. In conclusion, there has been a worldwide increase in the number of isolates with pAmpC-BL, especially in Asia, with CMY-2 being the most frequently detected pAmpC-BL-producing type of microorganism. Reduction in its spread requires routine screening with a combination of phenotypic methods (with AmpC inhibitors) and genotypic methods (multiplex PCR). In conclusion, the proposed screening technique is an easy-to-apply and inexpensive test for the detection of AmpC-producing isolates in the routine screening of multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Enrique Rodríguez-Guerrero
- Laboratory of Microbiology, Virgen de las Nieves University Hospital & ibs.Granada—Instituto de Investigación Biosanitaria de Granada, Avda. de las Fuerzas Armadas 2, 18014 Granada, Spain; (E.R.-G.); (J.M.N.-M.)
| | - Juan Carlos Callejas-Rodelas
- Department of Microbiology, School of Medicine, University of Granada & ibs.Granada—Instituto de Investigación Biosanitaria de Granada, Avenida de la Investigación 11, 18016 Granada, Spain;
| | - José María Navarro-Marí
- Laboratory of Microbiology, Virgen de las Nieves University Hospital & ibs.Granada—Instituto de Investigación Biosanitaria de Granada, Avda. de las Fuerzas Armadas 2, 18014 Granada, Spain; (E.R.-G.); (J.M.N.-M.)
| | - José Gutiérrez-Fernández
- Laboratory of Microbiology, Virgen de las Nieves University Hospital & ibs.Granada—Instituto de Investigación Biosanitaria de Granada, Avda. de las Fuerzas Armadas 2, 18014 Granada, Spain; (E.R.-G.); (J.M.N.-M.)
- Department of Microbiology, School of Medicine, University of Granada & ibs.Granada—Instituto de Investigación Biosanitaria de Granada, Avenida de la Investigación 11, 18016 Granada, Spain;
- Correspondence:
| |
Collapse
|
4
|
Awosile BB, Agbaje M, Adebowale O, Kehinde O, Omoshaba E. Beta-lactamase resistance genes in Enterobacteriaceae from Nigeria. Afr J Lab Med 2022; 11:1371. [PMID: 35282396 PMCID: PMC8905388 DOI: 10.4102/ajlm.v11i1.1371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background Beta-lactamase genes are one of the most important groups of antimicrobial resistance genes in human and animal health. Therefore, continuous surveillance of this group of resistance genes is needed for a better understanding of the local epidemiology within a country and global dissemination. Aim This review was carried out to identify different beta-lactamase resistance genes reported in published literature from Nigeria. Methods Systematic review and meta-analysis was carried out on eligible Nigerian articles retrieved from electronic literature searches of PubMed®, African Journals Online, and Google Scholar published between January 1990 and December 2019. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was adopted to facilitate clarity and transparency in reporting review findings. Results Fifty-seven articles were included. All beta-lactamases reported were detected from Gram-negative bacteria, particularly from Enterobacteriaceae. Thirty-six different beta-lactamase genes were reported in Nigeria. These genes belong to the narrow-spectrum, AmpC, extended-spectrum and carbapenemase beta-lactamase resistance genes. The pooled proportion estimate of extended-spectrum beta-lactamase genes in Nigeria was 31% (95% confidence interval [CI]: 26% – 36%, p < 0.0001), while the estimate of the blaCTX-M-15 gene in Nigeria was 46% (95% CI: 36% – 57%, p < 0.0001). The proportion estimate of AmpC genes was 32% (95% CI: 11% – 52%, p < 0.001), while the estimate for carbapenemases was 8% (95% CI: 5% – 12%, p < 0.001). Conclusion This study provides information on beta-lactamase distribution in Nigeria. This is necessary for a better understanding of molecular epidemiology of clinically important beta-lactamases, especially the extended-spectrum beta-lactamases and carbapenemases in Nigeria.
