1
|
Singh-Reilly N, Pham NTT, Graff-Radford J, Machulda MM, Spychalla AJ, Senjem ML, Petersen RC, Lowe VJ, Boeve BF, Jack CR, Josephs KA, Kantarci K, Whitwell JL. White matter hyperintensities in dementia with lewy bodies and posterior cortical atrophy. Neurobiol Aging 2025; 150:44-52. [PMID: 40056539 PMCID: PMC11981827 DOI: 10.1016/j.neurobiolaging.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Dementia with Lewy bodies (DLB) and posterior cortical atrophy (PCA) are neurodegenerative disorders that can overlap clinically and in patterns of regional hypometabolism and show elevated white matter hyperintensity (WMH) burden. Little is known about the regional WMH burden in DLB patients without any interference of AD pathology and how these patterns compare to PCA patients. Twenty-two amyloid-negative DLB patients, 40 amyloid-positive PCA patients, and 49 amyloid-negative cognitively unimpaired (CU) healthy individuals were recruited at Mayo Clinic, Rochester, MN. They underwent a 3 T head MRI, a Pittsburgh Compound B (PiB) PET scan, and a fluid-attenuated inversion recovery scan (FLAIR). The relationship between regional WMH volume and diagnosis was evaluated while adjusting for age and sex. DLB showed greater periventricular WMH burden in the temporal, occipital, and frontal lobes and greater WMH burden in the posterior corpus callosum compared to CU. PCA showed greater subcortical WMH burden in temporal, parietal, and occipital lobes, and greater periventricular WMH burden in the temporal, occipital, and frontal lobes, compared to CU. On comparing both dementia groups, PCA showed greater subcortical WMH burden in the temporal and occipital lobes compared to DLB, while DLB showed greater WMH burden in the posterior corpus callosum compared to PCA. Hence, DLB and PCA are both associated with periventricular WMHs, with deep subcortical WMHs being more characteristic of PCA, and callosal WMHs more characteristic of Aβ-negative DLB patients, suggesting different pathophysiological mechanisms underlying the development of WMHs in these two neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
2
|
Mao C, Mo Y, Jiang J, Fang S, Hu Z, Ke Z, Zhao H, Xu Y. Association between high plasma p-tau181 level and gait changes in patients with mild cognitive impairment. Sci Rep 2025; 15:14679. [PMID: 40287471 PMCID: PMC12033327 DOI: 10.1038/s41598-025-94472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
Previous studies on gait changes in mild cognitive impairment (MCI) are inconsistent. Alzheimer's disease (AD) plasma biomarkers, amyloid beta (Aβ) and phosphorylated-tau (p-tau), are relevant to gait disorders. This study explores gait changes in MCI and the relationship between gait performance and AD plasma biomarkers. 231 participants were recruited and stratified based on p-tau181 levels into: low p-tau181 with normal cognition (lT-NC), low p-tau181 with MCI (lT-MCI), and high p-tau181 with MCI (hT-MCI). The same cohort was subsequently stratified by Aβ42/Aβ40 levels into: high Aβ42/Aβ40 with normal cognition (hA-NC), high Aβ42/Aβ40 with MCI (hA-MCI), and low Aβ42/Aβ40 with MCI (lA-MCI). Demographic, cognitive and gait data were compared across groups. The hT-MCI and lA-MCI groups were older than the other groups. Significant differences in stride length were found between lT-NC and hT-MCI, lT-MCI and hT-MCI, but not between lT-NC and lT-MCI. Neuropsychological assessments revealed poorer performance in hT-MCI and lT-MCI groups relative to lT-NC, while global cognitive function was comparable between hT-MCI and lT-MCI groups. No such associations were observed between stride length and Aβ42/Aβ40 levels. Decreased stride length, which is generally considered to be indicative of poorer gait, was significantly associated with elevated p-tau181 levels and independent of global cognitive status. These findings highlight the potential of p-tau181 as a biomarker for tau-related motor dysfunction in MCI.
Collapse
Affiliation(s)
- Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| | - Yuting Mo
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Jialiu Jiang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210000, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210000, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China.
| |
Collapse
|
3
|
Singh-Reilly N, Graff-Radford J, Li D, Mielke MM, Machulda MM, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Aβ 42/40 and p-tau 181 as disease biomarkers in atypical Alzheimer's disease. J Alzheimers Dis 2025:13872877251333450. [PMID: 40267266 DOI: 10.1177/13872877251333450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
BackgroundStudies suggest that plasma Alzheimer's disease (AD) biomarkers may aid in the overall diagnosis of AD, but their utility among patients with atypical clinical presentations of AD are unknown.ObjectiveThe main objective of this study was to determine the relationship between amyloid-β (Aβ) and tau plasma biomarkers and PET measures of both Aβ and tau in atypical AD. The secondary objective was to determine if plasma biomarkers could differentiate patients with different atypical AD phenotypes and whether they were related to measures of disease severity.MethodsWe assessed whether plasma p-tau 181 and Aβ42/40 were associated with Aβ and tau PET uptake, clinical phenotype and severity in 77 patients with PET biomarker-confirmed atypical AD.ResultsPlasma Aβ42/40 ratio showed positive associations with tau PET uptake, with higher (more normal) Aβ42/40 ratio associated with higher tau uptake; the ratio was not associated with Aβ PET. No associations were noted with plasma p-tau 181. Plasma Aβ42/40 ratio and p-tau 181 concentrations were not associated with AD phenotype or cognitive severity.ConclusionPlasma Aβ42/40 ratio and p-tau 181 concentrations are not associated with amyloid or tau PET or with clinical severity among individuals presenting with atypical AD.
Collapse
Affiliation(s)
| | | | - Danni Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC, USA
| | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
4
|
Kumar S, Earnest T, Yang B, Kothapalli D, Aschenbrenner AJ, Hassenstab J, Xiong C, Ances B, Morris J, Benzinger TLS, Gordon BA, Payne P, Sotiras A. Analyzing heterogeneity in Alzheimer disease using multimodal normative modeling on imaging-based ATN biomarkers. Alzheimers Dement 2025; 21:e70143. [PMID: 40235115 PMCID: PMC12000228 DOI: 10.1002/alz.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Previous studies have applied normative modeling on a single neuroimaging modality to investigate Alzheimer disease (AD) heterogeneity. We employed a deep learning-based multimodal normative framework to analyze individual-level variation across ATN (amyloid-tau-neurodegeneration) imaging biomarkers. METHODS We selected cross-sectional discovery (n = 665) and replication cohorts (n = 430) with available T1-weighted magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). Normative modeling estimated individual-level abnormal deviations in amyloid-positive individuals compared to amyloid-negative controls. Regional abnormality patterns were mapped at different clinical group levels to assess intra-group heterogeneity. An individual-level disease severity index (DSI) was calculated using both the spatial extent and magnitude of abnormal deviations across ATN. RESULTS Greater intra-group heterogeneity in ATN abnormality patterns was observed in more severe clinical stages of AD. Higher DSI was associated with worse cognitive function and increased risk of disease progression. DISCUSSION Subject-specific abnormality maps across ATN reveal the heterogeneous impact of AD on the brain. HIGHLIGHTS Normative modeling examined AD heterogeneity across multimodal imaging biomarkers. Heterogeneity in spatial patterns of gray matter atrophy, amyloid, and tau burden. Higher within-group heterogeneity for AD patients at advanced dementia stages. Patient-specific metric summarized extent of neurodegeneration and neuropathology. Metric is a marker of poor brain health and can monitor risk of disease progression.
Collapse
Affiliation(s)
- Sayantan Kumar
- Department of Computer Science and EngineeringWashington University in St LouisSaint LouisMissouriUSA
- Institute for InformaticsData Science & BiostatisticsWashington University School of Medicine in St LouisSaint LouisMissouriUSA
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Tom Earnest
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Braden Yang
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Deydeep Kothapalli
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | | | - Jason Hassenstab
- Department of NeurologyWashington University School of MedicineSt louisMissouriUSA
| | - Chengie Xiong
- Institute for InformaticsData Science & BiostatisticsWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Beau Ances
- Department of NeurologyWashington University School of MedicineSt louisMissouriUSA
| | - John Morris
- Department of NeurologyWashington University School of MedicineSt louisMissouriUSA
| | - Tammie L. S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Brian A. Gordon
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Philip Payne
- Department of Computer Science and EngineeringWashington University in St LouisSaint LouisMissouriUSA
- Institute for InformaticsData Science & BiostatisticsWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Aristeidis Sotiras
- Institute for InformaticsData Science & BiostatisticsWashington University School of Medicine in St LouisSaint LouisMissouriUSA
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | | |
Collapse
|
5
|
Ossenkoppele R, Salvadó G, Janelidze S, Pichet Binette A, Bali D, Karlsson L, Palmqvist S, Mattsson-Carlgren N, Stomrud E, Therriault J, Rahmouni N, Rosa-Neto P, Coomans EM, van de Giessen E, van der Flier WM, Teunissen CE, Jonaitis EM, Johnson SC, Villeneuve S, Benzinger TLS, Schindler SE, Bateman RJ, Doecke JD, Doré V, Feizpour A, Masters CL, Rowe C, Wiste HJ, Petersen RC, Jack CR, Hansson O. Plasma p-tau217 and tau-PET predict future cognitive decline among cognitively unimpaired individuals: implications for clinical trials. NATURE AGING 2025:10.1038/s43587-025-00835-z. [PMID: 40155777 DOI: 10.1038/s43587-025-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/12/2025] [Indexed: 04/01/2025]
Abstract
Plasma p-tau217 and tau positron emission tomography (PET) are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In a head-to-head comparison study including nine cohorts and 1,474 individuals, we show that plasma p-tau217 and medial temporal lobe tau-PET signal display similar associations with cognitive decline on a global cognitive composite test (R2PET = 0.34 versus R2plasma = 0.33, Pdifference = 0.653) and with progression to mild cognitive impairment (hazard ratio (HR)PET = 1.61 (1.48-1.76) versus HRplasma = 1.57 (1.43-1.72), Pdifference = 0.322). Combined plasma and PET models were superior to the single-biomarker models (R2 = 0.35, P < 0.01). Sequential selection using plasma phosphorylated tau at threonine 217 (p-tau217) and then tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 76% reduction when using plasma p-tau217 alone. Thus, plasma p-tau217 and tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use enhances screening efficiency for preclinical AD trials.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden.
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Linda Karlsson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Schindler
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - James D Doecke
- Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organization, Melbourne, Victoria, Australia
| | - Vincent Doré
- Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organization, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Azadeh Feizpour
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
6
|
Sârb OF, Iacobescu M, Soporan AM, Mureșan XM, Sârb AD, Stănciulescu R, Leucuța CD, Tanțău AI. Brain-Gut Interplay: Cognitive Performance and Biomarker Correlations in IBD Patients. J Clin Med 2025; 14:2293. [PMID: 40217741 PMCID: PMC11989679 DOI: 10.3390/jcm14072293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Inflammatory bowel diseases (IBD), including mainly ulcerative colitis (UC) and Crohn's disease (CD), have been associated with cognitive and psychological changes, though the mechanisms remain unclear. Methods: This prospective case-control study aimed to evaluate cognitive performance and biomarkers (homocysteine, serum amyloid A, brain-derived neurotrophic factor, and S100B protein) in IBD patients. Results: A total of 90 individuals (34 UC, 21 CD, and 35 controls) were assessed using the Montreal Cognitive Assessment (MoCA), the Memory Impairment Index (MIS), and biomarker analysis. MoCA and MIS testing showed significant differences between UC, CD, and the controls, with lower scores observed in IBD groups (p = 0.003, p = 0.015). Regarding trail-making tests, digit symbol substitution tests, and forward and backward digit spans, no significant changes were observed. No functional deficits were observed in daily activities. Biomarker analysis revealed lower brain-derived neurotrophic factor and higher serum amyloid A levels in IBD patients, correlated to MOCA and MIS scores. There were no significant differences in psychological distress between IBD patients and the controls. Subtle cognitive declines were noted across all groups during the 1-year follow-up, without any statistical significance when groups were compared. Conclusions: In conclusion, IBD patients reported lower cognitive scores compared to the controls, while no differences in depression and anxiety scores were observed. Higher BDNF levels correlated with better cognitive functioning, while higher serum amyloid A correlated with lower cognitive functioning.
Collapse
Affiliation(s)
- Oliviu-Florențiu Sârb
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Maria Iacobescu
- Personalized Medicine and Rare Diseases Department MEDFUTURE-Institute for Biomedical Research, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.-M.S.); (X.-M.M.)
| | - Andreea-Maria Soporan
- Personalized Medicine and Rare Diseases Department MEDFUTURE-Institute for Biomedical Research, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.-M.S.); (X.-M.M.)
- Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ximena-Maria Mureșan
- Personalized Medicine and Rare Diseases Department MEDFUTURE-Institute for Biomedical Research, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.-M.S.); (X.-M.M.)
| | - Adriana-Daniela Sârb
- Department of Internal Medicine, Heart Institute, Iuliu Hatieganu University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania;
| | - Raluca Stănciulescu
- Department of Gastroenterology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania;
| | - Corneliu-Daniel Leucuța
- Department of Biostatistics and Informatics, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Alina-Ioana Tanțău
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| |
Collapse
|
7
|
Vanderlip CR, Stark CEL. Integrating Plasma pTau-217 and Digital Cognitive Assessments for Early Detection in Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.03.25323297. [PMID: 40093240 PMCID: PMC11908293 DOI: 10.1101/2025.03.03.25323297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Plasma pTau-217 has emerged as a sensitive and specific biomarker for early Alzheimer's disease detection. However, the timeline of pathological changes and the onset of cognitive decline remain unclear. On the other hand, digital cognitive assessments have also shown promise in detecting subtle cognitive changes, but the sensitivity and specificity of these assessments is not fully understood. Here, we investigate whether combining these low-burden tools can improve the identification of cognitively unimpaired individuals at high risk for future cognitive decline. We analyzed 954 amyloid-positive cognitively unimpaired individuals who completed a brief digital cognitive assessment and a blood test for pTau-217, evaluating their ability to identify those at high risk for decline on the Preclinical Alzheimer's Cognitive Composite (PACC) and the Mini-Mental State Exam (MMSE). Further, we investigated whether the predictive value of these measures differed by sex or APOE status. We found that combining memory performance with pTau-217 enhanced the ability to identify individuals who declined on the PACC and MMSE over the next five years, even after controlling for age, sex, education, and baseline cognitive performance. Specifically, individuals with both elevated pTau-217 and low memory performance were at a greater risk for future decline than those with either risk factor alone. Notably, the predictive value of these measures did not differ by sex but was significantly stronger in APOE4 noncarriers compared to carriers. Together, this suggests that combining a brief digital cognitive assessment with plasma pTau-217 provides a reliable and sensitive method for identifying individuals at high risk for future cognitive decline in Alzheimer's disease.
