1
|
Adıgüzel E, Yılmaz ŞG, Atabilen B, Şeref B. Microbiome modulation as a novel therapeutic modality for anxiety disorders: A review of clinical trials. Behav Brain Res 2025; 487:115595. [PMID: 40246176 DOI: 10.1016/j.bbr.2025.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/08/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Anxiety disorders are one of the major conditions in psychiatry characterized by symptoms such as worry, social and performance fears, unexpected and/or triggered panic attacks, anticipatory anxiety, and avoidance behaviors. Recent developments have drawn attention to the putative involvement of peripheral systems in the control of anxiety, and the gut microbiota has come to light as an emerging peripheral target for anxiety. The relationship between the gut-brain axis, a bidirectional communication network between the central nervous system (CNS) and enteric nervous system (ENS), and anxiety has been the subject of some recent studies. Therefore, this systematic review analyzed clinical trials evaluating the potential of microbiome modulation methods in mitigating and ameliorating anxiety disorders. Clinical studies on probiotic, prebiotic, synbiotic supplements, dietary interventions, and fecal microbiota transplantation in anxiety disorders were screened. All of the studies examined the effects of probiotic intervention. One of these studies compared a prebiotic-rich diet with probiotic supplementation. Longitudinal analyses showed that the probiotic intervention alleviated anxiety. However, most of the controlled studies reported that the probiotic intervention did not make a difference compared to placebo. Thus, the current findings suggest that it is too early to consider the promising role of microbiome modulation in the treatment of anxiety disorders. However, it is obvious that more clinical research is needed to clarify issues such as probiotic strains, prebiotic types, and their doses that may be effective on anxiety disorders.
Collapse
Affiliation(s)
- Emre Adıgüzel
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karaman, Turkey.
| | - Şemsi Gül Yılmaz
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karaman, Turkey.
| | - Büşra Atabilen
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karaman, Turkey.
| | - Betül Şeref
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karaman, Turkey.
| |
Collapse
|
2
|
Mi Y, Lin C, Zheng H, Wu Y, Hou Y, Hu J, Mao J, Dai N, Li X, Lou Z, Ji Y. Astragalus polysaccharide modulates the gut microbiota and metabolites of patients with major depressive disorder in an in vitro fermentation model: a pilot study. Front Nutr 2025; 12:1587742. [PMID: 40357044 PMCID: PMC12068861 DOI: 10.3389/fnut.2025.1587742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Previous studies have found that Astragalus Polysaccharide (APS) and Lactobacillus plantarum PS128 (PS128) have potential antidepressant effects, but their effects on the gut microbiota and metabolites of major depressive disorder (MDD) are still unclear. We examined the effect of APS on gut microbiota and metabolites of first-episode and drug naïve MDD patients using in vitro fermentation, and further explored whether PS128 could enhance the utilization ability of APS. Fresh fecal samples from 15 MDD patients were collected, and analyzed for differences in gas production, gut microbiota, and tryptophan (Trp) related metabolites after 48 h of fermentation. APS fermentation increased the abundance of Bifidobacterium and decreased the abundance of Lachnoclostridium (p < 0.05). APS also increased total gas production and levels of indole lactic acid (ILA), Trp, and 5-hydroxytryptophan (5-HTP) (p < 0.05). Compared with APS, APS with PS128 synbiotics fermentation increased the abundance of Lactobacillus (p < 0.05), reduced total gas production and percentages of CO2, H2, and H2S (p < 0.05), and to some extent increased the levels of ILA, Trp, and 5-HTP, although not statistically significant (p > 0.05). Correlation analysis showed Bifidobacterium was positively correlated with ILA, Trp and 5-HTP; On the contrary, Lachnoclostridium was negatively correlated with ILA, Trp, and 5-HTP. All these results suggest that APS could regulate gut microbiota structure and Trp related metabolites in MDD patients; Compared to APS, APS and PS128 synbiotic fermentation could reduce gas production but shows limited ability to modulate gut microbiota structure or Trp related metabolites in MDD patients.
Collapse
Affiliation(s)
- Yuwei Mi
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chen Lin
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huowang Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ying Wu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yanbin Hou
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jieqiong Hu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiaxin Mao
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ni Dai
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhongze Lou
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yunxin Ji
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Yang K, Chen Y, Wang M, Zhang Y, Yuan Y, Hou H, Mao YH. The Improvement and Related Mechanism of Microecologics on the Sports Performance and Post-Exercise Recovery of Athletes: A Narrative Review. Nutrients 2024; 16:1602. [PMID: 38892536 PMCID: PMC11174581 DOI: 10.3390/nu16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The diversity and functionality of gut microbiota may play a crucial role in the function of human motor-related systems. In addition to traditional nutritional supplements, there is growing interest in microecologics due to their potential to enhance sports performance and facilitate post-exercise recovery by modulating the gut microecological environment. However, there is a lack of relevant reviews on this topic. This review provides a comprehensive overview of studies investigating the effects of various types of microecologics, such as probiotics, prebiotics, synbiotics, and postbiotics, on enhancing sports performance and facilitating post-exercise recovery by regulating energy metabolism, mitigating oxidative-stress-induced damage, modulating immune responses, and attenuating bone loss. Although further investigations are warranted to elucidate the underlying mechanisms through which microecologics exert their effects. In summary, this study aims to provide scientific evidence for the future development of microecologics in athletics.
