1
|
Gao FQ, Zhu JQ, Feng XD. Innovative mesenchymal stem cell treatments for fatty liver disease. World J Stem Cells 2024; 16:846-853. [PMID: 39351260 PMCID: PMC11438732 DOI: 10.4252/wjsc.v16.i9.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/24/2024] [Imported: 09/24/2024] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) is increasing year by year due to changes in the contemporary environment and dietary structure, and is an important public health problem worldwide. There is an urgent need to continuously improve the understanding of their disease mechanisms and develop novel therapeutic strategies. Mesenchymal stem cells (MSCs) have shown promise as a potential therapeutic strategy in therapeutic studies of NAFLD and ALD. NAFLD and ALD have different triggers and their specific mechanisms of disease progression are different, but both involve disease processes such as hepatocellular steatosis and potential fibrosis, cirrhosis, and even hepatocellular carcinoma. MSCs have metabolic regulatory, anti-apoptotic, antioxidant, and immunomodulatory effects that together promote liver injury repair and functional recovery, and have demonstrated positive results in preclinical studies. This editorial is a continuum of Jiang et al's review focusing on the advantages and limitations of MSCs and their derivatives as therapeutics for NAFLD and ALD. They detail how MSCs attenuate the progression of NAFLD by modulating molecular pathways involved in glucolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. Based on recent advances, we discuss MSCs and their derivatives as therapeutic strategies for NAFLD and ALD, providing useful information for their clinical application.
Collapse
|
2
|
Jin YX, Hu HQ, Zhang JC, Xin XY, Zhu YT, Ye Y, Li D. Mechanism of mesenchymal stem cells in liver regeneration: Insights and future directions. World J Stem Cells 2024; 16:842-845. [PMID: 39351263 PMCID: PMC11438733 DOI: 10.4252/wjsc.v16.i9.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/24/2024] [Imported: 09/24/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses. Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of triglycerides in liver cells and involves immune system activation, leading to histological changes, tissue damage, and clinical symptoms. A recent publication by Jiang et al, highlighted the potential of MSCs to mitigate in NAFLD progression by targeting various molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In this editorial, we comment on their research and discuss the efficacy of MSC therapy in treating NAFLD.
Collapse
|
3
|
Voinova VV, Vasina DV, Bonartsev AP. Mesenchymal stem cells in wound healing: A bibliometric analysis as a powerful research tool. World J Stem Cells 2024; 16:827-831. [PMID: 39351262 PMCID: PMC11438730 DOI: 10.4252/wjsc.v16.i9.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/24/2024] [Imported: 09/24/2024] Open
Abstract
Bibliographic analysis is still very rarely used in experimental basic study papers. The comprehensive bibliometric analysis of scientific literature on research progress and challenges in stem cell therapy for diabetic chronic wounds, which was conducted in the work of Shi et al can be a case study and a source of valuable information for writing reviews and experimental papers in this field. Basic experimental studies on a role of mesenchymal stem cells (MSCs) in wound healing that are published in 2023-2024, such as Zhang et al in 2023, Hu et al in 2023, Wang et al in 2023 are certainly also subjects for applying this powerful tool to analyze current research, challenges and perspectives in this field. This is due to the fact that these studies have addressed a great variety of aspects of the application of MSCs for the treatment of chronic wounds, such as using both the cells themselves and their various products: Sponges, hydrogels, exosomes, and genetic constructions. Such a wide variety of directions in the field of study and biomedical application of MSCs requires a deep understanding of the current state of research in this area, which can be provided by bibliometric analysis. Thus, the use of such elements of bibliographic analysis as publication count by year and analysis of top-10 keywords calculated independently or cited from bibliometric analysis studies can be safely recommended for every basic study manuscripts, primarily for the "Introduction" section, and review.