Collapse
Affiliation(s)
- Casey R Vanderlip
- Department of Neurobiology and Behavior, 1424 Biological Sciences III Irvine, University of California Irvine, Irvine, CA, 92697 USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, 1424 Biological Sciences III Irvine, University of California Irvine, Irvine, CA, 92697 USA
| |
Collapse
|
8
|
Coughlan GT, Klinger HM, Boyle R, Betthauser TJ, Binette AP, Christenson L, Chadwick T, Hansson O, Harrison TM, Healy B, Jacobs HIL, Hanseeuw B, Jonaitis E, Jack CR, Johnson KA, Langhough RE, Properzi MJ, Rentz DM, Schultz AP, Smith R, Seto M, Johnson SC, Mielke MM, Shirzadi Z, Yau WYW, Manson JE, Sperling RA, Vemuri P, Buckley RF. Sex Differences in Longitudinal Tau-PET in Preclinical Alzheimer Disease: A Meta-Analysis. JAMA Neurol 2025:2830857. [PMID: 40029638 DOI: 10.1001/jamaneurol.2025.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Importance Alzheimer disease (AD) predominates in females at almost twice the rate relative to males. Mounting evidence in adults without AD indicates that females exhibit higher tau deposition than age-matched males, particularly in the setting of elevated β-amyloid (Aβ), but the evidence for sex differences in tau accumulation rates is inconclusive. Objective To examine whether female sex is associated with faster tau accumulation in the setting of high Aβ (as measured with positron emission tomography [PET]) and the moderating influence of sex on the association between APOEε4 carrier status and tau accumulation. Data Sources This meta-analysis used data from 6 longitudinal aging and AD studies, including the Alzheimer's Disease Neuroimaging Initiative, Berkeley Aging Cohort Study, BioFINDER 1, Harvard Aging Brain Study, Mayo Clinic Study of Aging, and Wisconsin Registry for Alzheimer Prevention. Longitudinal data were collected between November 2004 and May 2022. Study Selection Included studies required available longitudinal [18F]flortaucipir or [18F]-MK-6240 tau-PET scans, as well as baseline [11C] Pittsburgh Compound B, [18F]flutemetamol or [18F]florbetapir Aβ-PET scans. Recruitment criteria varied across studies. Analyses began on August 7, 2023, and were completed on February 5, 2024. Data Extraction and Synthesis In each study, primary analyses extracted estimates for the sex (female or male) and the sex by baseline Aβ-PET status (high or low) association with longitudinal tau-PET using a series of mixed-effects models. Secondary mixed-effects models extracted the interaction estimate for the association of sex by APOEε4 carrier status with longitudinal tau-PET. Study-specific estimates for each mixed-effects model were then pooled in a meta-analysis, and the global fixed effect (β) and total heterogeneity (I2) across studies were estimated. This study is reported following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Main Outcomes and Measures Seven tau-PET outcomes that showed cross-sectional sex differences were examined across temporal, parietal, and occipital lobes. Results Among 6 studies assessed, there were 1376 participants (761 [55%] female; mean [range] age at first tau scan, 71.9 [46-93] years; 401 participants [29%] with high baseline Aβ; 412 APOEε4 carriers [30%]). Among individuals with high baseline Aβ, female sex was associated with faster tau accumulation localized to inferior temporal (β = -0.14; 95% CI, -0.22 to -0.06; P = .009) temporal fusiform (β = -0.13; 95% CI, -0.23 to -0.04; P = .02), and lateral occipital regions (β = -0.15; 95% CI, -0.24 to -0.06; P = .009) compared with male sex. Among APOEε4 carriers, female sex was associated with faster inferior-temporal tau accumulation (β = -0.10; 95% CI, -0.16 to -0.03; P = .01). Conclusions and Relevance These findings suggest that sex differences in the pathological progression of AD call for sex-specific timing considerations when administrating anti-Aβ and anti-tau treatments.
Collapse
Affiliation(s)
- Gillian T Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hannah M Klinger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rory Boyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Tobey J Betthauser
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Luke Christenson
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Trevor Chadwick
- Department of Neuroscience, University of California, Berkeley
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Brian Healy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Heidi I L Jacobs
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Bernard Hanseeuw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Erin Jonaitis
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rebecca E Langhough
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden and Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Mabel Seto
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sterling C Johnson
- Department of Medicine, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and the Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
9
|
Panza F, Dibello V, Sardone R, Zupo R, Castellana F, Leccisotti I, Moretti MC, Altamura M, Bellomo A, Daniele A, Solfrizzi V, Resta E, Lozupone M. Successes and failures: the latest advances in the clinical development of amyloid-β-targeting monoclonal antibodies for treating Alzheimer's disease. Expert Opin Biol Ther 2025; 25:275-283. [PMID: 39908579 DOI: 10.1080/14712598.2025.2463963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION The amyloid cascade hypothesis postulated that the accumulation of amyloid-β (Aβ) was the first step of the Alzheimer's disease (AD) pathological process. Effective reduction of Aβ plaque load by numerous drug candidates, among which anti-Aβ monoclonal antibodies, has produced discussible clinical successes and several failures. It was questioned whether Aβ may be the principal AD pathogenic factor and a valid therapeutic target and if targeting Aβ different species could make the difference. AREAS COVERED This review article summarized successes and failures of anti-Aβ monoclonal antibody therapy for AD, delineating the latest advances for their clinical development also according to their target engagement and downstream biomarkers. EXPERT OPINION The preliminary success of the recent Phase III randomized clinical trials (RCTs) of lecanemab, donanemab, and remternetug, and lessons learned from the failure of previous anti-Aβ monoclonal antibodies RCTs, provided critical evidence to support the role of Aβ in AD pathogenesis. The loss of free Aβ instead of an Aβ toxicity may promote AD neuropathology. Cerebrospinal fluid analyses (i.e. increases in Aβ1-42) may indicate a potential benefit of anti-Aβ monoclonal antibodies in AD and downstream biomarkers should be considered for providing comprehension in cognitive and clinical efficacy of future AD RCTs.
Collapse
Affiliation(s)
- Francesco Panza
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Vittorio Dibello
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
| | - Roberta Zupo
- Department of Translational Biomedicine and Neuroscience "DiBrain", University of Bari Aldo Moro, Bari, Italy
| | - Fabio Castellana
- Department of Translational Biomedicine and Neuroscience "DiBrain", University of Bari Aldo Moro, Bari, Italy
| | - Ivana Leccisotti
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Claudia Moretti
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Emanuela Resta
- Translational Medicine and Health System Management, Department of Economy, University of Foggia, Foggia, Italy
| | | |
Collapse
|
10
|
Wisch JK, Petersen K, Millar PR, Abdelmoity O, Babulal GM, Meeker KL, Braskie MN, Yaffe K, Toga AW, O'Bryant S, Ances BM. Cross-Sectional Comparison of Structural MRI Markers of Impairment in a Diverse Cohort of Older Adults. Hum Brain Mapp 2025; 46:e70133. [PMID: 39868891 PMCID: PMC11770891 DOI: 10.1002/hbm.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented. The purpose of this study was to identify which commonly used structural MRI measure (hippocampal volume, cortical thickness in AD signature regions, or brain age gap [BAG]) had the best correspondence with the Clinical Dementia Rating (CDR) in an ethno-racially diverse sample. 2870 individuals recruited by the Healthy and Aging Brain Study-Health Disparities completed both structural MRI and CDR evaluation. Of these, 1887 individuals were matched on ethno-racial identity (Mexican American [MA], non-Hispanic Black [NHB], and non-Hispanic White [NHW]) and CDR (27% CDR > 0). We estimated brain age using two pipelines (DeepBrainNet, BrainAgeR) and then calculated BAG as the difference between the estimated brain age and chronological age. We also quantified their hippocampal volumes using HippoDeep and cortical thicknesses (both an AD-specific signature and average whole brain) using FreeSurfer. We used ordinal regression to evaluate associations between neuroimaging measures and CDR and to test whether these associations differed between ethno-racial groups. Higher BAG (pDeepBrainNet = 0.0002; pBrainAgeR = 0.00117) and lower hippocampal volume (p = 0.0015) and cortical thickness (p < 0.0001) were associated with worse clinical status (higher CDR). AD signature cortical thickness had the strongest relationship with CDR (AICDeepBrainNet = 2623, AICwhole cortex = 2588, AICBrainAgeR = 2533, AICHippocampus = 2293, AICSignature Cortical Thickness = 1903). The relationship between CDR and atrophy measures differed between ethno-racial groups for both BAG estimates and hippocampal volume, but not for cortical thickness. We interpret the lack of an interaction between ethno-racial identity and AD signature cortical thickness on CDR as evidence that cortical thickness effectively captures sources of disease-related atrophy that may differ across racial and ethnic groups. Cortical thickness had the strongest association with CDR. These results suggest that cortical thickness may be a more sensitive and generalizable marker of neurodegeneration than hippocampal volume or BAG in ethno-racially diverse cohorts.
Collapse
Affiliation(s)
- Julie K. Wisch
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Kalen Petersen
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Peter R. Millar
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Omar Abdelmoity
- Danforth Undergraduate CampusWashington University in St. LouisSt. LouisMissouriUSA
| | - Ganesh M. Babulal
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Karin L. Meeker
- Department of Family Medicine, Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Meredith N. Braskie
- Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kristine Yaffe
- Weill Institute for NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Arthur W. Toga
- Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sid O'Bryant
- Department of Family Medicine, Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Beau M. Ances
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | | |
Collapse
|
11
|
Shao Z, Gao X, Cen S, Tang X, Gong J, Ding W. Unveiling the link between glymphatic function and cortical microstructures in post-traumatic stress disorder. J Affect Disord 2024; 365:341-350. [PMID: 39178958 DOI: 10.1016/j.jad.2024.08.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE The discovery of the glymphatic system, crucial for cerebrospinal and interstitial fluid exchange, has enhanced our grasp of brain protein balance and its potential role in neurodegenerative disease prevention and therapy. Detecting early neurodegenerative shifts via noninvasive biomarkers could be key in identifying at-risk individuals for Alzheimer's disease (AD). Our research explores a diffusion tensor imaging (DTI) method that measures cortical mean diffusivity (cMD), potentially a more sensitive indicator of neurodegeneration than traditional macrostructural methods. MATERIALS AND METHODS We analyzed 67 post-traumatic stress disorder (PTSD)-diagnosed veterans from the Alzheimer's Disease Neuroimaging Initiative database. Participants underwent structural MRI, DTI, Aβ PET imaging, and cognitive testing. We focused on the DTI-ALPS technique to assess glymphatic function and its relation to cMD, cortical Aβ accumulation, and thickness, accounting for age and APOE ε4 allele variations. RESULTS The cohort, all male with an average age of 68.1 (SD 3.4), showed a strong inverse correlation between DTI-ALPS and cMD in AD-affected regions, especially in the entorhinal, parahippocampal, and fusiform areas. Higher DTI-ALPS readings were consistently linked with greater cortical thickness, independent of Aβ deposits and genetic risk factors. Age and cMD emerged as inversely proportional predictors of DTI-ALPS, indicating a complex interaction with age. CONCLUSION The study confirms a meaningful association between glymphatic efficiency and cMD in AD-sensitive zones, accentuating cortical microstructural alterations in PTSD. It positions DTI-ALPS as a viable biomarker for assessing glymphatic function in PTSD, implicating changes in DTI-ALPS as indicative of glymphatic impairment.
Collapse
Affiliation(s)
- Zhiding Shao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xue Gao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Si Cen
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiaolei Tang
- Translational Medicine Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Juanyu Gong
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Wencai Ding
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
12
|
Li A, Zhao R, Zhang M, Sun P, Cai Y, Zhu L, Kung H, Han Y, Wang X, Guo T. [ 18F]-D3FSP β-amyloid PET imaging in older adults and alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:3990-4000. [PMID: 38976036 DOI: 10.1007/s00259-024-06835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE [18F]-D3FSP is a new β-amyloid (Aβ) PET imaging tracer designed to decrease nonspecific signals in the brain by reducing the formation of the N-demethylated product. However, its optimal reference region for calculating the standardized uptake value ratio (SUVR) and its relation to the well-established biomarkers of Alzheimer's disease (AD) are still unclear. METHODS We recruited 203 participants from the Greater Bay Area Healthy Aging Brain Study (GHABS) to undergo [18F]-D3FSP Aβ PET imaging. We analyzed plasma Aβ42/Aβ40, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. We compared the standardized uptake value (SUV) of five reference regions (cerebellum, cerebellum cortex, brainstem/PONs, white matter, composite of the four regions above) and AD typical cortical region (COMPOSITE) SUVR among different clinical groups. The association of D3FSP SUVR with plasma biomarkers, imaging biomarkers, and cognition was also investigated. RESULTS Brainstem/PONs SUV showed the lowest fluctuation across diagnostic groups, and COMPOSITE D3FSP SUVR had an enormous effect distinguishing cognitively impaired (CI) individuals from cognitively unimpaired (CU) individuals. COMPOSITE SUVR (Referred to brainstem/PONs) was positively correlated with p-Tau181 (p < 0.001), GFAP (p < 0.001), NfL (p = 0.014) in plasma and temporal-metaROI tau deposition (p < 0.001), and negatively related to plasma Aβ42/Aβ40 (p < 0.001), temporal-metaROI cortical thickness (p < 0.01), residual hippocampal volume (p < 0.001) and cognition (p < 0.001). The voxel-wise analysis replicated these findings. CONCLUSION This study suggests brainstem/PONs as an optimal reference region for calculating D3FSP SUVR to quantify cortical Aβ plaques in the brain. [18F]-D3FSP could distinguish CI from CU and strongly correlates with well-established plasma biomarkers, tau PET, neurodegeneration, and cognitive decline. However, future head-to-head comparisons of [18F]-D3FSP PET images with other validated Aβ PET tracers or postmortem results are crucial.
Collapse
Affiliation(s)
- Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingkai Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pan Sun
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Lin Zhu
- Beijing Normal University, Beijing, 100875, China
| | - Hank Kung
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ying Han
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China.
- Institute of Biomedical Engineering, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Kunach P, Vaquer-Alicea J, Smith MS, Monistrol J, Hopewell R, Moquin L, Therriault J, Tissot C, Rahmouni N, Massarweh G, Soucy JP, Guiot MC, Shoichet BK, Rosa-Neto P, Diamond MI, Shahmoradian SH. Cryo-EM structure of Alzheimer's disease tau filaments with PET ligand MK-6240. Nat Commun 2024; 15:8497. [PMID: 39353896 PMCID: PMC11445244 DOI: 10.1038/s41467-024-52265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identify AD brain tissue with elevated tau burden, purify filaments, and determine the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine 353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.