Collapse
Affiliation(s)
- Babafela B Awosile
- Texas Tech University School of Veterinary Medicine, Amarillo, Texas, United States
| | - Michael Agbaje
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwawemimo Adebowale
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olugbenga Kehinde
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ezekiel Omoshaba
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
5
|
Sadeghi M, Sedigh Ebrahim-Saraie H, Mojtahedi A. Prevalence of ESBL and AmpC genes in E. coli isolates from urinary tract infections in the north of Iran. New Microbes New Infect 2022; 45:100947. [PMID: 34984104 PMCID: PMC8693013 DOI: 10.1016/j.nmni.2021.100947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/02/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Beta-lactam resistance in Gram-negative bacteria, especially Escherichia coli, is a main clinical problem. It is often caused by the production of β-lactamases, particularly extended-spectrum β-lactamases (ESBLs) or AmpC enzymes. This study was undertaken to characterize ESBL and AmpC producers among Escherichia coli isolates from urine samples. During six months, 263 E. coli isolates were detected by standard biochemical tests. The isolates were screened for ESBL production by the double-disk synergy test using Ceftazidime (30 μg) and Cefotaxime (30 μg) disks and confirmed by combined disk diffusion test using Clavulanic acid. AmpC production was confirmed by an AmpC disk test based on filter paper disks impregnated with EDTA. The presence of genes encoding TEM, SHV, CTX-M, CIT, FOX, MOX, ACC, and EBC were detected by PCR. 263 E. coli isolates were selected for the combined disk (Ceftazidime, Cefotaxime, and Clavulanic acid) assay in the disk agar diffusion test. In the combined disk assay, among 263 isolates, 121 (46%) isolates were detected as ESBLs, and none of the isolates were AmpC producers. PCR performed on all ESBL producers and blaSHV, blaTEM, and blaCTX-M were detected in 42 (34.7%), 44 (36.4%), and 47 (38.8%) cases, respectively. Also, from 48 Isolates with zone diameters of less than or equal to 18 mm to Cefoxitin, 7 (14.6%), 4 (8.3%), and 9 (18.8%) cases contained MOX, EBC, and CIT genes, respectively. DHA, FOX, and ACC genes were not detected in any sample. Since pathogens evolve in the hospital setting, updating local data, such as this research, offers scientific evidence to improve the outcome of nosocomial infections.
Collapse
Affiliation(s)
- M. Sadeghi
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - H. Sedigh Ebrahim-Saraie
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - A. Mojtahedi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Matloko K, Fri J, Ateba TP, Molale-Tom LG, Ateba CN. Evidence of potentially unrelated AmpC beta-lactamase producing Enterobacteriaceae from cattle, cattle products and hospital environments commonly harboring the blaACC resistance determinant. PLoS One 2021; 16:e0253647. [PMID: 34324493 PMCID: PMC8321102 DOI: 10.1371/journal.pone.0253647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
The occurrence and genetic relatedness of AmpC beta-lactamase producing Enterobacteriaceae isolated from clinical environments, groundwater, beef, human and cattle faeces were investigated. One hundred seventy-seven (177) samples were collected and cultured on MacConkey agar. A total of 203 non-repetitive isolates were characterised using genus/species-specific PCRs and the identified isolates were subjected to antibiotic susceptibility testing. The production of AmpC beta-lactamases was evaluated using cefoxitin disc, confirmed by the D96C detection test and their encoding genes detected by PCR. The D64C extended-spectrum beta-lactamases (ESBL) test was also performed to appraise ESBLs/AmpC co-production. The genetic fingerprints of AmpC beta-lactamase producers were determined by ERIC-PCR. A total of 116 isolates were identified as E. coli (n = 65), Shigella spp. (n = 36) and Klebsiella pneumoniae (n = 15). Ciprofloxacin resistance (44.4-55.4%) was the most frequent and resistance against the Cephem antibiotics ranged from 15-43.1% for E. coli, 25-36.1% for Shigella spp., and 20-40% for K. pneumoniae. On the other hand, these bacteria strains were most sensitive to Amikacin (0%), Meropenem (2.8%) and Piperacillin-Tazobactam (6.7%) respectively. Nineteen (16.4%) isolates comprising 16 E. coli and 3 Shigella spp. were confirmed as AmpC beta-lactamase producers. However, only E. coli isolates possessed the corresponding resistance determinants: blaACC (73.7%, n = 14), blaCIT (26%, n = 5), blaDHA (11%, n = 2) and blaFOX (16%, n = 3). Thirty-four (27.3%) Enterobacteriaceae strains were confirmed as ESBL producers and a large proportion (79.4%, n = 27) harboured the blaTEM gene, however, only two were ESBLs/AmpC co-producers. Genetic fingerprinting of the AmpC beta-lactamase-producing E. coli isolates revealed low similarity between isolates. In conclusion, the findings indicate the presence of AmpC beta-lactamase-producing Enterobacteriaceae from cattle, beef products and hospital environments that commonly harbour the associated resistance determinants especially the blaACC gene, nonetheless, there is limited possible cross-contamination between these environments.