Collapse
|
4
|
Masri JE, Afyouni A, Ghazi M, Hamideh K, Moubayed I, Jurjus A, Haidar H, Petrosyan R, Salameh P, Hosseini H. Stem cell transplantation in cerebrovascular accidents: A global bibliometric analysis (2000-2023). World J Stem Cells 2024; 16:832-841. [PMID: 39351261 PMCID: PMC11438731 DOI: 10.4252/wjsc.v16.i9.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/24/2024] [Imported: 09/24/2024] Open
Abstract
BACKGROUND Cerebrovascular accident (CVA) is a major global contributor to death and disability. As part of its medical management, researchers have recognized the importance of promising neuroprotective strategies, where stem cell transplantation (SCT) is thought to confer advantages via trophic and neuroprotective effects. AIM To evaluate the current state of research on SCT in patients with CVA, assess key trends and highlight literature gaps. METHODS PubMed was screened for SCT in CVA-related articles in October 2023, for each country during the period between 2000 and 2023. Using the World Bank data, total population and gross domestic product were collected for comparison. VOSviewer_1.6.19 was used to create the VOS figure using the results of the same query. Graphs and tables were obtained using Microsoft Office Excel. RESULTS A total of 6923 studies were identified on SCT in CVA, making 0.03% of all published studies worldwide. Approximately, 68% were conducted in high-income countries, with a significant focus on mesenchymal stem cells. The journal "Stroke" featured the largest share of these articles, with mesenchymal SCT having the highest rate of inclusion, followed by hematopoietic SCT. Over time, there has been a noticeable shift from in vitro studies, which assess stem cell proliferation and neurogenesis, to in vivo studies aimed at evaluating efficacy and safety. Additionally, the number of reviews increased along this approach. CONCLUSION This bibliometric analysis provides a comprehensive guide for physicians and researchers in the field through an objective overview of research activity, and highlights both current trends and gaps. Having a potential therapeutic role in CVA, more research is needed in the future to focus on different aspects of SCT, aiming to reach a better treatment strategy and improve life quality in patients.
Collapse
|
5
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] [Imported: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
|
6
|
Cheng CH, Hao WR, Cheng TH. Mesenchymal stem cells: A promising therapeutic avenue for non-alcoholic fatty liver disease. World J Stem Cells 2024; 16:780-783. [PMID: 39219724 PMCID: PMC11362857 DOI: 10.4252/wjsc.v16.i8.780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] [Imported: 08/26/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a pressing global health concern that is associated with metabolic syndrome and obesity. On the basis of the insights provided by Jiang et al, this editorial presents an exploration of the potential of mesenchymal stem cells (MSCs) for NAFLD treatment. MSCs have numerous desirable characteristics, including immunomodulation, anti-inflammatory properties, and tissue regeneration promotion, rendering them attractive candidates for NAFLD treatment. Recent preclinical and early clinical studies have highlighted the efficacy of MSCs in improving liver function and reducing disease severity in NAFLD models. However, MSC heterogeneity, long-term safety concerns, and unoptimized therapeutic protocols remain substantial challenges. Addressing these challenges through standardized protocols and rigorous clinical trials is essential to the safe and successful application of MSCs in NAFLD management. Continued research into MSC mechanisms and therapeutic optimization is required to improve treatments for NAFLD and related liver diseases.
Collapse
|
7
|
Zou XF, Zhang BZ, Qian WW, Cheng FM. Bone marrow mesenchymal stem cells in treatment of peripheral nerve injury. World J Stem Cells 2024; 16:799-810. [PMID: 39219723 PMCID: PMC11362854 DOI: 10.4252/wjsc.v16.i8.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] [Imported: 08/26/2024] Open
Abstract
Peripheral nerve injury (PNI) is a common neurological disorder and complete functional recovery is difficult to achieve. In recent years, bone marrow mesenchymal stem cells (BMSCs) have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous transplantation ability. This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI. The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury. BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors, extracellular matrix molecules, and adhesion molecules. Additionally, BMSCs release pro-angiogenic factors to promote the formation of new blood vessels. They modulate cytokine expression and regulate macrophage polarization, leading to immunomodulation. Furthermore, BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration, thereby promoting neuronal repair and regeneration. Moreover, this review explores methods of applying BMSCs in PNI treatment, including direct cell transplantation into the injured neural tissue, implantation of BMSCs into nerve conduits providing support, and the application of genetically modified BMSCs, among others. These findings confirm the potential of BMSCs in treating PNI. However, with the development of this field, it is crucial to address issues related to BMSC therapy, including establishing standards for extracting, identifying, and cultivating BMSCs, as well as selecting application methods for BMSCs in PNI such as direct transplantation, tissue engineering, and genetic engineering. Addressing these issues will help translate current preclinical research results into clinical practice, providing new and effective treatment strategies for patients with PNI.