Collapse
Affiliation(s)
- Peter Kunach
- Department of Neurology, McGill University, Montreal, QC, Canada
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US
| | - Matthew S Smith
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, US
- Program of Biophysics, UCSF, San Francisco, CA, US
| | - Jim Monistrol
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US
| | | | - Luc Moquin
- Montreal Neurological Institute, Montreal, QC, Canada
| | | | - Cecile Tissot
- Department of Neurology, McGill University, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology, McGill University, Montreal, QC, Canada
| | | | | | - Marie-Christine Guiot
- Department of Neurology, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, US
| | - Pedro Rosa-Neto
- Department of Neurology, McGill University, Montreal, QC, Canada.
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US.
| | - Sarah H Shahmoradian
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US.
| |
Collapse
|
14
|
Arendt P, Römpler K, Brix B, Borchardt-Lohölter V, Busse M, Busse S. Differentiation of Alzheimer's disease from other neurodegenerative disorders using chemiluminescence immunoassays measuring cerebrospinal fluid biomarkers. FRONTIERS IN DEMENTIA 2024; 3:1455619. [PMID: 39410947 PMCID: PMC11473414 DOI: 10.3389/frdem.2024.1455619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Introduction Prior research identified four neurochemical cerebrospinal fluid (CSF) biomarkers, Aβ1-42, Aβ1-40, tTau, and pTau(181), as core diagnostic markers for Alzheimer's disease (AD). Determination of AD biomarkers using immunoassays can support differential diagnosis of AD vs. several neuropsychiatric disorders, which is important because the respective treatment regimens differ. Results of biomarker determination can be classified according to the Amyloid/Tau/Neurodegeneration (ATN) system into profiles. Less is known about the clinical performance of chemiluminescence immunoassays (ChLIA) measuring specific biomarkers in CSF samples from patients suffering from neuropsychiatric impairments with various underlying causes. Methods Chemiluminescence immunoassays (ChLIAs, EUROIMMUN) were used to determine Beta-Amyloid (1-40), Beta-Amyloid (1-42), Total-Tau, and pTau(181) concentrations in precharacterized cerebrospinal fluid (CSF) samples from 219 AD patients, 74 patients with mild cognitive impairment (MCI), and 220 disease control (DC) patients. Results 83.0% of AD patients had ATN profiles consistent with AD, whereas 85.5% of DC patients and 77.0% of MCI patients had profiles inconsistent with AD. AD patients showed significantly lower amyloid ratio Aβ1-42/Aβ1-40 (mean: 0.07) and significantly higher concentrations of tTau (mean: 901.6 pg/ml) and pTau(181) (mean: 129 pg/ml) compared to DC and MCI patients (all p values < 0.0071). Discussion The ChLIAs effectively determined specific biomarkers and can support differential diagnostics of AD. Their quality was demonstrated in samples from 513 patients with cognitive impairments, representing a realistic mix of underlying causes for seeking treatment at a memory clinic.
Collapse
Affiliation(s)
- Philipp Arendt
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Katharina Römpler
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Britta Brix
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Viola Borchardt-Lohölter
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Mandy Busse
- Department for Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Stefan Busse
- Department of Psychiatry and Psychotherapy, Medical Faculty University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
15
|
Sun P, He Z, Li A, Yang J, Zhu Y, Cai Y, Ma T, Ma S, Guo T. Spatial and temporal patterns of cortical mean diffusivity in Alzheimer's disease and suspected non-Alzheimer's disease pathophysiology. Alzheimers Dement 2024; 20:7048-7061. [PMID: 39132849 PMCID: PMC11485315 DOI: 10.1002/alz.14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The spatial and temporal patterns of cortical mean diffusivity (cMD), as well as its association with Alzheimer's disease (AD) and suspected non-Alzheimer's pathophysiology (SNAP), are not yet fully understood. METHODS We compared baseline (n = 617) and longitudinal changes (n = 421) of cMD, cortical thickness, and gray matter volume and their relations to vascular risk factors, amyloid beta (Aβ), and tau positron emission tomography (PET), and longitudinal cognitive decline in Aβ PET negative and positive older adults. RESULTS cMD increases were more sensitive to detecting brain structural alterations than cortical thinning and gray matter atrophy. Tau-related cMD increases partially mediated Aβ-related cognitive decline in AD, whereas vascular disease-related increased cMD levels substantially mediated age-related cognitive decline in SNAP. DISCUSSION These findings revealed the dynamic changes of microstructural and macrostructural indicators and their associations with AD and SNAP, providing novel insights into understanding upstream and downstream events of cMD in neurodegenerative disease. HIGHLIGHTS Cortical mean diffusivity (cMD) was more sensitive to detecting structural changes than macrostructural factors. Tau-related cMD increases partially mediated amyloid beta-related cognitive decline in Alzheimer's disease (AD). White matter hyperintensity-related higher cMD mainly explained the age-related cognitive decline in suspected non-Alzheimer's pathophysiology (SNAP). cMD may assist in tracking earlier neurodegenerative signs in AD and SNAP.
Collapse
Affiliation(s)
- Pan Sun
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhenChina
| | - Zhengbo He
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Anqi Li
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Jie Yang
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Yalin Zhu
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Yue Cai
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Ting Ma
- School of Electronic and Information EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenChina
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhenChina
| | - Tengfei Guo
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
- Institute of Biomedical EngineeringPeking University Shenzhen Graduate SchoolShenzhenChina
| | | |
Collapse
|
16
|
Vanderlip CR, Stark CEL. Digital cognitive assessments as low-burden markers for predicting future cognitive decline and tau accumulation across the Alzheimer's spectrum. Alzheimers Dement 2024; 20:6881-6895. [PMID: 39239892 PMCID: PMC11485398 DOI: 10.1002/alz.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Digital cognitive assessments, particularly those that can be done at home, present as low-burden biomarkers for participants and patients alike, but their effectiveness in the diagnosis of Alzheimer's disease (AD) or predicting its trajectory is still unclear. Here, we assessed what utility or added value these digital cognitive assessments provide for identifying those at high risk of cognitive decline. METHODS We analyzed >500 Alzheimer's Disease Neuroimaging Initiative participants who underwent a brief digital cognitive assessment and amyloid beta (Aβ)/tau positron emission tomography scans, examining their ability to distinguish cognitive status and predict cognitive decline. RESULTS Performance on the digital cognitive assessment was superior to both cortical Aβ and entorhinal tau in detecting mild cognitive impairment and future cognitive decline, with mnemonic discrimination deficits emerging as the most critical measure for predicting decline and future tau accumulation. DISCUSSION Digital assessments are effective at identifying at-risk individuals, supporting their utility as low-burden tools for early AD detection and monitoring. HIGHLIGHTS Performance on digital cognitive assessments predicts progression to mild cognitive impairment at a higher proficiency compared to amyloid beta and tau. Deficits in mnemonic discrimination are indicative of future cognitive decline. Impaired mnemonic discrimination predicts future entorhinal and inferior temporal tau.
Collapse
Affiliation(s)
- Casey R. Vanderlip
- Department of Neurobiology and Behavior1424 Biological Sciences III Irvine, University of California IrvineIrvineCaliforniaUSA
| | - Craig E. L. Stark
- Department of Neurobiology and Behavior1424 Biological Sciences III Irvine, University of California IrvineIrvineCaliforniaUSA
| | | |
Collapse
|
17
|
Bieger A, Brum WS, Borelli WV, Therriault J, De Bastiani MA, Moreira AG, Benedet AL, Ferrari-Souza JP, Da Costa JC, Souza DO, Castilhos RM, Schumacher Schuh AF, Fagundes Chaves ML, Schöll M, Zetterberg H, Blennow K, Pascoal TA, Gauthier S, Rosa-Neto P, Schilling LP, Zimmer ER. Influence of Different Diagnostic Criteria on Alzheimer Disease Clinical Research. Neurology 2024; 103:e209753. [PMID: 39167736 PMCID: PMC11338500 DOI: 10.1212/wnl.0000000000209753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/14/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Updates in Alzheimer disease (AD) diagnostic guidelines by the National Institute on Aging-Alzheimer's Association (NIA-AA) and the International Working Group (IWG) over the past 11 years may affect clinical diagnoses. We assessed how these guidelines affect clinical AD diagnosis in a cohort of cognitively unimpaired (CU) and cognitively impaired (CI) individuals. METHODS We applied clinical and biomarker data in algorithms to classify individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort according to the following diagnostic guidelines for AD: 2011 NIA-AA, 2016 IWG-2, 2018 NIA-AA, and 2021 IWG-3, assigning the following generic diagnostic labels: (1) not AD (nAD), (2) increased risk of developing AD (irAD), and (3) AD. Diagnostic labels were compared according to their frequency, convergence across guidelines, biomarker profiles, and prognostic value. We also evaluated the diagnostic discordance among the criteria. RESULTS A total of 1,195 individuals (mean age 73.2 ± 7.2 years, mean education 16.1 ± 2.7, 44.0% female) presented different repartitions of diagnostic labels according to the 2011 NIA-AA (nAD = 37.8%, irAD = 23.0%, AD = 39.2%), 2016 IWG-2 (nAD = 37.7%, irAD = 28.7%, AD = 33.6%), 2018 NIA-AA (nAD = 40.7%, irAD = 9.3%, AD = 50.0%), and 2021 IWG-3 (nAD = 51.2%, irAD = 8.4%, AD = 48.3%) frameworks. Discordant diagnoses across all guidelines were found in 512 participants (42.8%) (138 [91.4%] occurring in only β-amyloid [CU 65.4%, CI 34.6%] and 191 [78.6%] in only tau-positive [CU 71.7%, CI 28.3%] individuals). Differences in predicting cognitive impairment between nAD and irAD groups were observed with the 2011 NIA-AA (hazard ratio [HR] 2.21, 95% CI 1.34-3.65, p = 0.002), 2016 IWG-2 (HR 2.81, 95% CI 1.59-4.96, p < 0.000), and 2021 IWG-3 (HR 3.61, 95% CI 2.09-6.23, p < 0.000), but not with 2018 NIA-AA (HR 1.69, 95% CI 0.87-3.28, p = 0.115). DISCUSSION Over 42% of the studied population presented discordant diagnoses when using the different examined AD criteria, mostly in individuals with a single positive biomarker. Except for 2018 NIA-AA, all guidelines identified asymptomatic individuals at risk of cognitive impairment. Our findings highlight important differences between the guidelines, emphasizing the necessity for updated criteria with enhanced staging metrics, considering clinical, research, therapeutic, and trial design aspects.
Collapse
Affiliation(s)
- Andrei Bieger
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Wagner S Brum
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Wyllians V Borelli
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Joseph Therriault
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Marco A De Bastiani
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Amanda G Moreira
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Andrea L Benedet
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - João Pedro Ferrari-Souza
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Jaderson C Da Costa
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Diogo O Souza
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Raphael M Castilhos
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Artur Francisco Schumacher Schuh
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Marcia L Fagundes Chaves
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Michael Schöll
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Henrik Zetterberg
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Kaj Blennow
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Tharick A Pascoal
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Serge Gauthier
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Pedro Rosa-Neto
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Lucas P Schilling
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Eduardo R Zimmer
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| |
Collapse
|
18
|
Abdul Manap AS, Almadodi R, Sultana S, Sebastian MG, Kavani KS, Lyenouq VE, Shankar A. Alzheimer's disease: a review on the current trends of the effective diagnosis and therapeutics. Front Aging Neurosci 2024; 16:1429211. [PMID: 39185459 PMCID: PMC11341404 DOI: 10.3389/fnagi.2024.1429211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
The most prevalent cause of dementia is Alzheimer's disease. Cognitive decline and accelerating memory loss characterize it. Alzheimer's disease advances sequentially, starting with preclinical stages, followed by mild cognitive and/or behavioral impairment, and ultimately leading to Alzheimer's disease dementia. In recent years, healthcare providers have been advised to make an earlier diagnosis of Alzheimer's, prior to individuals developing Alzheimer's disease dementia. Regrettably, the identification of early-stage Alzheimer's disease in clinical settings can be arduous due to the tendency of patients and healthcare providers to disregard symptoms as typical signs of aging. Therefore, accurate and prompt diagnosis of Alzheimer's disease is essential in order to facilitate the development of disease-modifying and secondary preventive therapies prior to the onset of symptoms. There has been a notable shift in the goal of the diagnosis process, transitioning from merely confirming the presence of symptomatic AD to recognizing the illness in its early, asymptomatic phases. Understanding the evolution of disease-modifying therapies and putting effective diagnostic and therapeutic management into practice requires an understanding of this concept. The outcomes of this study will enhance in-depth knowledge of the current status of Alzheimer's disease's diagnosis and treatment, justifying the necessity for the quest for potential novel biomarkers that can contribute to determining the stage of the disease, particularly in its earliest stages. Interestingly, latest clinical trial status on pharmacological agents, the nonpharmacological treatments such as behavior modification, exercise, and cognitive training as well as alternative approach on phytochemicals as neuroprotective agents have been covered in detailed.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Reema Almadodi
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Shirin Sultana
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | | | | | - Vanessa Elle Lyenouq
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Aravind Shankar
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| |
Collapse
|
19
|
Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, Hansson O, Ho C, Jagust W, McDade E, Molinuevo JL, Okonkwo OC, Pani L, Rafii MS, Scheltens P, Siemers E, Snyder HM, Sperling R, Teunissen CE, Carrillo MC. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup. Alzheimers Dement 2024; 20:5143-5169. [PMID: 38934362 PMCID: PMC11350039 DOI: 10.1002/alz.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
The National Institute on Aging and the Alzheimer's Association convened three separate work groups in 2011 and single work groups in 2012 and 2018 to create recommendations for the diagnosis and characterization of Alzheimer's disease (AD). The present document updates the 2018 research framework in response to several recent developments. Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine (e.g., oncology), and is becoming a unifying concept common to all neurodegenerative diseases, not just AD. The present document is consistent with this principle. Our intent is to present objective criteria for diagnosis and staging AD, incorporating recent advances in biomarkers, to serve as a bridge between research and clinical care. These criteria are not intended to provide step-by-step clinical practice guidelines for clinical workflow or specific treatment protocols, but rather serve as general principles to inform diagnosis and staging of AD that reflect current science. HIGHLIGHTS: We define Alzheimer's disease (AD) to be a biological process that begins with the appearance of AD neuropathologic change (ADNPC) while people are asymptomatic. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms. Early-changing Core 1 biomarkers (amyloid positron emission tomography [PET], approved cerebrospinal fluid biomarkers, and accurate plasma biomarkers [especially phosphorylated tau 217]) map onto either the amyloid beta or AD tauopathy pathway; however, these reflect the presence of ADNPC more generally (i.e., both neuritic plaques and tangles). An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of AD and to inform clinical decision making throughout the disease continuum. Later-changing Core 2 biomarkers (biofluid and tau PET) can provide prognostic information, and when abnormal, will increase confidence that AD is contributing to symptoms. An integrated biological and clinical staging scheme is described that accommodates the fact that common copathologies, cognitive reserve, and resistance may modify relationships between clinical and biological AD stages.