Collapse
Affiliation(s)
- Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Minghan Wang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Haoyang Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
4
|
Chen CM, Wu CC, Kim Y, Hsu WY, Tsai YC, Chiu SL. Enhancing social behavior in an autism spectrum disorder mouse model: investigating the underlying mechanisms of Lactiplantibacillus plantarum intervention. Gut Microbes 2024; 16:2359501. [PMID: 38841895 PMCID: PMC11164232 DOI: 10.1080/19490976.2024.2359501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting over 1% of the global population. Individuals with ASD often exhibit complex behavioral conditions, including significant social difficulties and repetitive behaviors. Moreover, ASD often co-occurs with several other conditions, including intellectual disabilities and anxiety disorders. The etiology of ASD remains largely unknown owing to its complex genetic variations and associated environmental risks. Ultimately, this poses a fundamental challenge for the development of effective ASD treatment strategies. Previously, we demonstrated that daily supplementation with the probiotic Lactiplantibacillus plantarum PS128 (PS128) alleviates ASD symptoms in children. However, the mechanism underlying this improvement in ASD-associated behaviors remains unclear. Here, we used a well-established ASD mouse model, induced by prenatal exposure to valproic acid (VPA), to study the physiological roles of PS128 in vivo. Overall, we showed that PS128 selectively ameliorates behavioral abnormalities in social and spatial memory in VPA-induced ASD mice. Morphological examination of dendritic architecture further revealed that PS128 facilitated the restoration of dendritic arborization and spine density in the hippocampus and prefrontal cortex of ASD mice. Notably, PS128 was crucial for restoring oxytocin levels in the paraventricular nucleus and oxytocin receptor signaling in the hippocampus. Moreover, PS128 alters the gut microbiota composition and increases the abundance of Bifidobacterium spp. and PS128-induced changes in Bifidobacterium abundance positively correlated with PS128-induced behavioral improvements. Together, our results show that PS128 treatment can effectively ameliorate ASD-associated behaviors and reinstate oxytocin levels in VPA-induced mice, thereby providing a promising strategy for the future development of ASD therapeutics.
Collapse
Affiliation(s)
- Chih-Ming Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Research and Development Department, Bened Biomedical Co. Ltd, Taipei, Taiwan
| | - Chien-Chen Wu
- Research and Development Department, Bened Biomedical Co. Ltd, Taipei, Taiwan
| | - Yebeen Kim
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Wei-Yu Hsu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Ling Chiu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Davray D, Kulkarni R. In-silico functional analysis of hypothetical proteins from Lactiplantibacillus plantarum plasmids reveals enrichment of cell envelope proteins. Plasmid 2023; 127:102693. [PMID: 37257733 DOI: 10.1016/j.plasmid.2023.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Lactiplantibacillus plantarum is one of the important species of lactic acid bacterium (LAB) found in diverse environments, with many strains exhibiting probiotic properties. In our previous study, 41.6% of protein families (PFs) encoded by 395 plasmids from several L. plantarum strains were found to be hypothetical proteins with no predicted function. This study aimed at predicting the functions of these 647 hypothetical proteins using 21 different bioinformatics methods. As a result, 160 PFs could be newly annotated. A lower proportion of plasmid-specific functions was annotated as compared to the functions shared between plasmids and chromosomes. Also, hypothetical proteins were less conserved than the annotated proteins across L.plantarum plasmids. Based on the subcellular localization, cell envelope proteins represented the biggest category in the newly annotated proteins. Transporters (112 PFs) which was a part of cell envelop proteins represented the largest functional group. Additionally, 40 and 25 other PFs were predicted to contain signal peptides and transmembrane helices, respectively. We speculate that such hypothetical proteins might be involved in the transport of various chemicals and environmental interactions in L. plantarum. In the future, functional characterization of these proteins through wet-lab experimental approach can provide novel insights into their contribution to the physiology, probiotic properties, and industrial utility of these bacteria.
Collapse
Affiliation(s)
- Dimple Davray
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India.
| |
Collapse
|
6
|
Davray D, Bawane H, Kulkarni R. Non-redundant nature of Lactiplantibacillus plantarum plasmidome revealed by comparative genomic analysis of 105 strains. Food Microbiol 2023; 109:104153. [DOI: 10.1016/j.fm.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
|