Collapse
Affiliation(s)
- Keduetswe Matloko
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Justine Fri
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Tshepiso Pleasure Ateba
- Centre for Animal Health Studies, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Lesego G. Molale-Tom
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
7
|
Muriuki CW, Ogonda LA, Kyanya C, Matano D, Masakhwe C, Odoyo E, Musila L. Phenotypic and Genotypic Characteristics of Uropathogenic Escherichia coli Isolates from Kenya. Microb Drug Resist 2021; 28:31-38. [PMID: 34297634 PMCID: PMC8792489 DOI: 10.1089/mdr.2020.0432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Uropathogenic Escherichia coli (UPECs) are a significant cause of urinary tract infections (UTIs). In Kenya, UTIs are typically treated with β-lactam antibiotics without antibiotic susceptibility testing, which could accelerate antibiotic resistance among UPEC strains. Aim: This study determined the occurrence of UPEC producing extended-spectrum β-lactamases (ESBLs), the genes conferring resistance to β-lactams, and the phylogenetic groups associated with ESBLs in Kenyan UPECs. Methodology: Ninety-five UPEC isolates from six Kenyan hospitals were tested for ESBL and plasmid-mediated AmpC β-lactamase (pAmpC) production by combined disk diffusion and disk approximation tests, respectively. Real-time and conventional polymerase chain reactions (PCRs) were used to detect three ESBL and six pAmpC genes, respectively, and phylogenetic groups were assigned by a quadruplex PCR method. Results: Twenty-four percent UPEC isolates were ESBL producers with blaCTX-M (95.6%), blaTEM (95.6%), and blaSHV (21.7%) genes detected. Sixteen isolates had blaCTX-M/TEM, whereas five had blaTEM/CTX-M/SHV. A total of 5/23 ESBLs were cefoxitin resistant, but no AmpC genes were detected. The UPECs belonged predominantly to phylogenetic groups B2 (31/95; 32.6%) and D (30/95; 31.6%), while groups B2 and A had the most ESBL producers. Conclusions: β-Lactam antibiotics have reduced utility for treating UTIs as a quarter of UPECs were ESBL producing. Single or multiple ESBL genes were present in UPECs, belonging primarily to phylogenetic groups B2 and A.