Collapse
Affiliation(s)
| | - J. Scott Andrews
- Global Evidence & OutcomesTakeda Pharmaceuticals Company LimitedCambridgeMassachusettsUSA
| | - Thomas G. Beach
- Civin Laboratory for NeuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Teresa Buracchio
- Office of NeuroscienceU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Ana Graf
- NovartisNeuroscience Global Drug DevelopmentBaselSwitzerland
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, MalmöLundSweden
| | - Carole Ho
- DevelopmentDenali TherapeuticsSouth San FranciscoCaliforniaUSA
| | - William Jagust
- School of Public Health and Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Eric McDade
- Department of NeurologyWashington University St. Louis School of MedicineSt. LouisMissouriUSA
| | - Jose Luis Molinuevo
- Department of Global Clinical Development H. Lundbeck A/SExperimental MedicineCopenhagenDenmark
| | - Ozioma C. Okonkwo
- Department of Medicine, Division of Geriatrics and GerontologyUniversity of Wisconsin School of MedicineMadisonWisconsinUSA
| | - Luca Pani
- University of MiamiMiller School of MedicineMiamiFloridaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of Medicine at the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Philip Scheltens
- Amsterdam University Medical Center (Emeritus)NeurologyAmsterdamthe Netherlands
| | - Eric Siemers
- Clinical ResearchAcumen PharmaceuticalsZionsvilleIndianaUSA
| | - Heather M. Snyder
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| | - Reisa Sperling
- Department of Neurology, Brigham and Women's HospitalMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Department of Laboratory MedicineAmsterdam UMC, Neurochemistry LaboratoryAmsterdamthe Netherlands
| | - Maria C. Carrillo
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
20
|
Guo T, Li A, Sun P, He Z, Cai Y, Lan G, Liu L, Li J, Yang J, Zhu Y, Zhao R, Chen X, Shi D, Liu Z, Wang Q, Xu L, Zhou L, Ran P, Wang X, Sun K, Lu J, Han Y. Astrocyte reactivity is associated with tau tangle load and cortical thinning in Alzheimer's disease. Mol Neurodegener 2024; 19:58. [PMID: 39080744 PMCID: PMC11290175 DOI: 10.1186/s13024-024-00750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND It is not fully established whether plasma β-amyloid(Aβ)42/Aβ40 and phosphorylated Tau181 (p-Tau181) can effectively detect Alzheimer's disease (AD) pathophysiology in older Chinese adults and how these biomarkers correlate with astrocyte reactivity, Aβ plaque deposition, tau tangle aggregation, and neurodegeneration. METHODS We recruited 470 older adults and analyzed plasma Aβ42/Aβ40, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. Among them, 301, 195, and 70 underwent magnetic resonance imaging, Aβ and tau positron emission tomography imaging. The plasma Aβ42/Aβ40 and p-Tau181 thresholds were defined as ≤0.0609 and ≥2.418 based on the receiver operating characteristic curve analysis using the Youden index by comparing Aβ-PET negative cognitively unimpaired individuals and Aβ-PET positive cognitively impaired patients. To evaluate the feasibility of using plasma Aβ42/Aβ40 (A) and p-Tau181 (T) to detect AD and understand how astrocyte reactivity affects this process, we compared plasma GFAP, Aβ plaque, tau tangle, plasma NfL, hippocampal volume, and temporal-metaROI cortical thickness between different plasma A/T profiles and explored their relations with each other using general linear models, including age, sex, APOE-ε4, and diagnosis as covariates. RESULTS Plasma A+/T + individuals showed the highest levels of astrocyte reactivity, Aβ plaque, tau tangle, and axonal degeneration, and the lowest hippocampal volume and temporal-metaROI cortical thickness. Lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 were independently and synergistically correlated with higher plasma GFAP and Aβ plaque. Elevated plasma p-Tau181 and GFAP concentrations were directly and interactively associated with more tau tangle formation. Regarding neurodegeneration, higher plasma p-Tau181 and GFAP concentrations strongly correlated with more axonal degeneration, as measured by plasma NfL, and lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 were related to greater hippocampal atrophy. Higher plasma GFAP levels were associated with thinner cortical thickness and significantly interacted with lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 in predicting more temporal-metaROI cortical thinning. Voxel-wise imaging analysis confirmed these findings. DISCUSSION This study provides a valuable reference for using plasma biomarkers to detect AD in the Chinese community population and offers novel insights into how astrocyte reactivity contributes to AD progression, highlighting the importance of targeting reactive astrogliosis to prevent AD.
Collapse
Affiliation(s)
- Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China.
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Pan Sun
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Zhengbo He
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Guoyu Lan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Lin Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Jieyin Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Jie Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yalin Zhu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Dai Shi
- Neurology Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Qingyong Wang
- Department of Neurology, Shenzhen Guangming District People's Hospital, Shenzhen, 518107, China
| | - Linsen Xu
- Department of Medical Imaging, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, China
| | - Liemin Zhou
- Neurology Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Pengcheng Ran
- Department of Nuclear Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jie Lu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China.
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Ying Han
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China.
- Department of Neurology, Xuanwu Hospital of Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
21
|
Singh-Reilly N, Botha H, Duffy JR, Clark HM, Utianski RL, Machulda MM, Graff-Radford J, Schwarz CG, Petersen RC, Lowe VJ, Jack CR, Josephs KA, Whitwell JL. Speech-language within and between network disruptions in primary progressive aphasia variants. Neuroimage Clin 2024; 43:103639. [PMID: 38991435 PMCID: PMC11296005 DOI: 10.1016/j.nicl.2024.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/20/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Primary progressive aphasia (PPA) variants present with distinct disruptions in speech-language functions with little known about the interplay between affected and spared regions within the speech-language network and their interaction with other functional networks. The Neurodegenerative Research Group, Mayo Clinic, recruited 123 patients with PPA (55 logopenic (lvPPA), 44 non-fluent (nfvPPA) and 24 semantic (svPPA)) who were matched to 60 healthy controls. We investigated functional connectivity disruptions between regions within the left-speech-language network (Broca, Wernicke, anterior middle temporal gyrus (aMTG), supplementary motor area (SMA), planum temporale (PT) and parietal operculum (PO)), and disruptions to other networks (visual association, dorsal-attention, frontoparietal and default mode networks (DMN)). Within the speech-language network, multivariate linear regression models showed reduced aMTG-Broca connectivity in all variants, with lvPPA and nfvPPA findings remaining significant after Bonferroni correction. Additional loss in Wernicke-Broca connectivity in nfvPPA, Wernicke-PT connectivity in lvPPA and greater aMTG-PT connectivity in svPPA were also noted. Between-network connectivity findings in all variants showed reduced aMTG-DMN and increased aMTG-dorsal-attention connectivity, with additional disruptions between aMTG-visual association in both lvPPA and svPPA, aMTG-frontoparietal in lvPPA, and Wernicke-DMN breakdown in svPPA. These findings suggest that aMTG connectivity breakdown is a shared feature in all PPA variants, with lvPPA showing more extensive connectivity disruptions with other networks.
Collapse
Affiliation(s)
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
22
|
Kumar S, Earnest T, Yang B, Kothapalli D, Aschenbrenner AJ, Hassenstab J, Xiong C, Ances B, Morris J, Benzinger TLS, Gordon BA, Payne P, Sotiras A. Analyzing heterogeneity in Alzheimer Disease using multimodal normative modeling on imaging-based ATN biomarkers. ARXIV 2024:arXiv:2404.05748v2. [PMID: 39010871 PMCID: PMC11247918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Previous studies have applied normative modeling on a single neuroimaging modality to investigate Alzheimer Disease (AD) heterogeneity. We employed a deep learning-based multimodal normative framework to analyze individual-level variation across ATN (amyloid-tau-neurodegeneration) imaging biomarkers. METHODS We selected cross-sectional discovery (n = 665) and replication cohorts (n = 430) with available T1-weighted MRI, amyloid and tau PET. Normative modeling estimated individual-level abnormal deviations in amyloid-positive individuals compared to amyloid-negative controls. Regional abnormality patterns were mapped at different clinical group levels to assess intra-group heterogeneity. An individual-level disease severity index (DSI) was calculated using both the spatial extent and magnitude of abnormal deviations across ATN. RESULTS Greater intra-group heterogeneity in ATN abnormality patterns was observed in more severe clinical stages of AD. Higher DSI was associated with worse cognitive function and increased risk of disease progression. DISCUSSION Subject-specific abnormality maps across ATN reveal the heterogeneous impact of AD on the brain.
Collapse
Affiliation(s)
- Sayantan Kumar
- Department of Computer Science and Engineering, Washington University in St Louis; 1 Brookings Drive, Saint Louis, MO 63130
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine in St Louis; 660 S. Euclid Ave, Campus Box 8132, Saint Louis, MO 63110
| | - Tom Earnest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis; 4525 Scott Ave, Saint Louis, MO 63110
| | - Braden Yang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis; 4525 Scott Ave, Saint Louis, MO 63110
| | - Deydeep Kothapalli
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis; 4525 Scott Ave, Saint Louis, MO 63110
| | - Andrew J. Aschenbrenner
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8111, St louis, MO 63110
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8111, St louis, MO 63110
| | - Chengie Xiong
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine in St Louis; 660 S. Euclid Ave, Campus Box 8132, Saint Louis, MO 63110
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8111, St louis, MO 63110
| | - John Morris
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8111, St louis, MO 63110
| | - Tammie L. S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis; 4525 Scott Ave, Saint Louis, MO 63110
| | - Brian A. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis; 4525 Scott Ave, Saint Louis, MO 63110
| | - Philip Payne
- Department of Computer Science and Engineering, Washington University in St Louis; 1 Brookings Drive, Saint Louis, MO 63130
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine in St Louis; 660 S. Euclid Ave, Campus Box 8132, Saint Louis, MO 63110
| | - Aristeidis Sotiras
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine in St Louis; 660 S. Euclid Ave, Campus Box 8132, Saint Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis; 4525 Scott Ave, Saint Louis, MO 63110
| |
Collapse
|
23
|
Yu X, Przybelski SA, Reid RI, Lesnick TG, Raghavan S, Graff‐Radford J, Lowe VJ, Kantarci K, Knopman DS, Petersen RC, Jack CR, Vemuri P. NODDI in gray matter is a sensitive marker of aging and early AD changes. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12627. [PMID: 39077685 PMCID: PMC11284641 DOI: 10.1002/dad2.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Age-related and Alzheimer's disease (AD) dementia-related neurodegeneration impact brain health. While morphometric measures from T1-weighted scans are established biomarkers, they may be less sensitive to earlier changes. Neurite orientation dispersion and density imaging (NODDI), offering biologically meaningful interpretation of tissue microstructure, may be an advanced brain health biomarker. METHODS We contrasted regional gray matter NODDI and morphometric evaluations concerning their correlation with (1) age, (2) clinical diagnosis stage, and (3) tau pathology as assessed by AV1451 positron emission tomography. RESULTS Our study hypothesizes that NODDI measures are more sensitive to aging and early AD changes than morphometric measures. One NODDI output, free water fraction (FWF), showed higher sensitivity to age-related changes, generally better effect sizes in separating mild cognitively impaired from cognitively unimpaired participants, and stronger associations with regional tau deposition than morphometric measures. DISCUSSION These findings underscore NODDI's utility in capturing early neurodegenerative changes and enhancing our understanding of aging and AD. Highlights Neurite orientation dispersion and density imaging can serve as an effective brain health biomarker for aging and early Alzheimer's disease (AD).Free water fraction has higher sensitivity to normal brain aging.Free water fraction has stronger associations with early AD and regional tau deposition.
Collapse
Affiliation(s)
- Xi Yu
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Scott A. Przybelski
- Department of Health Sciences ResearchDivision of Biomedical Statistics and InformaticsMayo Clinic‐RochesterRochesterMinnesotaUSA
| | - Robert I. Reid
- Department of Health Sciences ResearchDivision of Biomedical Statistics and InformaticsMayo Clinic‐RochesterRochesterMinnesotaUSA
- Department of RadiologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | - Timothy G. Lesnick
- Department of Health Sciences ResearchDivision of Biomedical Statistics and InformaticsMayo Clinic‐RochesterRochesterMinnesotaUSA
| | | | | | - Val J. Lowe
- Department of RadiologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | - Kejal Kantarci
- Department of RadiologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | - David S. Knopman
- Department of NeurologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | | | - Clifford R. Jack
- Department of RadiologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | | |
Collapse
|
24
|
Singh NA, Alnobani A, Graff‐Radford J, Machulda MM, Mielke MM, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Kanekiyo T, Josephs KA, Whitwell JL. Relationships between PET and blood plasma biomarkers in corticobasal syndrome. Alzheimers Dement 2024; 20:4765-4774. [PMID: 38885334 PMCID: PMC11247700 DOI: 10.1002/alz.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Corticobasal syndrome (CBS) can result from underlying Alzheimer's disease (AD) pathologies. Little is known about the utility of blood plasma metrics to predict positron emission tomography (PET) biomarker-confirmed AD in CBS. METHODS A cohort of eighteen CBS patients (8 amyloid beta [Aβ]+; 10 Aβ-) and 8 cognitively unimpaired (CU) individuals underwent PET imaging and plasma analysis. Plasma concentrations were compared using a Kruskal-Wallis test. Spearman correlations assessed relationships between plasma concentrations and PET uptake. RESULTS CBS Aβ+ group showed a reduced Aβ42/40 ratio, with elevated phosphorylated tau (p-tau)181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) concentrations, while CBS Aβ- group only showed elevated NfL concentration compared to CU. Both p-tau181 and GFAP were able to differentiate CBS Aβ- from CBS Aβ+ and showed positive associations with Aβ and tau PET uptake. DISCUSSION This study supports use of plasma p-tau181 and GFAP to detect AD in CBS. NfL shows potential as a non-specific disease biomarker of CBS regardless of underlying pathology. HIGHLIGHTS Plasma phosphorylated tau (p-tau)181 and glial fibrillary acidic protein (GFAP) concentrations differentiate corticobasal syndrome (CBS) amyloid beta (Aβ)- from CBS Aβ+. Plasma neurofilament light concentrations are elevated in CBS Aβ- and Aβ+ compared to controls. Plasma p-tau181 and GFAP concentrations were associated with Aβ and tau positron emission tomography (PET) uptake. Aβ42/40 ratio showed a negative correlation with Aβ PET uptake.