Collapse
|
8
|
Zheng S, Hu GY, Li JH, Li YK. Potential plausible role of Wharton's jelly mesenchymal stem cells for diabetic bone regeneration. World J Stem Cells 2024; 16:824-826. [PMID: 39219727 PMCID: PMC11362853 DOI: 10.4252/wjsc.v16.i8.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024] [Imported: 08/26/2024] Open
Abstract
This letter addresses the review titled "Wharton's jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury". The review highlights the regenerative potential of Wharton's jelly mesenchymal stem cells (WJ-MSCs) and describes why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine. The potential plausible role of WJ-MSCs for diabetic bone regeneration should be noticeable, which will provide a new strategy for improving bone regeneration under diabetic conditions.
Collapse
|
9
|
Chen QH, Zhang Y, Gu X, Yang PL, Yuan J, Yu LN, Chen JM. Microvesicles derived from mesenchymal stem cells inhibit acute respiratory distress syndrome-related pulmonary fibrosis in mouse partly through hepatocyte growth factor. World J Stem Cells 2024; 16:811-823. [PMID: 39219725 PMCID: PMC11362855 DOI: 10.4252/wjsc.v16.i8.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/04/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] [Imported: 08/26/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome (ARDS) patients. Mesenchymal stromal cell-derived microvesicles (MSC-MVs) have been shown to exert antifibrotic effects in lung diseases. AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models. METHODS MSC-MVs with low hepatocyte growth factor (HGF) expression (siHGF-MSC-MVs) were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model. Following intubation, respiratory mechanics-related indicators were measured via an experimental small animal lung function tester. Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging. Immunohistochemical, western blotting, ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators. RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice. Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores. However, low expression of HGF (siHGF-MSC-MVs) significantly inhibited the effects of MSC-MVs (P < 0.05). Compared with the ARDS pulmonary fibrosis group, the MSC-MVs group exhibited suppressed expression of type I collagen antigen, type III collagen antigen, and the proteins transforming growth factor-β and α-smooth muscle actin, whereas the siHGF-MVs group exhibited significantly increased expression of these proteins. In addition, pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group, and the effects of the MSC-MVs were significantly inhibited by low HGF expression (all P < 0.05). CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.
Collapse
|
10
|
Wan XX, Hu XM, Zhang Q, Xiong K. Pretreatment can alleviate programmed cell death in mesenchymal stem cells. World J Stem Cells 2024; 16:773-779. [PMID: 39219726 PMCID: PMC11362856 DOI: 10.4252/wjsc.v16.i8.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024] [Imported: 08/26/2024] Open
Abstract
In this editorial, we delved into the article titled "Cellular preconditioning and mesenchymal stem cell ferroptosis." This groundbreaking study underscores a pivotal discovery: Ferroptosis, a type of programmed cell death, drastically reduces the viability of donor mesenchymal stem cells (MSCs) after engraftment, thereby undermining the therapeutic value of cell-based therapies. Furthermore, the article proposes that by manipulating ferroptosis mechanisms through preconditioning, we can potentially enhance the survival rate and functionality of MSCs, ultimately amplifying their therapeutic potential. Given the crucial role ferroptosis plays in shaping the therapeutic outcomes of MSCs, we deem it imperative to further investigate the intricate interplay between programmed cell death and the therapeutic effectiveness of MSCs.
Collapse
|
11
|
Jiang Y, Yusoff NM, Du J, Moses EJ, Lin JT. Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease. World J Stem Cells 2024; 16:760-772. [PMID: 39086561 PMCID: PMC11287429 DOI: 10.4252/wjsc.v16.i7.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] [Imported: 07/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant health challenge, characterized by its widespread prevalence, intricate natural progression and multifaceted pathogenesis. Although NAFLD initially presents as benign fat accumulation, it may progress to steatosis, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Mesenchymal stem cells (MSCs) are recognized for their intrinsic self-renewal, superior biocompatibility, and minimal immunogenicity, positioning them as a therapeutic innovation for liver diseases. Therefore, this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics, and support the development of MSC-based therapy in the treatment of NAFLD.
Collapse
|
12
|
Sharma P, Maurya DK. Wharton's jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury. World J Stem Cells 2024; 16:742-759. [PMID: 39086560 PMCID: PMC11287430 DOI: 10.4252/wjsc.v16.i7.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] [Imported: 07/25/2024] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries. WJ-MSCs are more naïve and have a better safety profile, making them suitable for both autologous and allogeneic transplantations. This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries. In this review, we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses. Finally, the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.