Collapse
Affiliation(s)
- Catherine Wawira Muriuki
- Department of Biomedical Science and Technology, School of Biological and Physical Science, Maseno University, Maseno, Kenya.,Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Kenya/Kenya Medical Research Institute, Nairobi, Kenya
| | - Lilian Adhiambo Ogonda
- Department of Biomedical Science and Technology, School of Biological and Physical Science, Maseno University, Maseno, Kenya
| | - Cecilia Kyanya
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Kenya/Kenya Medical Research Institute, Nairobi, Kenya
| | - Daniel Matano
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Kenya/Kenya Medical Research Institute, Nairobi, Kenya
| | - Clement Masakhwe
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Kenya/Kenya Medical Research Institute, Nairobi, Kenya
| | - Erick Odoyo
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Kenya/Kenya Medical Research Institute, Nairobi, Kenya
| | - Lillian Musila
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Kenya/Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
8
|
Najjuka CF, Kateete DP, Lodiongo DK, Mambo O, Mocktar C, Kayondo W, Baluku H, Kajumbula HM, Essack SY, Joloba ML. Prevalence of plasmid-mediated AmpC beta-lactamases in Enterobacteria isolated from urban and rural folks in Uganda. AAS Open Res 2020; 3:62. [PMID: 34549164 PMCID: PMC8422338 DOI: 10.12688/aasopenres.13165.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
Background: AmpC beta-lactamase-producing bacteria are associated with increased resistance to third-generation cephalosporins. Here, we describe plasmid-mediated AmpC beta-lactamase-producing enterobacteria isolated from urban and rural dwellers in Uganda. Methods: Stool and urine from 1,448 individuals attending outpatient clinics in Kampala and two rural districts in central Uganda were processed for isolation of Escherichia coli and Klebsiella. Following antibiotic susceptibility testing, cefoxitin resistant isolates, and amoxicillin/clavulanate resistant but cefoxitin susceptible isolates, were tested for AmpC beta-lactamase production using the cefoxitin-cloxacillin double-disc synergy test. Carriage of plasmid-mediated AmpC beta-lactamase-encoding genes (pAmpC) and extended spectrum beta-lactamase (ESBL) encoding genes was determined by PCR. Results: Nine hundred and thirty E. coli and 55 Klebsiella were recovered from the cultured samples, yielding 985 isolates investigated (one per participant). One hundred and twenty-nine isolates (13.1%, 129/985) were AmpC beta-lactamase producers, of which 111 were molecularly characterized for pAmpC and ESBL gene carriage. pAmpC genes were detected in 60% (67/111) of the AmpC beta-lactamase producers; pAmpC genes were also detected in 18 AmpC beta-lactamase non-producers and in 13 isolates with reduced susceptibility to third-generation cephalosporins, yielding a total of 98 isolates that carried pAmpC genes. Overall, the prevalence of pAmpC genes in cefoxitin resistant and/or amoxicillin/clavulanate resistant E. coli and Klebsiella was 59% (93/157) and 26.1% (5/23), respectively. The overall prevalence of pAmpC-positive enterobacteria was 10% (98/985); 16.4% (45/274) in Kampala, 6.2% (25/406) Kayunga, and 9.2% (28/305) Mpigi. Ciprofloxacin use was associated with carriage of pAmpC-positive bacteria while residing in a rural district was associated with protection from carriage of pAmpC-positive bacteria. Conclusion: pAmpC beta-lactamase producing enterobacteria are prevalent in urban and rural dwellers in Uganda; therefore, cefoxitn should be considered during routine susceptibility testing in this setting.
Collapse
Affiliation(s)
- Christine F Najjuka
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - David Patrick Kateete
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Immunology & Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Dennis K Lodiongo
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
- Ministry of Health Public Health Laboratory, National Blood Bank and Transfusion services Centre, Juba, Sudan
| | - Obede Mambo
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
- Rumbek Health Science Institute, Lakes State, Sudan
| | - Chunderika Mocktar
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu Natal, Westville, Durban, South Africa
| | - William Kayondo
- Makerere University Walter Reed Project, Box 16524, Kampala, Uganda
| | - Hannington Baluku
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Henry M Kajumbula
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sabiha Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu Natal, Westville, Durban, South Africa