Collapse
Affiliation(s)
| | - Alla Alnobani
- Department of Neuroscience, Mayo ClinicJacksonvilleFloridaUSA
| | | | - Mary M. Machulda
- Department of Psychiatry & Psychology, Mayo ClinicRochesterMinnesotaUSA
| | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | | | | | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | |
Collapse
|
25
|
Shir D, Graff-Radford J, Fought AJ, Lesnick TG, Przybelski SA, Vassilaki M, Lowe VJ, Knopman DS, Machulda MM, Petersen RC, Jack CR, Mielke MM, Vemuri P. Complex relationships of socioeconomic status with vascular and Alzheimer's pathways on cognition. Neuroimage Clin 2024; 43:103634. [PMID: 38909419 PMCID: PMC11253683 DOI: 10.1016/j.nicl.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION AD and CVD, which frequently co-occur, are leading causes of age-related cognitive decline. We assessed how demographic factors, socioeconomic status (SES) as indicated by education and occupation, vascular risk factors, and a range of biomarkers associated with both CVD (including white matter hyperintensities [WMH], diffusion MRI abnormalities, infarctions, and microbleeds) and AD (comprising amyloid-PET and tau-PET) collectively influence cognitive function. METHODS In this cross-sectional population study, structural equation models were utilized to understand these associations in 449 participants (mean age (SD) = 74.5 (8.4) years; 56% male; 7.5% cognitively impaired). RESULTS (1) Higher SES had a protective effect on cognition with mediation through the vascular pathway. (2) The effect of amyloid directly on cognition and through tau was 11-fold larger than the indirect effect of amyloid on cognition through WMH. (3) There is a significant effect of vascular risk on tau deposition. DISCUSSION The utilized biomarkers captured the impact of CVD and AD on cognition. The overall effect of vascular risk and SES on these biomarkers are complex and need further investigation.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Angela J Fought
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905 USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | | |
Collapse
|
26
|
Lozupone M, Dibello V, Sardone R, Castellana F, Zupo R, Lampignano L, Bortone I, Stallone R, Altamura M, Bellomo A, Daniele A, Solfrizzi V, Panza F. Lessons learned from the failure of solanezumab as a prospective treatment strategy for Alzheimer's disease. Expert Opin Drug Discov 2024; 19:639-647. [PMID: 38685682 DOI: 10.1080/17460441.2024.2348142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION In the last decade, the efforts conducted for discovering Alzheimer's Disease (AD) treatments targeting the best-known pathogenic factors [amyloid-β (Aβ), tau protein, and neuroinflammation] were mostly unsuccessful. Given that a systemic failure of Aβ clearance was supposed to primarily contribute to AD development and progression, disease-modifying therapies with anti-Aβ monoclonal antibodies (e.g. solanezumab, bapineuzumab, gantenerumab, aducanumab, lecanemab and donanemab) are ongoing in randomized clinical trials (RCTs) with contrasting results. AREAS COVERED The present Drug Discovery Case History analyzes the failures of RCTs of solanezumab on AD. Furthermore, the authors review the pharmacokinetics, pharmacodynamics, and tolerability effect of solanezumab from preclinical studies with its analogous m266 in mice. Finally, they describe the RCTs with cognitive, cerebrospinal fluid and neuroimaging findings in mild-to-moderate AD (EXPEDITION studies) and in secondary prevention studies (A4 and DIAN-TU). EXPERT OPINION Solanezumab was one of the first anti-Aβ monoclonal antibodies to be tested in preclinical and clinical AD showing to reduce brain Aβ level by acting on soluble monomeric form of Aβ peptide without significant results on deposits. Unfortunately, this compound showed to accelerate cognitive decline in both asymptomatic and symptomatic trial participants, and this failure of solanezumab further questioned the Aβ cascade hypothesis of AD.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Vittorio Dibello
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
| | - Fabio Castellana
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Roberta Zupo
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | | | - Ilaria Bortone
- Local Healthcare Authority of Bari, ASL Bari, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
27
|
Sakaie K, Koenig K, Lerner A, Appleby B, Ogrocki P, Pillai JA, Rao S, Leverenz JB, Lowe MJ. Multi-shell diffusion MRI of the fornix as a biomarker for cognition in Alzheimer's disease. Magn Reson Imaging 2024; 109:221-226. [PMID: 38521367 DOI: 10.1016/j.mri.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND PURPOSE A substantial fraction of those who had Alzheimer's Disease (AD) pathology on autopsy did not have dementia in life. While biomarkers for AD pathology are well-developed, biomarkers specific to cognitive domains affected by early AD are lagging. Diffusion MRI (dMRI) of the fornix is a candidate biomarker for early AD-related cognitive changes but is susceptible to bias due to partial volume averaging (PVA) with cerebrospinal fluid. The purpose of this work is to leverage multi-shell dMRI to correct for PVA and to evaluate PVA-corrected dMRI measures in fornix as a biomarker for cognition in AD. METHODS Thirty-three participants in the Cleveland Alzheimer's Disease Research Center (CADRC) (19 with normal cognition (NC), 10 with mild cognitive impairment (MCI), 4 with dementia due to AD) were enrolled in this study. Multi-shell dMRI was acquired, and voxelwise fits were performed with two models: 1) diffusion tensor imaging (DTI) that was corrected for PVA and 2) neurite orientation dispersion and density imaging (NODDI). Values of tissue integrity in fornix were correlated with neuropsychological scores taken from the Uniform Data Set (UDS), including the UDS Global Composite 5 score (UDSGC5). RESULTS Statistically significant correlations were found between the UDSGC5 and PVA-corrected measure of mean diffusivity (MDc, r = -0.35, p < 0.05) from DTI and the intracelluar volume fraction (ficvf, r = 0.37, p < 0.04) from NODDI. A sensitivity analysis showed that the relationship to MDc was driven by episodic memory, which is often affected early in AD, and language. CONCLUSION This cross-sectional study suggests that multi-shell dMRI of the fornix that has been corrected for PVA is a potential biomarker for early cognitive domain changes in AD. A longitudinal study will be necessary to determine if the imaging measure can predict cognitive decline.
Collapse
Affiliation(s)
- Ken Sakaie
- Imaging Institute, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-15, Cleveland, OH 44195, USA.
| | - Katherine Koenig
- Imaging Institute, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-15, Cleveland, OH 44195, USA
| | - Alan Lerner
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian Appleby
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paula Ogrocki
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jagan A Pillai
- Lou Ruvo Center for Brain Health, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-10, Cleveland, OH 44195, USA
| | - Stephen Rao
- Lou Ruvo Center for Brain Health, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-10, Cleveland, OH 44195, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-10, Cleveland, OH 44195, USA
| | - Mark J Lowe
- Imaging Institute, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-15, Cleveland, OH 44195, USA
| |
Collapse
|
28
|
Singh NA, Graff-Radford J, Machulda MM, Carlos AF, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Atypical Alzheimer's disease: new insights into an overlapping spectrum between the language and visual variants. J Neurol 2024; 271:3571-3585. [PMID: 38551740 PMCID: PMC11273322 DOI: 10.1007/s00415-024-12297-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 05/30/2024]
Abstract
Overlap between language and visual variants of atypical Alzheimer's disease (AD) has been reported. However, the extent, frequency of overlap, and its neuroanatomical underpinnings remain unclear. Eighty-two biomarker-confirmed AD patients who presented with either predominant language (n = 34) or visuospatial/perceptual (n = 48) deficits underwent detailed clinical examinations, MRI, and [18F]flortaucipir-PET. Subgroups were defined based on language/visual testing and patterns of volume loss and tau uptake were assessed. 28% of the language group had visual dysfunction (marked in 8%), and 47% of the visual group had language impairment (marked in 26%). Progressive involvement of the parieto-occipital and frontal lobes was noted with greater visual impairment in the language group, and greater left parieto-temporal and frontal involvement with worsening language impairment in the visual group. Only 25% of our cohort showed a pure language or visual presentation, highlighting the high frequency of syndromic overlap in atypical AD and the diagnostic challenge of categorical phenotyping.
Collapse
Affiliation(s)
| | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
29
|
Hou Z, Sun A, Li Y, Song X, Liu S, Hu X, Luan Y, Guan H, He C, Sun Y, Chen J. What Are the Reliable Plasma Biomarkers for Mild Cognitive Impairment? A Clinical 4D Proteomics Study and Validation. Mediators Inflamm 2024; 2024:7709277. [PMID: 38883967 PMCID: PMC11178428 DOI: 10.1155/2024/7709277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Objective At present, Alzheimer's disease (AD) lacks effective treatment means, and early diagnosis and intervention are the keys to treatment. Therefore, for mild cognitive impairment (MCI) and AD patients, blood sample analysis using the 4D nonstandard (label-free) proteomic in-depth quantitative analysis, looking for specific protein marker expression differences, is important. These marker levels change as AD progresses, and the analysis of these biomarkers changes with this method, which has the potential to show the degree of disease progression and can be used for the diagnosis and preventive treatment of MCI and AD. Materials and Methods Patients were recruited according to the inclusion and exclusion criteria and divided into three groups according to scale scores. Elderly patients diagnosed with AD were selected as the AD group (n = 9). Patients diagnosed with MCI were classified into the MCI group (n = 10). Cognitively healthy elderly patients were included in the normal cognition control group (n = 10). Patients' blood samples were used for 4D label-free proteomic in-depth quantitative analysis to identify potential blood biomarkers. The sample size of each group was expanded (n = 30), and the selected biomarkers were verified by enzyme-linked immunosorbent assay (ELISA) to verify the accuracy of the proteomic prediction. Results Six specific blood markers, namely, APOE, MMP9, UBR5, PLA2G7, STAT5B, and S100A8, were detected by 4D label-free proteomic quantitative analysis. These markers showed a statistically significant upregulation trend in the MCI and AD groups compared with the normal cognition control group (P < 0.05). ELISA results showed that the levels of these six proteins in the MCI group were significantly higher than those in the normal cognition control group, and the levels of these six proteins in the AD group were significantly higher than those in the MCI group (P < 0.05). Conclusion The plasma levels of APOE, MMP9, UBR5, PLA2G7, STAT5B, and S100A8 in cognitively healthy elderly patients and patients with MCI and AD were significantly different and, more importantly, showed a trend of increasing expression. These results indicate that these six human plasma markers have important diagnostic and therapeutic potential in the identification of cognitive impairment and have value for in-depth research and clinical application.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania, Philadelphia 19104, PA, USA
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing 100700, China
- The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin 150010, Heilongjiang, China
| | - Ailin Sun
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
- Pudong Hospital Affiliated with Fudan University, Shanghai 200120, China
| | - Yan Li
- The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin 150010, Heilongjiang, China
| | - Xiaochen Song
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Shu Liu
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Xinying Hu
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yihan Luan
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Huibo Guan
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Changyuan He
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yuefeng Sun
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Jing Chen
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| |
Collapse
|
30
|
Vanderlip CR, Stark CE. Digital cognitive assessments as low-burden markers for predicting future cognitive decline and tau accumulation across the Alzheimer's spectrum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595638. [PMID: 38826456 PMCID: PMC11142177 DOI: 10.1101/2024.05.23.595638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Digital cognitive assessments, particularly those that can be done at home, present as low burden biomarkers for participants and patients alike, but their effectiveness in diagnosis of Alzheimer's or predicting its trajectory is still unclear. Here, we assessed what utility or added value these digital cognitive assessments provide for identifying those at high risk for cognitive decline. We analyzed >500 ADNI participants who underwent a brief digital cognitive assessment and Aβ/tau PET scans, examining their ability to distinguish cognitive status and predict cognitive decline. Performance on the digital cognitive assessment were superior to both cortical Aβ and entorhinal tau in detecting mild cognitive impairment and future cognitive decline, with mnemonic discrimination deficits emerging as the most critical measure for predicting decline and future tau accumulation. Digital assessments are effective in identifying at-risk individuals, supporting their utility as low-burden tools for early Alzheimer's detection and monitoring.
Collapse
Affiliation(s)
- Casey R. Vanderlip
- Department of Neurobiology and Behavior, 1424 Biological Sciences III Irvine, University of California Irvine, Irvine, CA, 92697 USA
| | - Craig E.L. Stark
- Department of Neurobiology and Behavior, 1424 Biological Sciences III Irvine, University of California Irvine, Irvine, CA, 92697 USA
| | | |
Collapse
|
31
|
Han L, Chen X, Wang Y, Zhang R, Zhao T, Pu L, Huang Y, Sun H. A machine learning algorithm based on circulating metabolic biomarkers offers improved predictions of neurological diseases. Clin Chim Acta 2024; 558:119671. [PMID: 38621587 DOI: 10.1016/j.cca.2024.119671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND AND AIMS A machine learning algorithm based on circulating metabolic biomarkers for the predictions of neurological diseases (NLDs) is lacking. To develop a machine learning algorithm to compare the performance of a metabolic biomarker-based model with that of a clinical model based on conventional risk factors for predicting three NLDs: dementia, Parkinson's disease (PD), and Alzheimer's disease (AD). MATERIALS AND METHODS The eXtreme Gradient Boosting (XGBoost) algorithm was used to construct a metabolic biomarker-based model (metabolic model), a clinical risk factor-based model (clinical model), and a combined model for the prediction of the three NLDs. Risk discrimination (c-statistic), net reclassification improvement (NRI) index, and integrated discrimination improvement (IDI) index values were determined for each model. RESULTS The results indicate that incorporation of metabolic biomarkers into the clinical model afforded a model with improved performance in the prediction of dementia, AD, and PD, as demonstrated by NRI values of 0.159 (0.039-0.279), 0.113 (0.005-0.176), and 0.201 (-0.021-0.423), respectively; and IDI values of 0.098 (0.073-0.122), 0.070 (0.049-0.090), and 0.085 (0.068-0.101), respectively. CONCLUSION The performance of the model based on circulating NMR spectroscopy-detected metabolic biomarkers was better than that of the clinical model in the prediction of dementia, AD, and PD.