Collapse
|
13
|
Pei H, Zhang Y, Wang C, He BJ. Additional comments on extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis. World J Stem Cells 2024; 16:739-741. [PMID: 39086559 PMCID: PMC11287428 DOI: 10.4252/wjsc.v16.i7.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] [Imported: 07/25/2024] Open
Abstract
Recently, we read an article published by the Yang et al. The results of this study indicated that engineered exosomes loaded with microRNA-29a (miR-29a) alleviate knee inflammation and maintain extracellular matrix stability in Sprague Dawley rats. The study's results provide useful information for treating knee osteoarthritis (KOA). This letter, shares our perspectives on treating KOA using engineered exosomes for miR-29a.
Collapse
|
14
|
Ferreira DB, Gasparoni LM, Bronzeri CF, Paiva KBS. RPLP0/TBP are the most stable reference genes for human dental pulp stem cells under osteogenic differentiation. World J Stem Cells 2024; 16:656-669. [PMID: 38948092 PMCID: PMC11212553 DOI: 10.4252/wjsc.v16.i6.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and β-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches. AIM To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR. METHODS We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups. RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms' two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking. CONCLUSION For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
Collapse
|
15
|
Zhu L, He L, Duan W, Yang B, Li N. Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. World J Stem Cells 2024; 16:728-738. [PMID: 38948093 PMCID: PMC11212546 DOI: 10.4252/wjsc.v16.i6.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.
AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.
METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.
RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.
CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.
Collapse
|
16
|
Xu LM, Yu XX, Zhang N, Chen YS. Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. World J Stem Cells 2024; 16:708-727. [PMID: 38948096 PMCID: PMC11212552 DOI: 10.4252/wjsc.v16.i6.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling. AIM To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved. METHODS Human vaginal wall collagen content was assessed by Masson's trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed via RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined via functional experiments in vitro. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules. RESULTS In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production in vitro. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression. CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
Collapse
|
17
|
Zhu L, He L, Duan W, Yang B, Li N. Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. World J Stem Cells 2024; 16:727-737. [DOI: 10.4252/wjsc.v16.i6.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.
AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.
METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.
RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.
CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.
Collapse
|
18
|
He L, Zhu C, Zhou XF, Zeng SE, Zhang L, Li K. Gut microbiota modulating intestinal stem cell differentiation. World J Stem Cells 2024; 16:619-622. [PMID: 38948097 PMCID: PMC11212547 DOI: 10.4252/wjsc.v16.i6.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
Proliferation and differentiation of intestinal stem cell (ISC) to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation. However, when this disordered proliferation continues, it induces the ISC to enter a cancerous state. The gut microbiota on the free surface of the gut mucosal barrier is able to interact with ISC on a sustained basis. Microbiota metabolites are able to regulate the proliferation of gut stem and progenitor cells through transcription factors, while in steady state, differentiated colonocytes are able to break down such metabolites, thereby protecting stem cells at the gut crypt. In the future, the gut flora and its metabolites mediating the regulation of ISC differentiation will be a potential treatment for enteropathies.
Collapse
|
19
|
Xu LM, Yu XX, Zhang N, Chen YS. Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. World J Stem Cells 2024; 16:707-726. [DOI: 10.4252/wjsc.v16.i6.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.
AIM To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved.
METHODS Human vaginal wall collagen content was assessed by Masson’s trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed via RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined via functional experiments in vitro. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules.
RESULTS In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production in vitro. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression.
CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
Collapse
|
20
|
Kabatas S, Civelek E, Boyalı O, Sezen GB, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Safety and efficiency of Wharton's Jelly-derived mesenchymal stem cell administration in patients with traumatic brain injury: First results of a phase I study. World J Stem Cells 2024; 16:641-655. [PMID: 38948099 PMCID: PMC11212551 DOI: 10.4252/wjsc.v16.i6.641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. Stem cell transplantation has evolved as a novel treatment modality in the management of TBI, as it has the potential to arrest the degeneration and promote regeneration of new cells in the brain. Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) have recently shown beneficial effects in the functional recovery of neurological deficits. AIM To evaluate the safety and efficiency of MSC therapy in TBI. METHODS We present 6 patients, 4 male and 2 female aged between 21 and 27 years who suffered a TBI. These 6 patients underwent 6 doses of intrathecal, intramuscular (i.m.) and intravenous transplantation of WJ-MSCs at a target dose of 1 × 106/kg for each application route. Spasticity was assessed using the Modified Ashworth scale (MAS), motor function according to the Medical Research Council Muscle Strength Scale, quality of life was assessed by the Functional Independence Measure (FIM) scale and Karnofsky Performance Status scale. RESULTS Our patients showed only early, transient complications, such as subfebrile fever, mild headache, and muscle pain due to i.m. injection, which resolved within 24 h. During the one year follow-up, no other safety issues or adverse events were reported. These 6 patients showed improvements in their cognitive abilities, muscle spasticity, muscle strength, performance scores and fine motor skills when compared before and after the intervention. MAS values, which we used to assess spasticity, were observed to statistically significantly decrease for both left and right sides (P < 0.001). The FIM scale includes both motor scores (P < 0.05) and cognitive scores (P < 0.001) and showed a significant increase in pretest posttest analyses. The difference observed in the participants' Karnofsky Performance Scale values pre and post the intervention was statistically significant (P < 0.001). CONCLUSION This study showed that cell transplantation has a safe, effective and promising future in the management of TBI.
Collapse
|
21
|
Lin KC, Fang WF, Yeh JN, Chiang JY, Chiang HJ, Shao PL, Sung PH, Yip HK. Outcomes of combined mitochondria and mesenchymal stem cells-derived exosome therapy in rat acute respiratory distress syndrome and sepsis. World J Stem Cells 2024; 16:690-707. [PMID: 38948095 PMCID: PMC11212548 DOI: 10.4252/wjsc.v16.i6.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND The treatment of acute respiratory distress syndrome (ARDS) complicated by sepsis syndrome (SS) remains challenging. AIM To investigate whether combined adipose-derived mesenchymal-stem-cells (ADMSCs)-derived exosome (EXAD) and exogenous mitochondria (mitoEx) protect the lung from ARDS complicated by SS. METHODS In vitro study, including L2 cells treated with lipopolysaccharide (LPS) and in vivo study including male-adult-SD rats categorized into groups 1 (sham-operated-control), 2 (ARDS-SS), 3 (ARDS-SS + EXAD), 4 (ARDS-SS + mitoEx), and 5 (ARDS-SS + EXAD + mitoEx), were included in the present study. RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells, resulting in significantly higher mitochondrial-cytochrome-C, adenosine triphosphate and relative mitochondrial DNA levels (P < 0.001). The protein levels of inflammation [interleukin (IL)-1β/tumor necrosis factor (TNF)-α/nuclear factor-κB/toll-like receptor (TLR)-4/matrix-metalloproteinase (MMP)-9/oxidative-stress (NOX-1/NOX-2)/apoptosis (cleaved-caspase3/cleaved-poly (ADP-ribose) polymerase)] were significantly attenuated in lipopolysaccharide (LPS)-treated L2 cells with EXAD treatment than without EXAD treatment, whereas the protein expressions of cellular junctions [occluding/β-catenin/zonula occludens (ZO)-1/E-cadherin] exhibited an opposite pattern of inflammation (all P < 0.001). Animals were euthanized by 72 h post-48 h-ARDS induction, and lung tissues were harvested. By 72 h, flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+) and albumin were lowest in group 1, highest in group 2, and significantly higher in groups 3 and 4 than in group 5 (all P < 0.0001), whereas arterial oxygen-saturation (SaO2%) displayed an opposite pattern of albumin among the groups. Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers (CD68+/γ-H2AX) displayed an identical pattern of SaO2% among the groups (all P < 0.0001). The protein expressions of inflammatory (TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress (NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged (cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic (beclin-1/Atg-5/ratio of LC3B-II/LC3B-I) biomarkers exhibited a similar manner, whereas antioxidants [nuclear respiratory factor (Nrf)-1/Nrf-2]/cellular junctions (ZO-1/E-cadherin)/mitochondrial electron transport chain (complex I-V) exhibited an opposite manner of albumin among the groups (all P < 0.0001). CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.
Collapse
|
22
|
Zhao YD, Huang YC, Li WS. Searching for the optimal precondition procedure for mesenchymal stem/stromal cell treatment: Facts and perspectives. World J Stem Cells 2024; 16:615-618. [PMID: 38948100 PMCID: PMC11212554 DOI: 10.4252/wjsc.v16.i6.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies, and pretreatment has proven to enhance cell vitality and function. In a recent publication, Li et al explored a new combination of pretreatment conditions. Here, we present an editorial to comment on their work and provide our view on mesenchymal stem/stromal cell precondition.