| | - Moses L Joloba
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Immunology & Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
9
|
Probing the Mechanism of Inactivation of the FOX-4 Cephamycinase by Avibactam. Antimicrob Agents Chemother 2018; 62:AAC.02371-17. [PMID: 29439972 DOI: 10.1128/aac.02371-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Ceftazidime-avibactam is a "second-generation" β-lactam-β-lactamase inhibitor combination that is effective against Enterobacteriaceae expressing class A extended-spectrum β-lactamases, class A carbapenemases, and/or class C cephalosporinases. Knowledge of the interactions of avibactam, a diazabicyclooctane with different β-lactamases, is required to anticipate future resistance threats. FOX family β-lactamases possess unique hydrolytic properties with a broadened substrate profile to include cephamycins, partly as a result of an isoleucine at position 346, instead of the conserved asparagine found in most AmpCs. Interestingly, a single amino acid substitution at N346 in the Citrobacter AmpC is implicated in resistance to the aztreonam-avibactam combination. In order to understand how diverse active-site topologies affect avibactam inhibition, we tested a panel of clinical Enterobacteriaceae isolates producing blaFOX using ceftazidime-avibactam, determined the biochemical parameters for inhibition using the FOX-4 variant, and probed the atomic structure of avibactam with FOX-4. Avibactam restored susceptibility to ceftazidime for most isolates producing blaFOX; two isolates, one expressing blaFOX-4 and the other producing blaFOX-5, displayed an MIC of 16 μg/ml for the combination. FOX-4 possessed a k2/K value of 1,800 ± 100 M-1 · s-1 and an off rate (koff) of 0.0013 ± 0.0003 s-1 Mass spectrometry showed that the FOX-4-avibactam complex did not undergo chemical modification for 24 h. Analysis of the crystal structure of FOX-4 with avibactam at a 1.5-Å resolution revealed a unique characteristic of this AmpC β-lactamase. Unlike in the Pseudomonas-derived cephalosporinase 1 (PDC-1)-avibactam crystal structure, interactions (e.g., hydrogen bonding) between avibactam and position I346 in FOX-4 are not evident. Furthermore, another residue is not observed to be close enough to compensate for the loss of these critical hydrogen-bonding interactions. This observation supports findings from the inhibition analysis of FOX-4; FOX-4 possessed the highest Kd (dissociation constant) value (1,600 nM) for avibactam compared to other AmpCs (7 to 660 nM). Medicinal chemists must consider the properties of extended-spectrum AmpCs, such as the FOX β-lactamases, for the design of future diazabicyclooctanes.
Collapse
|
10
|
Ampaire L, Nduhura E, Wewedru I. Phenotypic prevalence of extended spectrum beta-lactamases among enterobacteriaceae isolated at Mulago National Referral Hospital: Uganda. BMC Res Notes 2017; 10:448. [PMID: 28877761 PMCID: PMC5585949 DOI: 10.1186/s13104-017-2786-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/31/2017] [Indexed: 12/02/2022] Open
Abstract
Objective Enterobacteriaceae, common causes of health care associated and community acquired infections are mainly treated with beta-lactam agents. Our study objective was to determine the prevalence and common enterobacteriaceae pathogen producing extended spectrum beta lactamases (ESBLs). The isolates were recovered from various clinical specimens. This was cross sectional study conducted between July 2016 and September 2016 at Mulago National Referral Hospital, Uganda. We used ChromID™ ESBL agar (Biomerieux SA, Lyon, France) and Vitek2 compact system GN83 card (BioMerieux Inc, Hazelwood, Missouri, USA) to detect and confirm presence of phenotypic extended spectrum beta lactamases producing pathogens respectively. Results Of the 261 tested clinical isolates, 35 (13.4%) were identified as ESBLs producing bacteria. Escherichia coli predominated in the samples [18 (51.4%)], presenting the highest frequency of ESBLs producing, followed by Klebsiella pneumonia [10 (28.5%)], Proteus mirabilis [4 (11.4%)], Enterobacter sp. [2 (5.7%)] and least among Acinetobacter baumanii [1 (2.8%)].
Collapse
Affiliation(s)
- Lucas Ampaire
- Department of Medical Laboratory Sciences, Mbarara University of Science and Technology, P.O Box. 1410, Mbarara, Uganda.
| | - Emmanuel Nduhura
- Department of Medical Laboratory Sciences, Mbarara University of Science and Technology, P.O Box. 1410, Mbarara, Uganda
| | - Izale Wewedru
- Microbiology Department, Mulago National Referral Hospital, Kampala, Uganda
| |
Collapse
|