Collapse
Affiliation(s)
- Liyuan Han
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No 2 Hospital, Ningbo 315000, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Xi Chen
- Department of Economics, Yale University, USA; Yale Alzheimer's Disease Research Center, Yale University, USA
| | - Yue Wang
- School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu province, China
| | - Ruijie Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No 2 Hospital, Ningbo 315000, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Tian Zhao
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No 2 Hospital, Ningbo 315000, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Liyuan Pu
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No 2 Hospital, Ningbo 315000, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Yi Huang
- Laboratory of Neurological Diseases and Brain Function, Department of Neurosur-gery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China.
| | - Hongpeng Sun
- School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu province, China.
| |
Collapse
|
32
|
Canu E, Rugarli G, Coraglia F, Basaia S, Cecchetti G, Calloni SF, Vezzulli PQ, Spinelli EG, Santangelo R, Caso F, Falini A, Magnani G, Filippi M, Agosta F. Real-word application of the AT(N) classification and disease-modifying treatment eligibility in a hospital-based cohort. J Neurol 2024; 271:2716-2729. [PMID: 38381175 DOI: 10.1007/s00415-024-12221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND OBJECTIVES The AT(N) classification system stratifies patients based on biomarker profiles, including amyloid-beta deposition (A), tau pathology (T), and neurodegeneration (N). This study aims to apply the AT(N) classification to a hospital-based cohort of patients with cognitive decline and/or dementia, within and outside the Alzheimer's disease (AD) continuum, to enhance our understanding of the multidimensional aspects of AD and related disorders. Furthermore, we wish to investigate how many cases from our cohort would be eligible for the available disease modifying treatments, such as aducanemab and lecanemab. METHODS We conducted a retrospective evaluation of 429 patients referred to the Memory Center of IRCCS San Raffaele Hospital in Milan. Patients underwent clinical/neuropsychological assessments, lumbar puncture, structural brain imaging, and positron emission tomography (FDG-PET). Patients were stratified according to AT(N) classification, group comparisons were performed and the number of eligible cases for anti-β amyloid monoclonal antibodies was calculated. RESULTS Sociodemographic and clinical features were similar across groups. The most represented group was A + T + N + accounting for 38% of cases, followed by A + T - N + (21%) and A - T - N + (20%). Although the clinical presentation was similar, the A + T + N + group showed more severe cognitive impairment in memory, language, attention, executive, and visuospatial functions compared to other AT(N) groups. Notably, T + patients demonstrated greater memory complaints compared to T - cases. FDG-PET outperformed MRI and CT in distinguishing A + from A - patients. Although 61% of the observed cases were A + , only 17% of them were eligible for amyloid-targeting treatments. DISCUSSION The AT(N) classification is applicable in a real-world clinical setting. The classification system provided insights into clinical management and treatment strategies. Low cognitive performance and specific regional FDG-PET hypometabolism at diagnosis are highly suggestive for A + T + or A - T + profiles. This work provides also a realistic picture of the proportion of AD patients eligible for disease modifying treatments emphasizing the need for early detection.
Collapse
Affiliation(s)
- Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Rugarli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Coraglia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giordano Cecchetti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sonia Francesca Calloni
- Neuroradiology Unit and High Field MRI Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Santangelo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Caso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and High Field MRI Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
33
|
Singh NA, Goodrich AW, Graff-Radford J, Machulda MM, Sintini I, Carlos AF, Robinson CG, Reid RI, Lowe VJ, Jack CR, Petersen RC, Boeve BF, Josephs KA, Kantarci K, Whitwell JL. Altered structural and functional connectivity in Posterior Cortical Atrophy and Dementia with Lewy bodies. Neuroimage 2024; 290:120564. [PMID: 38442778 PMCID: PMC11019668 DOI: 10.1016/j.neuroimage.2024.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/07/2024] Open
Abstract
Posterior cortical atrophy (PCA) and dementia with Lewy bodies (DLB) show distinct atrophy and overlapping hypometabolism profiles, but it is unknown how disruptions in structural and functional connectivity compare between these disorders and whether breakdowns in connectivity relate to either atrophy or hypometabolism. Thirty amyloid-positive PCA patients, 24 amyloid-negative DLB patients and 30 amyloid-negative cognitively unimpaired (CU) healthy individuals were recruited at Mayo Clinic, Rochester, MN, and underwent a 3T head MRI, including structural MRI, resting state functional MRI (rsfMRI) and diffusion tensor imaging (DTI) sequences, as well as [18F] fluorodeoxyglucose (FDG) PET. We assessed functional connectivity within and between 12 brain networks using rsfMRI and the CONN functional connectivity toolbox and calculated regional DTI metrics using the Johns Hopkins atlas. Multivariate linear-regression models corrected for multiple comparisons and adjusted for age and sex compared DTI metrics and within-network and between-network functional connectivity across groups. Regional gray-matter volumes and FDG-PET standard uptake value ratios (SUVRs) were calculated and analyzed at the voxel-level using SPM12. We used univariate linear-regression models to investigate the relationship between connectivity measures, gray-matter volume, and FDG-PET SUVR. On DTI, PCA showed degeneration in occipito-parietal white matter, posterior thalamic radiations, splenium of the corpus collosum and sagittal stratum compared to DLB and CU, with greater degeneration in the temporal white matter and the fornix compared to CU. We observed no white-matter degeneration in DLB compared to CU. On rsfMRI, reduced within-network connectivity was present in dorsal and ventral default mode networks (DMN) and the dorsal-attention network in PCA compared to DLB and CU, with reduced within-network connectivity in the visual and sensorimotor networks compared to CU. DLB showed reduced connectivity in the cerebellar network compared to CU. Between-network analysis showed increased connectivity in both cerebellar-to-sensorimotor and cerebellar-to-dorsal attention network connectivity in PCA and DLB. PCA showed reduced anterior DMN-to-cerebellar and dorsal attention-to-sensorimotor connectivity, while DLB showed reduced posterior DMN-to-sensorimotor connectivity compared to CU. PCA showed reduced dorsal DMN-to-visual connectivity compared to DLB. The multimodal analysis revealed weak associations between functional connectivity and volume in PCA, and between functional connectivity and metabolism in DLB. These findings suggest that PCA and DLB have unique connectivity alterations, with PCA showing more widespread disruptions in both structural and functional connectivity; yet some overlap was observed with both disorders showing increased connectivity from the cerebellum.
Collapse
Affiliation(s)
| | - Austin W Goodrich
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States
| | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Department of Information Technology, Mayo Clinic, Rochester, MN, United States
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
34
|
Colvee-Martin H, Parra JR, Gonzalez GA, Barker W, Duara R. Neuropathology, Neuroimaging, and Fluid Biomarkers in Alzheimer's Disease. Diagnostics (Basel) 2024; 14:704. [PMID: 38611617 PMCID: PMC11012058 DOI: 10.3390/diagnostics14070704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 04/14/2024] Open
Abstract
An improved understanding of the pathobiology of Alzheimer's disease (AD) should lead ultimately to an earlier and more accurate diagnosis of AD, providing the opportunity to intervene earlier in the disease process and to improve outcomes. The known hallmarks of Alzheimer's disease include amyloid-β plaques and neurofibrillary tau tangles. It is now clear that an imbalance between production and clearance of the amyloid beta protein and related Aβ peptides, especially Aβ42, is a very early, initiating factor in Alzheimer's disease (AD) pathogenesis, leading to aggregates of hyperphosphorylation and misfolded tau protein, inflammation, and neurodegeneration. In this article, we review how the AD diagnostic process has been transformed in recent decades by our ability to measure these various elements of the pathological cascade through the use of imaging and fluid biomarkers. The more recently developed plasma biomarkers, especially phosphorylated-tau217 (p-tau217), have utility for screening and diagnosis of the earliest stages of AD. These biomarkers can also be used to measure target engagement by disease-modifying therapies and the response to treatment.
Collapse
Affiliation(s)
- Helena Colvee-Martin
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| | - Juan Rayo Parra
- Human & Molecular Genetics, Florida International University, Miami, FL 33199, USA; (J.R.P.); (G.A.G.)
| | - Gabriel Antonio Gonzalez
- Human & Molecular Genetics, Florida International University, Miami, FL 33199, USA; (J.R.P.); (G.A.G.)
| | - Warren Barker
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| |
Collapse
|
35
|
Ackley S, Calmasini C, Bouteloup V, Hill-Jarrett TG, Swinnerton KN, Chêne G, Dufouil C, Glymour MM. Contribution of Global Amyloid-PET Imaging for Predicting Future Cognition in the MEMENTO Cohort. Neurology 2024; 102:e208054. [PMID: 38412412 PMCID: PMC11770678 DOI: 10.1212/wnl.0000000000208054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/16/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Global amyloid-PET is associated with cognition and cognitive decline, but most research on this association does not account for past cognitive information. We assessed the prognostic benefit of amyloid-PET measures for future cognition when prior cognitive assessments are available, evaluating the added value of amyloid measures beyond information on multiple past cognitive assessments. METHODS The French MEMENTO cohort (a cohort of outpatients from French research memory centers to improve knowledge on Alzheimer disease and related disorders) includes older outpatients with incipient cognitive changes, but no dementia diagnosis at inclusion. Global amyloid burden was assessed using positron emission tomography (amyloid-PET) for a subset of participants; semiannual cognitive testing was subsequently performed. We predicted mini-mental state examination (MMSE) scores using demographic characteristics (age, sex, marital status, and education) alone or in combination with information on prior cognitive measures. The added value of amyloid burden as a predictor in these models was evaluated with percent reduction of the mean squared error (MSE). All models were conducted separately for evaluating the added value of dichotomous amyloid positivity status compared with a continuous amyloid-standardized uptake-value ratio. RESULTS Our analytic sample comprised 510 individuals who underwent amyloid-PET scans with at least 4 MMSE assessments. The mean age at the PET scan was 71.6 (standard deviation 7.4) years; 60.7% were female. The median follow-up was 4.6 years (interquartile range: 0.9 years). Adding amyloid burden when adjusting for only demographic characteristics reduced the MSE of predictions by 5.08% (95% CI 0.97%-10.86%) and 12.64% (95% CI 3.35%-25.28%) for binary and continuous amyloid, respectively. If the model included 1 past MMSE measure, the MSE improvement was 3.51% (95% CI 1.01%-7.28%) when adding binary amyloid and 8.83% (95% CI 2.63%-16.37%) when adding continuous amyloid. Improvements in model fit were smaller with the addition of amyloid burden when more than 1 past cognitive assessment was included. For all models incorporating past cognitive assessments, differences in predictions amounted to a fraction of 1 MMSE point on average. DISCUSSION In a clinical setting, global amyloid burden did not appreciably improve cognitive predictions when past cognitive assessments were available. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT02164643.
Collapse
Affiliation(s)
- Sarah Ackley
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Camilla Calmasini
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Vincent Bouteloup
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Tanisha G Hill-Jarrett
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Kaitlin N Swinnerton
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Geneviève Chêne
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Carole Dufouil
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - M M Glymour
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| |
Collapse
|
36
|
Jack CR, Wiste HJ, Algeciras‐Schimnich A, Weigand SD, Figdore DJ, Lowe VJ, Vemuri P, Graff‐Radford J, Ramanan VK, Knopman DS, Mielke MM, Machulda MM, Fields J, Schwarz CG, Cogswell PM, Senjem ML, Therneau TM, Petersen RC. Comparison of plasma biomarkers and amyloid PET for predicting memory decline in cognitively unimpaired individuals. Alzheimers Dement 2024; 20:2143-2154. [PMID: 38265198 PMCID: PMC10984437 DOI: 10.1002/alz.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND We compared the ability of several plasma biomarkers versus amyloid positron emission tomography (PET) to predict rates of memory decline among cognitively unimpaired individuals. METHODS We studied 645 Mayo Clinic Study of Aging participants. Predictor variables were age, sex, education, apolipoprotein E (APOE) ε4 genotype, amyloid PET, and plasma amyloid beta (Aβ)42/40, phosphorylated tau (p-tau)181, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and p-tau217. The outcome was a change in a memory composite measure. RESULTS All plasma biomarkers, except NfL, were associated with mean memory decline in models with individual biomarkers. However, amyloid PET and plasma p-tau217, along with age, were key variables independently associated with mean memory decline in models combining all predictors. Confidence intervals were narrow for estimates of population mean prediction, but person-level prediction intervals were wide. DISCUSSION Plasma p-tau217 and amyloid PET provide useful information about predicting rates of future cognitive decline in cognitively unimpaired individuals at the population mean level, but not at the individual person level.
Collapse
Affiliation(s)
| | - Heather J. Wiste
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | - Stephen D. Weigand
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Dan J. Figdore
- Department of Laboratory MedicineMayo ClinicRochesterMinnesotaUSA
| | - Val J. Lowe
- Department of Nuclear MedicineMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mary M. Machulda
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Julie Fields
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Terry M. Therneau
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
37
|
Lyu X, Duong MT, Xie L, de Flores R, Richardson H, Hwang G, Wisse LEM, DiCalogero M, McMillan CT, Robinson JL, Xie SX, Lee EB, Irwin DJ, Dickerson BC, Davatzikos C, Nasrallah IM, Yushkevich PA, Wolk DA, Das SR. Tau-neurodegeneration mismatch reveals vulnerability and resilience to comorbidities in Alzheimer's continuum. Alzheimers Dement 2024; 20:1586-1600. [PMID: 38050662 PMCID: PMC10984442 DOI: 10.1002/alz.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2023]
Abstract
INTRODUCTION Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid "negative") patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.