Collapse
|
23
|
Haider KH. Priming mesenchymal stem cells to develop "super stem cells". World J Stem Cells 2024; 16:623-640. [PMID: 38948094 PMCID: PMC11212549 DOI: 10.4252/wjsc.v16.i6.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment, genetic manipulation, and chemical and pharmacological treatment, each strategy having advantages and limitations. Most of these pre-treatment protocols are non-combinative. This editorial is a continuum of Li et al's published article and Wan et al's editorial focusing on the significance of pre-treatment strategies to enhance their stemness, immunoregulatory, and immunosuppressive properties. They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia. Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells (MSCs), pre-treatment based on the mechanistic understanding is expected to develop "Super MSCs", which will create a transformative shift in MSC-based therapies in clinical settings, potentially revolutionizing the field. Once optimized, the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop "super stem cells" with augmented stemness, functionality, and reparability for diverse clinical applications with better outcomes.
Collapse
|
24
|
Lin KC, Fang WF, Yeh JN, Chiang JY, Chiang HJ, Shao PL, Sung PH, Yip HK. Outcomes of combined mitochondria and mesenchymal stem cells-derived exosome therapy in rat acute respiratory distress syndrome and sepsis. World J Stem Cells 2024; 16:689-706. [DOI: 10.4252/wjsc.v16.i6.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND The treatment of acute respiratory distress syndrome (ARDS) complicated by sepsis syndrome (SS) remains challenging.
AIM To investigate whether combined adipose-derived mesenchymal-stem-cells (ADMSCs)-derived exosome (EXAD) and exogenous mitochondria (mitoEx) protect the lung from ARDS complicated by SS.
METHODS In vitro study, including L2 cells treated with lipopolysaccharide (LPS) and in vivo study including male-adult-SD rats categorized into groups 1 (sham-operated-control), 2 (ARDS-SS), 3 (ARDS-SS + EXAD), 4 (ARDS-SS + mitoEx), and 5 (ARDS-SS + EXAD + mitoEx), were included in the present study.
RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells, resulting in significantly higher mitochondrial-cytochrome-C, adenosine triphosphate and relative mitochondrial DNA levels (P < 0.001). The protein levels of inflammation [interleukin (IL)-1β/tumor necrosis factor (TNF)-α/nuclear factor-κB/toll-like receptor (TLR)-4/matrix-metalloproteinase (MMP)-9/oxidative-stress (NOX-1/NOX-2)/apoptosis (cleaved-caspase3/cleaved-poly (ADP-ribose) polymerase)] were significantly attenuated in lipopolysaccharide (LPS)-treated L2 cells with EXAD treatment than without EXAD treatment, whereas the protein expressions of cellular junctions [occluding/β-catenin/zonula occludens (ZO)-1/E-cadherin] exhibited an opposite pattern of inflammation (all P < 0.001). Animals were euthanized by 72 h post-48 h-ARDS induction, and lung tissues were harvested. By 72 h, flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+) and albumin were lowest in group 1, highest in group 2, and significantly higher in groups 3 and 4 than in group 5 (all P < 0.0001), whereas arterial oxygen-saturation (SaO2%) displayed an opposite pattern of albumin among the groups. Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers (CD68+/γ-H2AX) displayed an identical pattern of SaO2% among the groups (all P < 0.0001). The protein expressions of inflammatory (TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress (NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged (cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic (beclin-1/Atg-5/ratio of LC3B-II/LC3B-I) biomarkers exhibited a similar manner, whereas antioxidants [nuclear respiratory factor (Nrf)-1/Nrf-2]/cellular junctions (ZO-1/E-cadherin)/mitochondrial electron transport chain (complex I-V) exhibited an opposite manner of albumin among the groups (all P < 0.0001).
CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.
Collapse
|
25
|
Ferreira DB, Gasparoni LM, Bronzeri CF, Paiva KBS. RPLP0/TBP are the most stable reference genes for human dental pulp stem cells under osteogenic differentiation. World J Stem Cells 2024; 16:655-668. [DOI: 10.4252/wjsc.v16.i6.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] [Imported: 06/25/2024] Open
Abstract
BACKGROUND Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and β-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches.
AIM To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR.
METHODS We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups.
RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms’ two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking.
CONCLUSION For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
Collapse
|