Collapse
Affiliation(s)
- Xueying Lyu
- Departments of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael Tran Duong
- Departments of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Long Xie
- Departments of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Hayley Richardson
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gyujoon Hwang
- Departments of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Michael DiCalogero
- Departments of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corey T. McMillan
- Departments of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John L. Robinson
- Departments of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sharon X. Xie
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Departments of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David J. Irwin
- Departments of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Christos Davatzikos
- Departments of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ilya M. Nasrallah
- Departments of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul A. Yushkevich
- Departments of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Departments of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandhitsu R. Das
- Departments of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
38
|
Parekh P, Badachhape AA, Tanifum EA, Annapragada AV, Ghaghada KB. Advances in nanoprobes for molecular MRI of Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1946. [PMID: 38426638 PMCID: PMC10983770 DOI: 10.1002/wnan.1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease is the most common cause of dementia and a leading cause of mortality in the elderly population. Diagnosis of Alzheimer's disease has traditionally relied on evaluation of clinical symptoms for cognitive impairment with a definitive diagnosis requiring post-mortem demonstration of neuropathology. However, advances in disease pathogenesis have revealed that patients exhibit Alzheimer's disease pathology several decades before the manifestation of clinical symptoms. Magnetic resonance imaging (MRI) plays an important role in the management of patients with Alzheimer's disease. The clinical availability of molecular MRI (mMRI) contrast agents can revolutionize the diagnosis of Alzheimer's disease. In this article, we review advances in nanoparticle contrast agents, also referred to as nanoprobes, for mMRI of Alzheimer's disease. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Parag Parekh
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Andrew A. Badachhape
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Eric A. Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ananth V. Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
39
|
Liu D, Lu J, Wei L, Yao M, Yang H, Lv P, Wang H, Zhu Y, Zhu Z, Zhang X, Chen J, Yang QX, Zhang B. Olfactory deficit: a potential functional marker across the Alzheimer's disease continuum. Front Neurosci 2024; 18:1309482. [PMID: 38435057 PMCID: PMC10907997 DOI: 10.3389/fnins.2024.1309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent form of dementia that affects an estimated 32 million individuals globally. Identifying early indicators is vital for screening at-risk populations and implementing timely interventions. At present, there is an urgent need for early and sensitive biomarkers to screen individuals at risk of AD. Among all sensory biomarkers, olfaction is currently one of the most promising indicators for AD. Olfactory dysfunction signifies a decline in the ability to detect, identify, or remember odors. Within the spectrum of AD, impairment in olfactory identification precedes detectable cognitive impairments, including mild cognitive impairment (MCI) and even the stage of subjective cognitive decline (SCD), by several years. Olfactory impairment is closely linked to the clinical symptoms and neuropathological biomarkers of AD, accompanied by significant structural and functional abnormalities in the brain. Olfactory behavior examination can subjectively evaluate the abilities of olfactory identification, threshold, and discrimination. Olfactory functional magnetic resonance imaging (fMRI) can provide a relatively objective assessment of olfactory capabilities, with the potential to become a promising tool for exploring the neural mechanisms of olfactory damage in AD. Here, we provide a timely review of recent literature on the characteristics, neuropathology, and examination of olfactory dysfunction in the AD continuum. We focus on the early changes in olfactory indicators detected by behavioral and fMRI assessments and discuss the potential of these techniques in MCI and preclinical AD. Despite the challenges and limitations of existing research, olfactory dysfunction has demonstrated its value in assessing neurodegenerative diseases and may serve as an early indicator of AD in the future.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing X. Yang
- Department of Radiology, Center for NMR Research, Penn State University College of Medicine, Hershey, PA, United States
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Provincial Medical Key Discipline (Laboratory), Nanjing, China
| |
Collapse
|
40
|
Weizenbaum EL, Soberanes D, Hsieh S, Molinare CP, Buckley RF, Betensky RA, Properzi MJ, Marshall GA, Rentz DM, Johnson KA, Sperling RA, Amariglio RE, Papp KV. Capturing learning curves with the multiday Boston Remote Assessment of Neurocognitive Health (BRANCH): Feasibility, reliability, and validity. Neuropsychology 2024; 38:198-210. [PMID: 37971862 PMCID: PMC10841660 DOI: 10.1037/neu0000933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Unsupervised remote digital cognitive assessment makes frequent testing feasible and allows for measurement of learning over repeated evaluations on participants' own devices. This provides the opportunity to derive individual multiday learning curve scores over short intervals. Here, we report feasibility, reliability, and validity, of a 7-day cognitive battery from the Boston Remote Assessment for Neurocognitive Health (Multiday BRANCH), an unsupervised web-based assessment. METHOD Multiday BRANCH was administered remotely to 181 cognitively unimpaired older adults using their own electronic devices. For 7 consecutive days, participants completed three tests with associative memory components (Face-Name, Groceries-Prices, Digit Signs), using the same stimuli, to capture multiday learning curves for each test. We assessed the feasibility of capturing learning curves across the 7 days. Additionally, we examined the reliability and associations of learning curves with demographics, and traditional cognitive and subjective report measures. RESULTS Multiday BRANCH was feasible with 96% of participants completing all study assessments; there were no differences dependent on type of device used (t = 0.71, p = .48) or time of day completed (t = -0.08, p = .94). Psychometric properties of the learning curves were sound including good test-retest reliability of individuals' curves (intraclass correlation = 0.94). Learning curves were positively correlated with in-person cognitive tests and subjective report of cognitive complaints. CONCLUSIONS Multiday BRANCH is a feasible, reliable, and valid cognitive measure that may be useful for identifying subtle changes in learning and memory processes in older adults. In the future, we will determine whether Multiday BRANCH is predictive of the presence of preclinical Alzheimer's disease. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Emma L Weizenbaum
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School
| | - Daniel Soberanes
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | - Stephanie Hsieh
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | - Cassidy P Molinare
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | - Rachel F Buckley
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | - Rebecca A Betensky
- Department of Biostatistics, School of Global Public Health, New York University
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Gad A Marshall
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | - Dorene M Rentz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Reisa A Sperling
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | - Rebecca E Amariglio
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | - Kathryn V Papp
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
41
|
Dolphin H, Dyer AH, Morrison L, Shenkin SD, Welsh T, Kennelly SP. New horizons in the diagnosis and management of Alzheimer's Disease in older adults. Age Ageing 2024; 53:afae005. [PMID: 38342754 PMCID: PMC10859247 DOI: 10.1093/ageing/afae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 02/13/2024] Open
Abstract
Alzheimer's Disease (ad) is the most common cause of dementia, and in addition to cognitive decline, it directly contributes to physical frailty, falls, incontinence, institutionalisation and polypharmacy in older adults. Increasing availability of clinically validated biomarkers including cerebrospinal fluid and positron emission tomography to assess both amyloid and tau pathology has led to a reconceptualisation of ad as a clinical-biological diagnosis, rather than one based purely on clinical phenotype. However, co-pathology is frequent in older adults which influence the accuracy of biomarker interpretation. Importantly, some older adults with positive amyloid or tau pathological biomarkers may never experience cognitive impairment or dementia. These strides towards achieving an accurate clinical-biological diagnosis are occurring alongside recent positive phase 3 trial results reporting statistically significant effects of anti-amyloid Disease-Modifying Therapies (DMTs) on disease severity in early ad. However, the real-world clinical benefit of these DMTs is not clear and concerns remain regarding how trial results will translate to real-world clinical populations, potential adverse effects (including amyloid-related imaging abnormalities), which can be severe and healthcare systems readiness to afford and deliver potential DMTs to appropriate populations. Here, we review recent advances in both clinical-biological diagnostic classification and future treatment in older adults living with ad. Advocating for access to both more accurate clinical-biological diagnosis and potential DMTs must be done so in a holistic and gerontologically attuned fashion, with geriatricians advocating for enhanced multi-component and multi-disciplinary care for all older adults with ad. This includes those across the ad severity spectrum including older adults potentially ineligible for emerging DMTs.
Collapse
Affiliation(s)
- Helena Dolphin
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
| | - Adam H Dyer
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
| | - Laura Morrison
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
| | - Susan D Shenkin
- Ageing and Health Research Group, Advanced Care Research Centre, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Tomas Welsh
- Bristol Medical School (THS), University of Bristol, Bristol, UK
- RICE – The Research Institute for the Care of Older People, Bath, UK
- Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Sean P Kennelly
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute of Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
42
|
Stricker NH, Stricker JL, Frank RD, Fan WZ, Christianson TJ, Patel JS, Karstens AJ, Kremers WK, Machulda MM, Fields JA, Graff-Radford J, Jack CR, Knopman DS, Mielke MM, Petersen RC. Stricker Learning Span criterion validity: a remote self-administered multi-device compatible digital word list memory measure shows similar ability to differentiate amyloid and tau PET-defined biomarker groups as in-person Auditory Verbal Learning Test. J Int Neuropsychol Soc 2024; 30:138-151. [PMID: 37385974 PMCID: PMC10756923 DOI: 10.1017/s1355617723000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
OBJECTIVE The Stricker Learning Span (SLS) is a computer-adaptive digital word list memory test specifically designed for remote assessment and self-administration on a web-based multi-device platform (Mayo Test Drive). We aimed to establish criterion validity of the SLS by comparing its ability to differentiate biomarker-defined groups to the person-administered Rey's Auditory Verbal Learning Test (AVLT). METHOD Participants (N = 353; mean age = 71, SD = 11; 93% cognitively unimpaired [CU]) completed the AVLT during an in-person visit, the SLS remotely (within 3 months) and had brain amyloid and tau PET scans available (within 3 years). Overlapping groups were formed for 1) those on the Alzheimer's disease (AD) continuum (amyloid PET positive, A+, n = 125) or not (A-, n = 228), and those with biological AD (amyloid and tau PET positive, A+T+, n = 55) vs no evidence of AD pathology (A-T-, n = 195). Analyses were repeated among CU participants only. RESULTS The SLS and AVLT showed similar ability to differentiate biomarker-defined groups when comparing AUROCs (p's > .05). In logistic regression models, SLS contributed significantly to predicting biomarker group beyond age, education, and sex, including when limited to CU participants. Medium (A- vs A+) to large (A-T- vs A+T+) unadjusted effect sizes were observed for both SLS and AVLT. Learning and delay variables were similar in terms of ability to separate biomarker groups. CONCLUSIONS Remotely administered SLS performed similarly to in-person-administered AVLT in its ability to separate biomarker-defined groups, providing evidence of criterion validity. Results suggest the SLS may be sensitive to detecting subtle objective cognitive decline in preclinical AD.
Collapse
Affiliation(s)
- Nikki H. Stricker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - John L. Stricker
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Ryan D. Frank
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Winnie Z. Fan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Jay S. Patel
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Aimee J. Karstens
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Walter K. Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Michelle M. Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
43
|
Yang Z, Sheng J, Zhang Q, Xin Y, Wang L, Zhang Q, Wang B. Glucose-oxygen coupling can serve as a biomarker for neuroinflammation-related genetic variants. Cereb Cortex 2024; 34:bhad520. [PMID: 38244549 DOI: 10.1093/cercor/bhad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
The single-nucleotide polymorphism rs3197999 in the macrophage-stimulating protein 1 gene is a missense variant. Studies have indicated that macrophage-stimulating protein 1 mediates neuronal loss and synaptic plasticity damage, and overexpression of the macrophage-stimulating protein 1 gene leads to the excessive activation of microglial cells, thereby resulting in an elevation of cerebral glucose metabolism. Traditional diagnostic models may be disrupted by neuroinflammation, making it difficult to predict the pathological status of patients solely based on single-modal images. We hypothesize that the macrophage-stimulating protein 1 rs3197999 single-nucleotide polymorphism may lead to imbalances in glucose and oxygen metabolism, thereby influencing cognitive resilience and the progression of Alzheimer's disease. In this study, we found that among 121 patients with mild cognitive impairment, carriers of the macrophage-stimulating protein 1 rs3197999 risk allele showed a significant reduction in the coupling of glucose and oxygen metabolism in the dorsolateral prefrontal cortex region. However, the rs3197999 variant did not induce significant differences in glucose metabolism and neuronal activity signals. Furthermore, the rs3197999 risk allele correlated with a higher rate of increase in clinical dementia score, mediated by the coupling of glucose and oxygen metabolism. HIGHLIGHT
Collapse
Affiliation(s)
- Ze Yang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Jinhua Sheng
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Qiao Zhang
- Beijing Hospital, Beijing 100730, China
- National Center of Gerontology, Beijing 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yu Xin
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Luyun Wang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Qian Zhang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Binbing Wang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
44
|
Dubbelman MA, Hendriksen HMA, Harrison JE, Vijverberg EGB, Prins ND, Kroeze LA, Ottenhoff L, Van Leeuwenstijn MMSSA, Verberk IMW, Teunissen CE, van de Giessen EM, Van Harten AC, Van Der Flier WM, Sikkes SAM. Cognitive and Functional Change Over Time in Cognitively Healthy Individuals According to Alzheimer Disease Biomarker-Defined Subgroups. Neurology 2024; 102:e207978. [PMID: 38165338 PMCID: PMC10962908 DOI: 10.1212/wnl.0000000000207978] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES It is unclear to what extent cognitive outcome measures are sensitive to capture decline in Alzheimer disease (AD) prevention trials. We aimed to analyze the sensitivity to changes over time of a range of neuropsychological tests in several cognitively unimpaired, biomarker-defined patient groups. METHODS Cognitively unimpaired individuals from the Amsterdam Dementia Cohort and the SCIENCe project with available AD biomarkers, obtained from CSF, PET scans, and plasma at baseline, were followed over time (4.5 ± 3.1 years, range 0.6-18.9 years). Based on common inclusion criteria for clinical trials, we defined groups (amyloid, phosphorylated tau [p-tau], APOE ε4). Linear mixed models, adjusted for age, sex, and education, were used to estimate change over time in neuropsychological tests, a functional outcome, and 2 cognitive composite measures. Standardized regression coefficients of time in years (βtime) were reported as outcome of interest. We analyzed change over time with full follow-up, as well as with follow-up limited to 1.5 and 3 years. RESULTS We included 387 individuals (aged 61.7 ± 8.6 years; 44% female) in the following (partly overlapping) biomarker groups: APOE ε4 carriers (n = 212), amyloid-positive individuals (n = 109), amyloid-positive APOE ε4 carriers (n = 66), CSF p-tau-positive individuals (n = 127), plasma p-tau-positive individuals (n = 71), and amyloid and CSF p-tau-positive individuals (n = 50), or in a control group (normal biomarkers; n = 65). An executive functioning task showed most decline in all biomarker groups (βtime range -0.30 to -0.71), followed by delayed word list recognition (βtime range -0.18 to -0.50). Functional decline (βtime range -0.17 to -0.63) was observed in all, except the CSF and plasma tau-positive groups. Both composites showed comparable amounts of change (βtime range -0.12 to -0.62) in all groups, except plasma p-tau-positive individuals. When limiting original follow-up duration, many effects disappeared or even flipped direction. DISCUSSION In conclusion, functional, composite, and neuropsychological outcome measures across all cognitive domains detect changes over time in various biomarker-defined groups, with changes being most evident among individuals with more AD pathology. AD prevention trials should use sufficiently long follow-up duration and/or more sensitive outcome measures to optimally capture subtle cognitive changes over time.
Collapse
Affiliation(s)
- Mark A Dubbelman
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Heleen M A Hendriksen
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - John E Harrison
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Everard G B Vijverberg
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Niels D Prins
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lior A Kroeze
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lois Ottenhoff
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Mardou M S S A Van Leeuwenstijn
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Inge M W Verberk
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elsmarieke M van de Giessen
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Argonde C Van Harten
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Wiesje M Van Der Flier
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Sietske A M Sikkes
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Gutierrez-Tordera L, Papandreou C, Novau-Ferré N, García-González P, Rojas M, Marquié M, Chapado LA, Papagiannopoulos C, Fernàndez-Castillo N, Valero S, Folch J, Ettcheto M, Camins A, Boada M, Ruiz A, Bulló M. Exploring small non-coding RNAs as blood-based biomarkers to predict Alzheimer's disease. Cell Biosci 2024; 14:8. [PMID: 38229129 PMCID: PMC10790437 DOI: 10.1186/s13578-023-01190-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) diagnosis relies on clinical symptoms complemented with biological biomarkers, the Amyloid Tau Neurodegeneration (ATN) framework. Small non-coding RNA (sncRNA) in the blood have emerged as potential predictors of AD. We identified sncRNA signatures specific to ATN and AD, and evaluated both their contribution to improving AD conversion prediction beyond ATN alone. METHODS This nested case-control study was conducted within the ACE cohort and included MCI patients matched by sex. Patients free of type 2 diabetes underwent cerebrospinal fluid (CSF) and plasma collection and were followed-up for a median of 2.45-years. Plasma sncRNAs were profiled using small RNA-sequencing. Conditional logistic and Cox regression analyses with elastic net penalties were performed to identify sncRNA signatures for A+(T|N)+ and AD. Weighted scores were computed using cross-validation, and the association of these scores with AD risk was assessed using multivariable Cox regression models. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) enrichment analysis of the identified signatures were performed. RESULTS The study sample consisted of 192 patients, including 96 A+(T|N)+ and 96 A-T-N- patients. We constructed a classification model based on a 6-miRNAs signature for ATN. The model could classify MCI patients into A-T-N- and A+(T|N)+ groups with an area under the curve of 0.7335 (95% CI, 0.7327 to 0.7342). However, the addition of the model to conventional risk factors did not improve the prediction of AD beyond the conventional model plus ATN status (C-statistic: 0.805 [95% CI, 0.758 to 0.852] compared to 0.829 [95% CI, 0.786, 0.872]). The AD-related 15-sncRNAs signature exhibited better predictive performance than the conventional model plus ATN status (C-statistic: 0.849 [95% CI, 0.808 to 0.890]). When ATN was included in this model, the prediction further improved to 0.875 (95% CI, 0.840 to 0.910). The miRNA-target interaction network and functional analysis, including GO and KEGG pathway enrichment analysis, suggested that the miRNAs in both signatures are involved in neuronal pathways associated with AD. CONCLUSIONS The AD-related sncRNA signature holds promise in predicting AD conversion, providing insights into early AD development and potential targets for prevention.
Collapse
Affiliation(s)
- Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201, Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204, Reus, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201, Reus, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201, Reus, Spain.
- Institute of Health Pere Virgili (IISPV), 43204, Reus, Spain.
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201, Reus, Spain.
| | - Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201, Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204, Reus, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201, Reus, Spain
| | - Pablo García-González
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031, Madrid, Spain
| | - Melina Rojas
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201, Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204, Reus, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201, Reus, Spain
| | - Marta Marquié
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031, Madrid, Spain
| | - Luis A Chapado
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Christos Papagiannopoulos
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, 45500, Ioannina, Greece
| | - Noèlia Fernàndez-Castillo
- Department de Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, 08007, Barcelona, Spain
| | - Sergi Valero
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031, Madrid, Spain
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201, Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204, Reus, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031, Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031, Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028, Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035, Barcelona, Spain
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031, Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028, Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035, Barcelona, Spain
| | - Mercè Boada
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031, Madrid, Spain
| | - Agustín Ruiz
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031, Madrid, Spain
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201, Reus, Spain.
- Institute of Health Pere Virgili (IISPV), 43204, Reus, Spain.
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, 43201, Reus, Spain.
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029, Madrid, Spain.
| |
Collapse
|
46
|
Yoo HS, Kim HK, Lee JH, Chun JH, Lee HS, Grothe MJ, Teipel S, Cavedo E, Vergallo A, Hampel H, Ryu YH, Cho H, Lyoo CH. Association of Basal Forebrain Volume with Amyloid, Tau, and Cognition in Alzheimer's Disease. J Alzheimers Dis 2024; 99:145-159. [PMID: 38640150 DOI: 10.3233/jad-230975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Degeneration of cholinergic basal forebrain (BF) neurons characterizes Alzheimer's disease (AD). However, what role the BF plays in the dynamics of AD pathophysiology has not been investigated precisely. Objective To investigate the baseline and longitudinal roles of BF along with core neuropathologies in AD. Methods In this retrospective cohort study, we enrolled 113 subjects (38 amyloid [Aβ]-negative cognitively unimpaired, 6 Aβ-positive cognitively unimpaired, 39 with prodromal AD, and 30 with AD dementia) who performed brain MRI for BF volume and cortical thickness, 18F-florbetaben PET for Aβ, 18F-flortaucipir PET for tau, and detailed cognitive testing longitudinally. We investigated the baseline and longitudinal association of BF volume with Aβ and tau standardized uptake value ratio and cognition. Results Cross-sectionally, lower BF volume was not independently associated with higher cortical Aβ, but it was associated with tau burden. Tau burden in the orbitofrontal, insular, lateral temporal, inferior temporo-occipital, and anterior cingulate cortices were associated with progressive BF atrophy. Lower BF volume was associated with faster Aβ accumulation, mainly in the prefrontal, anterior temporal, cingulate, and medial occipital cortices. BF volume was associated with progressive decline in language and memory functions regardless of baseline Aβ and tau burden. Conclusions Tau deposition affected progressive BF atrophy, which in turn accelerated amyloid deposition, leading to a vicious cycle. Also, lower baseline BF volume independently predicted deterioration in cognitive function.
Collapse
Affiliation(s)
- Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Hyun Chun
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Michel J Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation-ISCIII, Madrid, Spain
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)-Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Germany
| | - Enrica Cavedo
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Harald Hampel
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Hojjati SH, Chiang GC, Butler TA, de Leon M, Gupta A, Li Y, Sabuncu MR, Feiz F, Nayak S, Shteingart J, Ozoria S, Gholipour Picha S, Stern Y, Luchsinger JA, Devanand DP, Razlighi QR. Remote Associations Between Tau and Cortical Amyloid-β Are Stage-Dependent. J Alzheimers Dis 2024; 98:1467-1482. [PMID: 38552116 PMCID: PMC11091581 DOI: 10.3233/jad-231362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Background Histopathologic studies of Alzheimer's disease (AD) suggest that extracellular amyloid-β (Aβ) plaques promote the spread of neurofibrillary tau tangles. However, these two proteinopathies initiate in spatially distinct brain regions, so how they interact during AD progression is unclear. Objective In this study, we utilized Aβ and tau positron emission tomography (PET) scans from 572 older subjects (476 healthy controls (HC), 14 with mild cognitive impairment (MCI), 82 with mild AD), at varying stages of the disease, to investigate to what degree tau is associated with cortical Aβ deposition. Methods Using multiple linear regression models and a pseudo-longitudinal ordering technique, we investigated remote tau-Aβ associations in four pathologic phases of AD progression based on tau spread: 1) no-tau, 2) pre-acceleration, 3) acceleration, and 4) post-acceleration. Results No significant tau-Aβ association was detected in the no-tau phase. In the pre-acceleration phase, the earliest stage of tau deposition, associations emerged between regional tau in medial temporal lobe (MTL) (i.e., entorhinal cortex, parahippocampal gyrus) and cortical Aβ in lateral temporal lobe regions. The strongest tau-Aβ associations were found in the acceleration phase, in which tau in MTL regions was strongly associated with cortical Aβ (i.e., temporal and frontal lobes regions). Strikingly, in the post-acceleration phase, including 96% of symptomatic subjects, tau-Aβ associations were no longer significant. Conclusions The results indicate that associations between tau and Aβ are stage-dependent, which could have important implications for understanding the interplay between these two proteinopathies during the progressive stages of AD.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gloria C. Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tracy A. Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mony de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mert R. Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Farnia Feiz
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Siddharth Nayak
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Shteingart
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sindy Ozoria
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Saman Gholipour Picha
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Yaakov Stern
- Departments of Neurology, Psychiatry, GH Sergievsky Center, The Taub Institute for the Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Davangere P. Devanand
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Qolamreza R. Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
48
|
Boots EA, Frank RD, Fan WZ, Christianson TJ, Kremers WK, Stricker JL, Machulda MM, Fields JA, Hassenstab J, Graff-Radford J, Vemuri P, Jack CR, Knopman DS, Petersen RC, Stricker NH. Continuous Associations between Remote Self-Administered Cognitive Measures and Imaging Biomarkers of Alzheimer's Disease. J Prev Alzheimers Dis 2024; 11:1467-1479. [PMID: 39350394 PMCID: PMC11436415 DOI: 10.14283/jpad.2024.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Easily accessible and self-administered cognitive assessments that can aid early detection for Alzheimer's disease (AD) dementia risk are critical for timely intervention. OBJECTIVES/DESIGN This cross-sectional study investigated continuous associations between Mayo Test Drive (MTD) - a remote, self-administered, multi-device compatible, web-based cognitive assessment - and AD-related imaging biomarkers. PARTICIPANTS/SETTING 684 adults from the Mayo Clinic Study of Aging and Mayo Clinic Alzheimer's Disease Research Center participated (age=70.4±11.2, 49.7% female). Participants were predominantly cognitively unimpaired (CU; 94.0%). MEASUREMENTS Participants completed (1) brain amyloid and tau PET scans and MRI scans for hippocampal volume (HV) and white matter hyperintensities (WMH); (2) MTD remotely, consisting of the Stricker Learning Span and Symbols Test which combine into an MTD composite; and (3) in-person neuropsychological assessment including measures to obtain Mayo Preclinical Alzheimer's disease Cognitive Composite (Mayo-PACC) and Global-z. Multiple regressions adjusted for age, sex, and education queried associations between imaging biomarkers and scores from remote and in-person cognitive measures. RESULTS Lower performances on MTD were associated with greater amyloid, entorhinal tau, and global tau PET burden, lower HV, and higher WMH. Mayo-PACC and Global-z were associated with all imaging biomarkers except global tau PET burden. MCI/Dementia participants showed lower performance on all MTD measures compared to CU with large effect sizes (Hedge's g's=1.65-2.02), with similar findings for CU versus MCI only (Hedge's g's=1.46-1.83). CONCLUSION MTD is associated with continuous measures of AD-related imaging biomarkers, demonstrating ability to detect subtle cognitive change using a brief, remote assessment in predominantly CU individuals and criterion validity for MTD.
Collapse
Affiliation(s)
- E A Boots
- Nikki H. Stricker, Ph.D., ABPP-CN, Mayo Clinic, 200 First Street SW, Rochester, MN 55905; 507-284-2649 (phone), 507-284-4158 (fax), (email)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Parra MA, Gazes Y, Habeck C, Stern Y. Exploring the Association between Amyloid-β and Memory Markers for Alzheimer's Disease in Cognitively Unimpaired Older Adults. J Prev Alzheimers Dis 2024; 11:339-347. [PMID: 38374740 PMCID: PMC11007669 DOI: 10.14283/jpad.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
BACKGROUND Memory tests vary in their sensitivity for detection of pre-symptomatic Alzheimer's disease (AD). The Visual Short-Term Memory Binding Test (VSTMBT) identifies AD-related performance deficits in older adults who are otherwise cognitively unimpaired. OBJECTIVE We investigated the association of this psychometric measure with brain amyloidosis and atrophy. DESIGN Cross-sectional mixed and correlational. SETTING Cognitive Reserve Study from Columbia University. PARTICIPANTS a sample of 39 cognitively unimpaired older adults (Age: M=65.3, SD=3.07) was obtained from the above study. MEASUREMENTS Extensive neuropsychological and neuroimaging (MRI and amyloid-β PET) assessments were carried out. RESULTS Performance on the VSTMBT allowed us to split the sample into Low Binding Cost (LBC, N=21) and High Binding Cost (HBC, N=18). Groups were matched according to age [p=0.702], years of education [0.071], and sex [p=0.291]. HBC's performance was comparable to that seen in symptomatic AD. Groups only differed in their amyloid-β deposition on PET in regions of the right ventral stream linked to visual cognition and affected early in AD pathogenesis (lateral-occipital cortex, p = 0.008; fusiform gyrus, p = 0.017; and entorhinal cortex, p = 0.046). Other regions known to be linked to low-level visual integration function also revealed increased amyloid-β deposition in HBC. CONCLUSIONS VSTMB deficits are associated with neuropathogenesis (i.e., amyloid-β deposition) in the earliest affected regions in pre-symptomatic AD. The VSTMB test holds potential for the identification of cognitively unimpaired older adults with very early AD pathogenesis and may thus be a useful tool for early intervention trials or other forms of clinical research.
Collapse
Affiliation(s)
- M A Parra
- Dr Mario A Parra, Department of Psychological Sciences and Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, G1 1QE, Room GH521, Tel.+44 (0) 141 548 4362,
| | | | | | | |
Collapse
|
50
|
Pelkmans W, Shekari M, Brugulat‐Serrat A, Sánchez‐Benavides G, Minguillón C, Fauria K, Molinuevo JL, Grau‐Rivera O, González Escalante A, Kollmorgen G, Carboni M, Ashton NJ, Zetterberg H, Blennow K, Suarez‐Calvet M, Gispert JD. Astrocyte biomarkers GFAP and YKL-40 mediate early Alzheimer's disease progression. Alzheimers Dement 2024; 20:483-493. [PMID: 37690071 PMCID: PMC10917053 DOI: 10.1002/alz.13450] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION We studied how biomarkers of reactive astrogliosis mediate the pathogenic cascade in the earliest Alzheimer's disease (AD) stages. METHODS We performed path analysis on data from 384 cognitively unimpaired individuals from the ALzheimer and FAmilies (ALFA)+ study using structural equation modeling to quantify the relationships between biomarkers of reactive astrogliosis and the AD pathological cascade. RESULTS Cerebrospinal fluid (CSF) amyloid beta (Aβ)42/40 was associated with Aβ aggregation on positron emission tomography (PET) and with CSF p-tau181 , which was in turn directly associated with CSF neurofilament light (NfL). Plasma glial fibrillary acidic protein (GFAP) mediated the relationship between CSF Aβ42/40 and Aβ-PET, and CSF YKL-40 partly explained the association between Aβ-PET, p-tau181 , and NfL. DISCUSSION Our results suggest that reactive astrogliosis, as indicated by different fluid biomarkers, influences the pathogenic cascade during the preclinical stage of AD. While plasma GFAP mediates the early association between soluble and insoluble Aβ, CSF YKL-40 mediates the latter association between Aβ and downstream Aβ-induced tau pathology and tau-induced neuronal injury. HIGHLIGHTS Lower CSF Aβ42/40 was directly linked to higher plasma GFAP concentrations. Plasma GFAP partially explained the relationship between soluble Aβ and insoluble Aβ. CSF YKL-40 mediated Aβ-induced tau phosphorylation and tau-induced neuronal injury.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Anna Brugulat‐Serrat
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Gonzalo Sánchez‐Benavides
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Jose Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Lundbeck A/SCopenhagenDenmark
| | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Armand González Escalante
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | | | | | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- NIHR Biomedical Research Centre for Mental HealthBiomedical Research Unit for Dementia at South LondonMaudsley NHS FoundationLondonUK
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Institute of PsychiatryPsychology & NeuroscienceKing's College LondonLondonUK
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Marc Suarez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Lundbeck A/SCopenhagenDenmark
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Lundbeck A/SCopenhagenDenmark
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
| | | |
Collapse
|